Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VRangeToEnergyConverter 26 // G4VRangeToEnergyConverter 27 // 27 // 28 // Class description: 28 // Class description: 29 // 29 // 30 // Base class for Range to Energy Converters. 30 // Base class for Range to Energy Converters. 31 // Cut in energy corresponding to given cut va 31 // Cut in energy corresponding to given cut value in range 32 // is calculated for a material by using Conve 32 // is calculated for a material by using Convert() method. 33 33 34 // Author: H.Kurashige, 05 October 2002 - Firs 34 // Author: H.Kurashige, 05 October 2002 - First implementation 35 // ------------------------------------------- 35 // -------------------------------------------------------------------- 36 #ifndef G4VRangeToEnergyConverter_hh 36 #ifndef G4VRangeToEnergyConverter_hh 37 #define G4VRangeToEnergyConverter_hh 1 37 #define G4VRangeToEnergyConverter_hh 1 38 38 >> 39 #include <cmath> 39 #include <vector> 40 #include <vector> 40 41 41 #include "globals.hh" 42 #include "globals.hh" >> 43 #include "G4ios.hh" 42 #include "G4ParticleDefinition.hh" 44 #include "G4ParticleDefinition.hh" >> 45 #include "G4PhysicsTable.hh" >> 46 #include "G4Element.hh" 43 #include "G4Material.hh" 47 #include "G4Material.hh" 44 48 >> 49 class G4PhysicsLogVector; >> 50 45 class G4VRangeToEnergyConverter 51 class G4VRangeToEnergyConverter 46 { 52 { 47 public: << 53 public: >> 54 >> 55 G4VRangeToEnergyConverter(); >> 56 // Constructor >> 57 >> 58 G4VRangeToEnergyConverter(const G4VRangeToEnergyConverter& r); >> 59 // Copy constructor >> 60 >> 61 G4VRangeToEnergyConverter& operator=(const G4VRangeToEnergyConverter &r); >> 62 // Assignment operator >> 63 >> 64 virtual ~G4VRangeToEnergyConverter(); >> 65 // Destructor 48 66 49 explicit G4VRangeToEnergyConverter(); << 67 G4bool operator==(const G4VRangeToEnergyConverter& r) const; >> 68 G4bool operator!=(const G4VRangeToEnergyConverter& r) const; >> 69 // Equality operators 50 70 51 virtual ~G4VRangeToEnergyConverter(); << 71 virtual G4double Convert(G4double rangeCut, const G4Material* material); >> 72 // Calculate energy cut from given range cut for the material 52 73 53 // operators are not used << 74 static void SetEnergyRange(G4double lowedge, G4double highedge); 54 G4VRangeToEnergyConverter(const G4VRangeToEn << 75 // Set energy range for all particle type 55 G4VRangeToEnergyConverter& operator= << 76 56 (const G4VRangeToEnergyConverter &r) = delet << 77 static G4double GetLowEdgeEnergy(); 57 G4bool operator==(const G4VRangeToEnergyConv << 78 static G4double GetHighEdgeEnergy(); 58 G4bool operator!=(const G4VRangeToEnergyConv << 79 // Get energy range for all particle type 59 << 80 60 // Calculate energy cut from given range cut << 81 static G4double GetMaxEnergyCut(); 61 virtual G4double Convert(const G4double rang << 82 static void SetMaxEnergyCut(G4double value); 62 << 83 // Get/set max cut energy for all particle type 63 // Set energy range for all particle type << 64 // if highedge > 10 GeV, highedge value is n << 65 static void SetEnergyRange(const G4double lo << 66 << 67 // Get energy range for all particle type << 68 static G4double GetLowEdgeEnergy(); << 69 static G4double GetHighEdgeEnergy(); << 70 << 71 // Get/set max cut energy for all particle t << 72 // No check on the value << 73 static G4double GetMaxEnergyCut(); << 74 static void SetMaxEnergyCut(const G4double v << 75 84 76 // Return pointer to the particle type which << 85 inline const G4ParticleDefinition* GetParticleType() const; 77 inline const G4ParticleDefinition* GetPartic << 86 // Return pointer to the particle type which this converter takes care of >> 87 >> 88 const G4PhysicsTable* GetLossTable() const; >> 