Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4RToEConvForElectron class implementation << 27 // 23 // 28 // Author: H.Kurashige, 05 October 2002 - Firs << 24 // $Id: G4RToEConvForElectron.cc,v 1.3 2004/12/02 06:53:56 kurasige Exp $ 29 // ------------------------------------------- << 25 // GEANT4 tag $Name: geant4-07-01 $ >> 26 // >> 27 // >> 28 // -------------------------------------------------------------- >> 29 // GEANT 4 class implementation file/ History: >> 30 // 5 Oct. 2002, H.Kuirashige : Structure created based on object model >> 31 // -------------------------------------------------------------- 30 32 31 #include "G4RToEConvForElectron.hh" 33 #include "G4RToEConvForElectron.hh" 32 #include "G4ParticleDefinition.hh" 34 #include "G4ParticleDefinition.hh" 33 #include "G4ParticleTable.hh" 35 #include "G4ParticleTable.hh" >> 36 #include "G4Material.hh" >> 37 #include "G4PhysicsLogVector.hh" >> 38 >> 39 #include "G4ios.hh" >> 40 #include <iomanip> >> 41 #include <strstream> 34 42 35 #include "G4PhysicalConstants.hh" << 43 G4RToEConvForElectron::G4RToEConvForElectron() : G4VRangeToEnergyConverter() 36 #include "G4SystemOfUnits.hh" << 37 #include "G4Pow.hh" << 38 #include "G4Log.hh" << 39 #include "G4Exp.hh" << 40 << 41 // ------------------------------------------- << 42 G4RToEConvForElectron::G4RToEConvForElectron() << 43 : G4VRangeToEnergyConverter() << 44 { 44 { 45 theParticle = G4ParticleTable::GetParticleTa << 45 theParticle = G4ParticleTable::GetParticleTable()->FindParticle("e-"); 46 if (theParticle == nullptr ) << 46 if (theParticle ==0) { 47 { << 48 #ifdef G4VERBOSE 47 #ifdef G4VERBOSE 49 if (GetVerboseLevel()>0) << 48 if (GetVerboseLevel()>0) { 50 { << 49 G4cout << " G4RToEConvForElectron::G4RToEConvForElectron() "; 51 G4cout << "G4RToEConvForElectron::G4RToE << 50 G4cout << " Electron is not defined !!" << G4endl; 52 G4cout << "Electron is not defined !!" < << 53 } 51 } 54 #endif 52 #endif 55 } << 53 } 56 else << 57 { << 58 fPDG = theParticle->GetPDGEncoding(); << 59 } << 60 } 54 } 61 55 62 // ------------------------------------------- << 56 G4RToEConvForElectron::~G4RToEConvForElectron() 63 G4RToEConvForElectron::~G4RToEConvForElectron( << 57 { 64 {} << 58 } 65 << 59 66 // ------------------------------------------- << 60 67 G4double G4RToEConvForElectron::ComputeValue(c << 61 // ********************************************************************** 68 c << 62 // ************************* ComputeLoss ******************************** >> 63 // ********************************************************************** >> 64 G4double G4RToEConvForElectron::ComputeLoss(G4double AtomicNumber, >> 65 G4double KineticEnergy) const 69 { 66 { 70 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3 << 67 static G4double Z; 71 const G4double Tlow=10.*CLHEP::keV, Thigh=1. << 68 static G4double taul, ionpot, ionpotlog; 72 const G4double taul = Tlow/CLHEP::electron_m << 69 const G4double cbr1=0.02, cbr2=-5.7e-5, cbr3=1., cbr4=0.072; 73 const G4double log05 = G4Log(0.5); << 70 const G4double Tlow=10.*keV, Thigh=1.*GeV; 74 const G4double taul12 = std::sqrt(taul); << 71 static G4double bremfactor= 0.1 ; 75 const G4double bremfactor = 0.1; << 72 76 << 73 G4double Mass = theParticle->GetPDGMass(); 77 const G4double Zlog = G4Pow::GetInstance()-> << 74 // calculate dE/dx for electrons 78 const G4double ionpot = << 75 if( std::abs(AtomicNumber-Z)>0.1 ) { 79 1.6e-5*CLHEP::MeV*G4Exp(0.9*Zlog)/CLHEP::e << 76 Z = AtomicNumber; 80 const G4double ionpotlog = G4Log(ionpot); << 77 taul = Tlow/Mass; >> 78 ionpot = 1.6e-5*MeV*std::exp(0.9*std::log(Z))/Mass; >> 79 ionpotlog = std::log(ionpot); >> 80 } >> 81 81 82 82 const G4double tau = kinEnergy/CLHEP::electr << 83 G4double tau = KineticEnergy/Mass; 83 G4double dEdx = 0.0; << 84 G4double dEdx; 84 85 85 if(tau<taul) << 86 if(tau<taul) { 86 { << 87 G4double t1 = taul+1.; 87 G4double t1 = taul+1.; 88 G4double t2 = taul+2.; 88 G4double t2 = taul+2.; 89 G4double tsq = taul*taul; 89 G4double tsq = taul*taul; 90 G4double beta2 = taul*t2/(t1*t1); 90 G4double beta2 = taul*t2/(t1*t1); 91 G4double f = 1.