Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4PionRadiativeDecayChannel class implement << 26 // ------------------------------------------------------------ 27 // GEANT 4 class header file 27 // GEANT 4 class header file 28 // 28 // 29 // Author: P.Gumplinger, 30 July 2007 << 29 // History: 30 // Reference: M. Blecher, TRIUMF/PIENU Technot << 30 // 01 August 2007 P.Gumplinger 31 // "Inclusion of pi->enug in the Mo << 31 // Reference: TRIUMF PIENU Technote: 32 // ------------------------------------------- << 32 // M. Blecher - "Inclusion of pi->enug in MC " >> 33 // Rate is for gammas > 100keV >> 34 // >> 35 // ------------------------------------------------------------ >> 36 // >> 37 // >> 38 // 33 39 34 #include "G4PionRadiativeDecayChannel.hh" 40 #include "G4PionRadiativeDecayChannel.hh" 35 41 36 #include "G4DecayProducts.hh" << 37 #include "G4LorentzVector.hh" << 38 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 39 #include "G4SystemOfUnits.hh" 43 #include "G4SystemOfUnits.hh" 40 #include "Randomize.hh" 44 #include "Randomize.hh" >> 45 #include "G4DecayProducts.hh" >> 46 #include "G4LorentzVector.hh" 41 47 42 namespace << 48 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel() >> 49 : G4VDecayChannel(), >> 50 beta(0.),cib(0.),csdp(0.),csdm(0.),cif(0.),cig(0.), >> 51 xl(0.), yl(0.), xu(0.), yu(0.), d2wmax(0.) 43 { 52 { 44 const G4double beta = 3.6612e-03; << 45 const G4double cib = 1.16141e-03; << 46 const G4double csdp = 3.45055e-02; << 47 const G4double csdm = 5.14122e-03; << 48 const G4double cif = 4.63543e-05; << 49 const G4double cig = 1.78928e-05; << 50 const G4double xl = 2. * 0.1 * MeV / 139.57 * << 51 const G4double yl = ((1. - xl) + std::sqrt((1 << 52 << 53 const G4double xu = 1. - (yl - std::sqrt(yl * << 54 const G4double yu = 1. + beta * beta; << 55 << 56 inline G4double D2W(const G4double x, const G4 << 57 { << 58 return cib * (1. - y) * (1. + ((1. - x) * (1 << 59 + csdp * (1. - x) * ((x + y - 1.) * ( << 60 + cif * (x - 1.) * (1. - y) / x + cig << 61 } 53 } 62 54 63 const G4double d2wmax = D2W(xl, yl); << 55 G4PionRadiativeDecayChannel:: 64 } // namespace << 56 G4PionRadiativeDecayChannel(const G4String& theParentName, 65 << 57 G4double theBR) 66 G4PionRadiativeDecayChannel::G4PionRadiativeDe << 58 : G4VDecayChannel("Radiative Pion Decay",1) 67 << 68 : G4VDecayChannel("Radiative Pion Decay", 1) << 69 { 59 { 70 // set names for daughter particles 60 // set names for daughter particles 71 if (theParentName == "pi+") { 61 if (theParentName == "pi+") { 72 SetBR(theBR); 62 SetBR(theBR); 73 SetParent("pi+"); 63 SetParent("pi+"); 74 SetNumberOfDaughters(3); 64 SetNumberOfDaughters(3); 75 SetDaughter(0, "e+"); 65 SetDaughter(0, "e+"); 76 SetDaughter(1, "gamma"); 66 SetDaughter(1, "gamma"); 77 SetDaughter(2, "nu_e"); 67 SetDaughter(2, "nu_e"); 78 } << 68 } else if (theParentName == "pi-") { 79 else if (theParentName == "pi-") { << 80 SetBR(theBR); 69 SetBR(theBR); 81 SetParent("pi-"); 70 SetParent("pi-"); 82 SetNumberOfDaughters(3); 71 SetNumberOfDaughters(3); 83 SetDaughter(0, "e-"); 72 SetDaughter(0, "e-"); 84 SetDaughter(1, "gamma"); 73 SetDaughter(1, "gamma"); 85 SetDaughter(2, "anti_nu_e"); 74 SetDaughter(2, "anti_nu_e"); 86 } << 75 } else { 