89 // theLossTable is a collection of loss vectors for all elements. >> 90 // Each loss vector has energy loss values (cross-section values >> 91 // for neutral particles) which are calculated by >> 92 // ComputeLoss(G4double AtomicNumber, G4double KineticEnergy). >> 93 // ComputeLoss method is pure virtual and should be provided >> 94 // for each particle type >> 95 >> 96 virtual void Reset(); >> 97 // Reset Loss Table and Range Vectors 78 98 79 inline void SetVerboseLevel(G4int value); << 99 inline void SetVerboseLevel(G4int value); 80 inline G4int GetVerboseLevel() const; << 100 inline G4int GetVerboseLevel() const; 81 // control flag for output message 101 // control flag for output message 82 // 0: Silent 102 // 0: Silent 83 // 1: Warning message 103 // 1: Warning message 84 // 2: More 104 // 2: More 85 105 86 protected: << 106 protected: 87 107 88 virtual G4double ComputeValue(const G4int Z, << 108 virtual void BuildLossTable(); 89 109 90 private: << 110 virtual G4double ComputeLoss(G4double AtomicNumber, >> 111 G4double KineticEnergy) = 0; 91 112 92 static void FillEnergyVector(const G4double << 113 // ------------- Range Table -------------------------------------- 93 114 94 G4double ConvertForGamma(const G4double rang << 115 using G4LossVector = G4PhysicsLogVector; 95 << 116 using G4RangeVector = G4PhysicsLogVector; 96 G4double ConvertForElectron(const G4double r << 117 using G4LossTable = G4PhysicsTable; 97 const G4Material << 118 98 << 119 virtual void BuildRangeVector(const G4Material* aMaterial, 99 inline G4double LiniearInterpolation(const G << 120 G4RangeVector* rangeVector); 100 const G << 121 101 const G << 122 G4double ConvertCutToKineticEnergy(G4RangeVector* theRangeVector, 102 << 123 G4double theCutInLength, 103 protected: << 124 std::size_t materialIndex ) const; 104 << 125 protected: 105 const G4ParticleDefinition* theParticle = nu << 126 106 G4int fPDG = 0; << 127 static G4double LowestEnergy, HighestEnergy; >> 128 static G4double MaxEnergyCut; >> 129 G4double fMaxEnergyCut = 0.0; >> 130 >> 131 const G4ParticleDefinition* theParticle = nullptr; >> 132 G4LossTable* theLossTable = nullptr; >> 133 G4int NumberOfElements = 0; >> 134 >> 135 const G4int TotBin = 300; 107 136 108 private: << 137 std::vector< G4RangeVector* > fRangeVectorStore; 109 138 110 static G4double sEmin; << 139 private: 111 static G4double sEmax; << 112 static std::vector<G4double>* sEnergy; << 113 static G4int sNbinPerDecade; << 114 static G4int sNbin; << 115 140 116 G4int verboseLevel = 1; << 141 G4int verboseLevel = 1; 117 G4bool isFirstInstance = false; << 118 }; 142 }; 119 143 120 // ------------------ 144 // ------------------ 121 // Inline methods 145 // Inline methods 122 // ------------------ 146 // ------------------ 123 147 124 inline 148 inline 125 void G4VRangeToEnergyConverter::SetVerboseLeve 149 void G4VRangeToEnergyConverter::SetVerboseLevel(G4int value) 126 { 150 { 127 verboseLevel = value; 151 verboseLevel = value; 128 } 152 } 129 153 130 inline 154 inline 131 G4int G4VRangeToEnergyConverter::GetVerboseLev 155 G4int G4VRangeToEnergyConverter::GetVerboseLevel() const 132 { 156 { 133 return verboseLevel; 157 return verboseLevel; 134 } 158 } 135 159 136 inline 160 inline 137 const G4ParticleDefinition* G4VRangeToEnergyCo 161 const G4ParticleDefinition* G4VRangeToEnergyConverter::GetParticleType() const 138 { 162 { 139 return theParticle; 163 return theParticle; 140 } << 141 << 142 inline G4double G4VRangeToEnergyConverter::Lin << 143 const G4double e1, const G4dou << 144 const G4double r1, const G4dou << 145 { << 146 return (r1 == r2) ? e1 : e1 + (e2 - e1)*(r - << 147 } 164 } 148 165 149 #endif 166 #endif 150 167