Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4RToEConvForElectron class implementation << 27 // 26 // 28 // Author: H.Kurashige, 05 October 2002 - Firs << 27 // $Id: G4RToEConvForElectron.cc,v 1.5.4.1 2009/08/11 12:45:18 gcosmo Exp $ 29 // ------------------------------------------- << 28 // GEANT4 tag $Name: geant4-09-02-patch-02 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------- >> 32 // GEANT 4 class implementation file/ History: >> 33 // 5 Oct. 2002, H.Kuirashige : Structure created based on object model >> 34 // -------------------------------------------------------------- 30 35 31 #include "G4RToEConvForElectron.hh" 36 #include "G4RToEConvForElectron.hh" 32 #include "G4ParticleDefinition.hh" 37 #include "G4ParticleDefinition.hh" 33 #include "G4ParticleTable.hh" 38 #include "G4ParticleTable.hh" >> 39 #include "G4Material.hh" >> 40 #include "G4PhysicsLogVector.hh" >> 41 >> 42 #include "G4ios.hh" 34 43 35 #include "G4PhysicalConstants.hh" << 44 G4RToEConvForElectron::G4RToEConvForElectron() : G4VRangeToEnergyConverter() 36 #include "G4SystemOfUnits.hh" << 37 #include "G4Pow.hh" << 38 #include "G4Log.hh" << 39 #include "G4Exp.hh" << 40 << 41 // ------------------------------------------- << 42 G4RToEConvForElectron::G4RToEConvForElectron() << 43 : G4VRangeToEnergyConverter() << 44 { 45 { 45 theParticle = G4ParticleTable::GetParticleTa << 46 theParticle = G4ParticleTable::GetParticleTable()->FindParticle("e-"); 46 if (theParticle == nullptr ) << 47 if (theParticle ==0) { 47 { << 48 #ifdef G4VERBOSE 48 #ifdef G4VERBOSE 49 if (GetVerboseLevel()>0) << 49 if (GetVerboseLevel()>0) { 50 { << 50 G4cout << " G4RToEConvForElectron::G4RToEConvForElectron() "; 51 G4cout << "G4RToEConvForElectron::G4RToE << 51 G4cout << " Electron is not defined !!" << G4endl; 52 G4cout << "Electron is not defined !!" < << 53 } 52 } 54 #endif 53 #endif 55 } << 54 } 56 else << 57 { << 58 fPDG = theParticle->GetPDGEncoding(); << 59 } << 60 } 55 } 61 56 62 // ------------------------------------------- << 57 G4RToEConvForElectron::~G4RToEConvForElectron() 63 G4RToEConvForElectron::~G4RToEConvForElectron( << 58 { 64 {} << 59 } 65 << 60 66 // ------------------------------------------- << 61 67 G4double G4RToEConvForElectron::ComputeValue(c << 62 // ********************************************************************** 68 c << 63 // ************************* ComputeLoss ******************************** >> 64 // ********************************************************************** >> 65 G4double G4RToEConvForElectron::ComputeLoss(G4double AtomicNumber, >> 66 G4double KineticEnergy) const 69 { 67 { 70 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3 << 68 static G4double Z; 71 const G4double Tlow=10.*CLHEP::keV, Thigh=1. << 69 static G4double taul, ionpot, ionpotlog; 72 const G4double taul = Tlow/CLHEP::electron_m << 70 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3=1., cbr4=0.072; 73 const G4double log05 = G4Log(0.5); << 71 const G4double Tlow=10.*keV, Thigh=1.*GeV; 74 const G4double taul12 = std::sqrt(taul); << 72 static G4double bremfactor= 0.1 ; 75 const G4double bremfactor = 0.1; << 73 76 << 74 G4double Mass = theParticle->GetPDGMass(); 77 const G4double Zlog = G4Pow::GetInstance()-> << 75 // calculate dE/dx for electrons 78 const G4double ionpot = << 76 if( std::fabs(AtomicNumber-Z)>0.1 ) { 79 1.6e-5*CLHEP::MeV*G4Exp(0.9*Zlog)/CLHEP::e << 77 Z = AtomicNumber; 80 const G4double ionpotlog = G4Log(ionpot); << 78 taul = Tlow/Mass; >> 79 ionpot = 1.6e-5*MeV*std::exp(0.9*std::log(Z))/Mass; >> 80 ionpotlog = std::log(ionpot); >> 81 } >> 82 81 83 82 const G4double tau = kinEnergy/CLHEP::electr << 84 G4double tau = KineticEnergy/Mass; 83 G4double dEdx = 0.0; << 85 G4double dEdx; 84 86 85 if(tau<taul) << 87 if(tau<taul) { 86 { << 87 G4double t1 = taul+1.; 88 G4double t1 = taul+1.; 88 G4double t2 = taul+2.; 89 G4double t2 = taul+2.; 89 G4double tsq = taul*taul; 90 G4double tsq = taul*taul; 90 G4double beta2 = taul*t2/(t1*t1); 91 G4double beta2 = taul*t2/(t1*t1); 91 G4double f = 1.