87 else { << 88 #ifdef G4VERBOSE 76 #ifdef G4VERBOSE 89 if (GetVerboseLevel() > 0) { << 77 if (GetVerboseLevel()>0) { 90 G4cout << "G4RadiativePionDecayChannel:: << 78 G4cout << "G4RadiativePionDecayChannel:: constructor :"; 91 G4cout << "Parent particle is not charge << 79 G4cout << " parent particle is not charged pion but "; 92 G4cout << theParentName << G4endl; 80 G4cout << theParentName << G4endl; 93 } 81 } 94 #endif 82 #endif 95 } 83 } >> 84 >> 85 beta = 3.6612e-03; >> 86 >> 87 cib = 1.16141e-03; >> 88 csdp = 3.45055e-02; >> 89 csdm = 5.14122e-03; >> 90 cif = 4.63543e-05; >> 91 cig = 1.78928e-05; >> 92 >> 93 xl = 2.*0.1*MeV/139.57*MeV; >> 94 yl = ((1.-xl) + std::sqrt((1-xl)*(1-xl)+4*beta*beta))/2.; >> 95 >> 96 xu = 1. - (yl - std::sqrt(yl*yl-4.*beta*beta))/2.; >> 97 yu = 1. + beta*beta; >> 98 >> 99 d2wmax = D2W(xl,yl); >> 100 >> 101 } >> 102 >> 103 G4PionRadiativeDecayChannel::~G4PionRadiativeDecayChannel() >> 104 { >> 105 } >> 106 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel(const G4PionRadiativeDecayChannel &right) >> 107 :G4VDecayChannel(right), >> 108 beta(right.beta),cib(right.cib),csdp(right.csdp), >> 109 csdm(right.csdm),cif(right.cif),cig(right.cig), >> 110 xl(right.xl), yl(right.yl), xu(right.xu), yu(right.yu), >> 111 d2wmax(right.d2wmax) >> 112 { 96 } 113 } 97 114 98 G4PionRadiativeDecayChannel& << 115 G4PionRadiativeDecayChannel & G4PionRadiativeDecayChannel::operator=(const G4PionRadiativeDecayChannel & right) 99 G4PionRadiativeDecayChannel::operator=(const G << 100 { 116 { 101 if (this != &right) { << 117 if (this != &right) { 102 kinematics_name = right.kinematics_name; 118 kinematics_name = right.kinematics_name; 103 verboseLevel = right.verboseLevel; 119 verboseLevel = right.verboseLevel; 104 rbranch = right.rbranch; 120 rbranch = right.rbranch; 105 121 106 // copy parent name 122 // copy parent name 107 parent_name = new G4String(*right.parent_n 123 parent_name = new G4String(*right.parent_name); 108 124 109 // clear daughters_name array 125 // clear daughters_name array 110 ClearDaughtersName(); 126 ClearDaughtersName(); 111 127 112 // recreate array 128 // recreate array 113 numberOfDaughters = right.numberOfDaughter 129 numberOfDaughters = right.numberOfDaughters; 114 if (numberOfDaughters > 0) { << 130 if ( numberOfDaughters >0 ) { 115 if (daughters_name != nullptr) ClearDaug << 131 if (daughters_name !=0) ClearDaughtersName(); 116 daughters_name = new G4String*[numberOfD 132 daughters_name = new G4String*[numberOfDaughters]; 117 // copy daughters name << 133 //copy daughters name 118 for (G4int index = 0; index < numberOfDa << 134 for (G4int index=0; index < numberOfDaughters; index++) { 119 daughters_name[index] = new G4String(* << 135 daughters_name[index] = new G4String(*right.daughters_name[index]); 120 } 136 } 121 } 137 } >> 138 beta = right.beta; >> 139 cib = right.cib; >> 140 csdp = right.csdp; >> 141 csdm = right.csdm; >> 142 cif = right.cif; >> 143 cig = right.cig; >> 144 xl = right.xl; >> 145 yl = right.yl; >> 146 xu = right.xu; >> 147 yu = right.yu; >> 148 d2wmax = right.d2wmax; 122 } 149 } 123 return *this; 150 return *this; 124 } 151 } 125 152 126 G4DecayProducts* G4PionRadiativeDecayChannel:: << 153 G4DecayProducts *G4PionRadiativeDecayChannel::DecayIt(G4double) 127 { 154 { >> 155 128 #ifdef G4VERBOSE 156 #ifdef G4VERBOSE 129 if (GetVerboseLevel() > 1) G4cout << "G4Pion << 157 if (GetVerboseLevel()>1) >> 158 G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 130 #endif 159 #endif 131 160 132 CheckAndFillParent(); << 161 if (parent == 0) FillParent(); 133 CheckAndFillDaughters(); << 162 if (daughters == 0) FillDaughters(); 134 163 135 // parent mass 164 // parent mass 136 G4double parentmass = G4MT_parent->GetPDGMas << 165 G4double parentmass = parent->GetPDGMass(); 137 166 138 G4double EMPI = parentmass; 167 G4double EMPI = parentmass; 139 168 140 // daughters'mass << 169 //daughters'mass 141 const G4int N_DAUGHTER = 3; << 170 G4double daughtermass[3]; 142 G4double daughtermass[N_DAUGHTER]; << 171 G4double sumofdaughtermass = 0.0; 143 // G4double sumofdaughtermass = 0.0; << 172 for (G4int index=0; index<3; index++){ 144 for (G4int index = 0; index < N_DAUGHTER; ++ << 173 daughtermass[index] = daughters[index]->GetPDGMass(); 145 daughtermass[index] = G4MT_daughters[index << 174 sumofdaughtermass += daughtermass[index]; 146 // sumofdaughtermass += daughtermass[index << 147 } 175 } 148 176 149 G4double EMASS = daughtermass[0]; 177 G4double EMASS = daughtermass[0]; 150 178 151 // create parent G4DynamicParticle at rest << 179 //create parent G4DynamicParticle at rest 152 G4ThreeVector dummy; 180 G4ThreeVector dummy; 153 auto parentparticle = new G4DynamicParticle( << 181 G4DynamicParticle * parentparticle = 154 // create G4Decayproducts << 182 new G4DynamicParticle( parent, dummy, 0.0); 155 auto products = new G4DecayProducts(*parentp << 183 //create G4Decayproducts >> 184 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 156 delete parentparticle; 185 delete parentparticle; 157 186 158 G4double x, y; << 187 G4double x, y, d2w; 159 188 160 const std::size_t MAX_LOOP = 1000; << 189 do { 161 190 162 for (std::size_t loop_counter1 = 0; loop_cou << 191 do { 163 for (std::size_t loop_counter2 = 0; loop_c << 192 164 x = xl + G4UniformRand() * (xu - xl); << 193 x = xl + G4UniformRand()*(xu-xl); 165 y = yl + G4UniformRand() * (yu - yl); << 194 y = yl + G4UniformRand()*(yu-yl); 166 if (x + y > 1.) break; << 195 167 } << 196 } while (x+y <= 1.); 168 G4double d2w = D2W(x, y); << 169 if (d2w > G4UniformRand() * d2wmax) break; << 170 } << 171 197 172 // Calculate the angle between positron and << 198 d2w = D2W(x,y); 173 // << 174 G4double cthetaGE = << 175 (y * (x - 2.) + 2. * (1. - x + beta * beta << 176 199 177 G4double G = x * EMPI / 2.; << 200 } while (d2w <= G4UniformRand()*d2wmax); 178 G4double E = y * EMPI / 2.; << 201 >> 202 //----------------------------------------------------------------------- >> 203 // >> 204 // Calculate the angle between positron and photon (cosine) >> 205 // >> 206 G4double cthetaGE = (y*(x-2.)+2.*(1.-x+beta*beta)) / >> 207 (x*std::sqrt(y*y-4.