-beta2+G4Log(tsq/2.) << 91 G4double f = 1.-beta2+std::log(tsq/2.) 92 +(0.5+0.25*tsq+(1.+2.*taul)*log << 92 +(0.5+0.25*tsq+(1.+2.*taul)*std::log(0.5))/(t1*t1); 93 dEdx = Z*(G4Log(2.*taul+4.)-2.*ionpotlog+f << 93 dEdx = (std::log(2.*taul+4.)-2.*ionpotlog+f)/beta2; 94 dEdx *= taul12/std::sqrt(tau); << 94 dEdx = twopi_mc2_rcl2*Z*dEdx; 95 } << 95 G4double clow = dEdx*std::sqrt(taul); 96 else << 96 dEdx = clow/std::sqrt(KineticEnergy/Mass); 97 { << 97 >> 98 } else { 98 G4double t1 = tau+1.; 99 G4double t1 = tau+1.; 99 G4double t2 = tau+2.; 100 G4double t2 = tau+2.; 100 G4double tsq = tau*tau; 101 G4double tsq = tau*tau; 101 G4double beta2 = tau*t2/(t1*t1); 102 G4double beta2 = tau*t2/(t1*t1); 102 G4double f = 1.-beta2+G4Log(tsq/2.) << 103 G4double f = 1.-beta2+std::log(tsq/2.) 103 +(0.5+0.25*tsq+(1.+2.*tau)* << 104 +(0.5+0.25*tsq+(1.+2.*tau)*std::log(0.5))/(t1*t1); 104 dEdx = Z*(G4Log(2.*tau+4.)-2.*ionpotlog+f) << 105 dEdx = (std::log(2.*tau+4.)-2.*ionpotlog+f)/beta2; >> 106 dEdx = twopi_mc2_rcl2*Z*dEdx; 105 107 106 // loss from bremsstrahlung follows 108 // loss from bremsstrahlung follows 107 G4double cbrem = (cbr1+cbr2*Z)*(cbr3+cbr4* << 109 G4double cbrem = (cbr1+cbr2*Z) 108 dEdx += Z*(Z+1)*cbrem*bremfactor*tau/beta2 << 110 *(cbr3+cbr4*std::log(KineticEnergy/Thigh)); >> 111 cbrem = Z*(Z+1.)*cbrem*tau/beta2; >> 112 >> 113 cbrem *= bremfactor ; >> 114 >> 115 dEdx += twopi_mc2_rcl2*cbrem; 109 } 116 } 110 117 111 return dEdx*CLHEP::twopi_mc2_rcl2; << 118 return dEdx; 112 } 119 } 113 120 114 // ------------------------------------------- << 121 >> 122 void G4RToEConvForElectron::BuildRangeVector(const G4Material* aMaterial, >> 123 G4double maxEnergy, >> 124 G4double aMass, >> 125 G4PhysicsLogVector* rangeVector) >> 126 { >> 127 // create range vector for a material >> 128 const G4double tlim = 10.*keV; >> 129 const G4int maxnbint = 100; >> 130 >> 131 const G4ElementVector* elementVector = aMaterial->GetElementVector(); >> 132 const G4double* atomicNumDensityVector = aMaterial->GetAtomicNumDensityVector(); >> 133 G4int NumEl = aMaterial->GetNumberOfElements(); >> 134 >> 135 // calculate parameters of the low energy part first >> 136 size_t i; >> 137 G4double loss=0.; >> 138 for (i=0; i<size_t(NumEl); i++) { >> 139 G4bool isOut; >> 140 G4int IndEl = (*elementVector)[i]->GetIndex(); >> 141 loss += atomicNumDensityVector[i]* >> 142 (*theLossTable)[IndEl]->GetValue(tlim,isOut); >> 143 } >> 144 G4double taulim = tlim/aMass; >> 145 G4double clim = std::sqrt(taulim)*loss; >> 146 G4double taumax = maxEnergy/aMass; >> 147 >> 148 // now the range vector can be filled >> 149 for ( i=0; i<size_t(TotBin); i++) { >> 150 G4double LowEdgeEnergy = rangeVector->GetLowEdgeEnergy(i); >> 151 G4double tau = LowEdgeEnergy/aMass; >> 152 >> 153 if ( tau <= taulim ) { >> 154 G4double Value = 2.*aMass*tau*std::sqrt(tau)/(3.*clim); >> 155 rangeVector->PutValue(i,Value); >> 156 } else { >> 157 G4double rangelim = 2.*aMass*taulim*std::sqrt(taulim)/(3.*clim); >> 158 G4double ltaulow = std::log(taulim); >> 159 G4double ltauhigh = std::log(tau); >> 160 G4double ltaumax = std::log(taumax); >> 161 G4int nbin = G4int(maxnbint*(ltauhigh-ltaulow)/(ltaumax-ltaulow)); >> 162 if( nbin < 1 ) nbin = 1; >> 163 G4double Value = RangeLogSimpson( NumEl, elementVector, >> 164 atomicNumDensityVector, aMass, >> 165 ltaulow, ltauhigh, nbin) >> 166 + rangelim; >> 167 rangeVector->PutValue(i,Value); >> 168 } >> 169 } >> 170 } 115 171