-beta2+G4Log(tsq/2.) << 92 G4double f = 1.-beta2+std::log(tsq/2.) 92 +(0.5+0.25*tsq+(1.+2.*taul)*log << 93 +(0.5+0.25*tsq+(1.+2.*taul)*std::log(0.5))/(t1*t1); 93 dEdx = Z*(G4Log(2.*taul+4.)-2.*ionpotlog+f << 94 dEdx = (std::log(2.*taul+4.)-2.*ionpotlog+f)/beta2; 94 dEdx *= taul12/std::sqrt(tau); << 95 dEdx = twopi_mc2_rcl2*Z*dEdx; 95 } << 96 G4double clow = dEdx*std::sqrt(taul); 96 else << 97 dEdx = clow/std::sqrt(KineticEnergy/Mass); 97 { << 98 >> 99 } else { 98 G4double t1 = tau+1.; 100 G4double t1 = tau+1.; 99 G4double t2 = tau+2.; 101 G4double t2 = tau+2.; 100 G4double tsq = tau*tau; 102 G4double tsq = tau*tau; 101 G4double beta2 = tau*t2/(t1*t1); 103 G4double beta2 = tau*t2/(t1*t1); 102 G4double f = 1.-beta2+G4Log(tsq/2.) << 104 G4double f = 1.-beta2+std::log(tsq/2.) 103 +(0.5+0.25*tsq+(1.+2.*tau)* << 105 +(0.5+0.25*tsq+(1.+2.*tau)*std::log(0.5))/(t1*t1); 104 dEdx = Z*(G4Log(2.*tau+4.)-2.*ionpotlog+f) << 106 dEdx = (std::log(2.*tau+4.)-2.*ionpotlog+f)/beta2; >> 107 dEdx = twopi_mc2_rcl2*Z*dEdx; 105 108 106 // loss from bremsstrahlung follows 109 // loss from bremsstrahlung follows 107 G4double cbrem = (cbr1+cbr2*Z)*(cbr3+cbr4* << 110 G4double cbrem = (cbr1+cbr2*Z) 108 dEdx += Z*(Z+1)*cbrem*bremfactor*tau/beta2 << 111 *(cbr3+cbr4*std::log(KineticEnergy/Thigh)); >> 112 cbrem = Z*(Z+1.)*cbrem*tau/beta2; >> 113 >> 114 cbrem *= bremfactor ; >> 115 >> 116 dEdx += twopi_mc2_rcl2*cbrem; 109 } 117 } 110 118 111 return dEdx*CLHEP::twopi_mc2_rcl2; << 119 return dEdx; 112 } 120 } 113 121 114 // ------------------------------------------- << 122 >> 123 void G4RToEConvForElectron::BuildRangeVector(const G4Material* aMaterial, >> 124 G4double maxEnergy, >> 125 G4double aMass, >> 126 G4PhysicsLogVector* rangeVector) >> 127 { >> 128 // create range vector for a material >> 129 const G4double tlim = 10.*keV; >> 130 const G4int maxnbint = 100; >> 131 >> 132 const G4ElementVector* elementVector = aMaterial->GetElementVector(); >> 133 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); >> 134 G4int NumEl = aMaterial->GetNumberOfElements(); >> 135 >> 136 // calculate parameters of the low energy part first >> 137 size_t i; >> 138 G4double loss=0.; >> 139 for (i=0; i<size_t(NumEl); i++) { >> 140 G4bool isOut; >> 141 G4int IndEl = (*elementVector)[i]->GetIndex(); >> 142 loss += atomicNumDensityVector[i]* >> 143 (*theLossTable)[IndEl]->GetValue(tlim,isOut); >> 144 } >> 145 G4double taulim = tlim/aMass; >> 146 G4double clim = std::sqrt(taulim)*loss; >> 147 G4double taumax = maxEnergy/aMass; >> 148 >> 149 // now the range vector can be filled >> 150 for ( i=0; i<size_t(TotBin); i++) { >> 151 G4double LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i); >> 152 G4double tau = LowEdgeEnergy/aMass; >> 153 >> 154 if ( tau <= taulim ) { >> 155 G4double Value = 2.*aMass*tau*std::sqrt(tau)/(3.*clim); >> 156 rangeVector->PutValue(i,Value); >> 157 } else { >> 158 G4double rangelim = 2.*aMass*taulim*std::sqrt(taulim)/(3.*clim); >> 159 G4double ltaulow = std::log(taulim); >> 160 G4double ltauhigh = std::log(tau); >> 161 G4double ltaumax = std::log(taumax); >> 162 G4int nbin = G4int(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow)); >> 163 if( nbin < 1 ) nbin = 1; >> 164 G4double Value = RangeLogSimpson( NumEl, elementVector, >> 165 atomicNumDensityVector, aMass, >> 166 ltaulow, ltauhigh, nbin) >> 167 + rangelim; >> 168 rangeVector->PutValue(i,Value); >> 169 } >> 170 } >> 171 } 115 172