*beta*beta)); >> 208 >> 209 // >> 210 //----------------------------------------------------------------------- >> 211 // >> 212 G4double G = x * EMPI/2.; >> 213 G4double E = y * EMPI/2.; >> 214 // >> 215 //----------------------------------------------------------------------- >> 216 // 179 217 180 if (E < EMASS) E = EMASS; 218 if (E < EMASS) E = EMASS; 181 219 182 // calculate daughter momentum 220 // calculate daughter momentum 183 G4double daughtermomentum[2]; 221 G4double daughtermomentum[2]; 184 222 185 daughtermomentum[0] = std::sqrt(E * E - EMAS << 223 daughtermomentum[0] = std::sqrt(E*E - EMASS*EMASS); 186 224 187 G4double cthetaE = 2. * G4UniformRand() - 1. << 225 G4double cthetaE = 2.*G4UniformRand()-1.; 188 G4double sthetaE = std::sqrt(1. - cthetaE * << 226 G4double sthetaE = std::sqrt(1.-cthetaE*cthetaE); 189 227 190 G4double phiE = twopi * G4UniformRand() * ra << 228 G4double phiE = twopi*G4UniformRand()*rad; 191 G4double cphiE = std::cos(phiE); 229 G4double cphiE = std::cos(phiE); 192 G4double sphiE = std::sin(phiE); 230 G4double sphiE = std::sin(phiE); 193 231 194 // Coordinates of the decay positron << 232 //Coordinates of the decay positron 195 // << 233 196 G4double px = sthetaE * cphiE; << 234 G4double px = sthetaE*cphiE; 197 G4double py = sthetaE * sphiE; << 235 G4double py = sthetaE*sphiE; 198 G4double pz = cthetaE; 236 G4double pz = cthetaE; 199 237 200 G4ThreeVector direction0(px, py, pz); << 238 G4ThreeVector direction0(px,py,pz); 201 239 202 auto daughterparticle0 = << 240 G4DynamicParticle * daughterparticle0 203 new G4DynamicParticle(G4MT_daughters[0], d << 241 = new G4DynamicParticle( daughters[0], daughtermomentum[0]*direction0); 204 242 205 products->PushProducts(daughterparticle0); 243 products->PushProducts(daughterparticle0); 206 244 207 daughtermomentum[1] = G; 245 daughtermomentum[1] = G; 208 246 209 G4double sthetaGE = std::sqrt(1. - cthetaGE << 247 G4double sthetaGE = std::sqrt(1.-cthetaGE*cthetaGE); 210 248 211 G4double phiGE = twopi * G4UniformRand() * r << 249 G4double phiGE = twopi*G4UniformRand()*rad; 212 G4double cphiGE = std::cos(phiGE); 250 G4double cphiGE = std::cos(phiGE); 213 G4double sphiGE = std::sin(phiGE); 251 G4double sphiGE = std::sin(phiGE); 214 252 215 // Coordinates of the decay gamma with respe << 253 //Coordinates of the decay gamma with respect to the decay positron 216 // << 254 217 px = sthetaGE * cphiGE; << 255 px = sthetaGE*cphiGE; 218 py = sthetaGE * sphiGE; << 256 py = sthetaGE*sphiGE; 219 pz = cthetaGE; 257 pz = cthetaGE; 220 258 221 G4ThreeVector direction1(px, py, pz); << 259 G4ThreeVector direction1(px,py,pz); 222 260 223 direction1.rotateUz(direction0); 261 direction1.rotateUz(direction0); 224 262 225 auto daughterparticle1 = << 263 G4DynamicParticle * daughterparticle1 226 new G4DynamicParticle(G4MT_daughters[1], d << 264 = new G4DynamicParticle( daughters[1], daughtermomentum[1]*direction1); 227 265 228 products->PushProducts(daughterparticle1); 266 products->PushProducts(daughterparticle1); 229 267 230 // output message << 268 // output message 231 #ifdef G4VERBOSE 269 #ifdef G4VERBOSE 232 if (GetVerboseLevel() > 1) { << 270 if (GetVerboseLevel()>1) { 233 G4cout << "G4PionRadiativeDecayChannel::De << 271 G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 234 G4cout << " create decay products in rest << 272 G4cout << " create decay products in rest frame " <<G4endl; 235 products->DumpInfo(); 273 products->DumpInfo(); 236 } 274 } 237 #endif 275 #endif 238 276 239 return products; 277 return products; >> 278 240 } 279 } 241 280