Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4PionRadiativeDecayChannel class implement << 26 // ------------------------------------------------------------ 27 // GEANT 4 class header file 27 // GEANT 4 class header file 28 // 28 // 29 // Author: P.Gumplinger, 30 July 2007 << 29 // History: 30 // Reference: M. Blecher, TRIUMF/PIENU Technot << 30 // 01 August 2007 P.Gumplinger 31 // "Inclusion of pi->enug in the Mo << 31 // Reference: TRIUMF PIENU Technote: 32 // ------------------------------------------- << 32 // M. Blecher - "Inclusion of pi->enug in MC " >> 33 // Rate is for gammas > 100keV >> 34 // >> 35 // ------------------------------------------------------------ >> 36 // >> 37 // >> 38 // 33 39 34 #include "G4PionRadiativeDecayChannel.hh" 40 #include "G4PionRadiativeDecayChannel.hh" 35 41 >> 42 #include "Randomize.hh" 36 #include "G4DecayProducts.hh" 43 #include "G4DecayProducts.hh" 37 #include "G4LorentzVector.hh" 44 #include "G4LorentzVector.hh" 38 #include "G4PhysicalConstants.hh" << 39 #include "G4SystemOfUnits.hh" << 40 #include "Randomize.hh" << 41 45 42 namespace << 46 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel() >> 47 : G4VDecayChannel(), >> 48 beta(0.),cib(0.),csdp(0.),csdm(0.),cif(0.),cig(0.), >> 49 xl(0.), yl(0.), xu(0.), yu(0.), d2wmax(0.) 43 { 50 { 44 const G4double beta = 3.6612e-03; << 45 const G4double cib = 1.16141e-03; << 46 const G4double csdp = 3.45055e-02; << 47 const G4double csdm = 5.14122e-03; << 48 const G4double cif = 4.63543e-05; << 49 const G4double cig = 1.78928e-05; << 50 const G4double xl = 2. * 0.1 * MeV / 139.57 * << 51 const G4double yl = ((1. - xl) + std::sqrt((1 << 52 << 53 const G4double xu = 1. - (yl - std::sqrt(yl * << 54 const G4double yu = 1. + beta * beta; << 55 << 56 inline G4double D2W(const G4double x, const G4 << 57 { << 58 return cib * (1. - y) * (1. + ((1. - x) * (1 << 59 + csdp * (1. - x) * ((x + y - 1.) * ( << 60 + cif * (x - 1.) * (1. - y) / x + cig << 61 } 51 } 62 52 63 const G4double d2wmax = D2W(xl, yl); << 53 G4PionRadiativeDecayChannel:: 64 } // namespace << 54 G4PionRadiativeDecayChannel(const G4String& theParentName, 65 << 55 G4double theBR) 66 G4PionRadiativeDecayChannel::G4PionRadiativeDe << 56 : G4VDecayChannel("Radiative Pion Decay",1) 67 << 68 : G4VDecayChannel("Radiative Pion Decay", 1) << 69 { 57 { 70 // set names for daughter particles 58 // set names for daughter particles 71 if (theParentName == "pi+") { 59 if (theParentName == "pi+") { 72 SetBR(theBR); 60 SetBR(theBR); 73 SetParent("pi+"); 61 SetParent("pi+"); 74 SetNumberOfDaughters(3); 62 SetNumberOfDaughters(3); 75 SetDaughter(0, "e+"); 63 SetDaughter(0, "e+"); 76 SetDaughter(1, "gamma"); 64 SetDaughter(1, "gamma"); 77 SetDaughter(2, "nu_e"); 65 SetDaughter(2, "nu_e"); 78 } << 66 } else if (theParentName == "pi-") { 79 else if (theParentName == "pi-") { << 80 SetBR(theBR); 67 SetBR(theBR); 81 SetParent("pi-"); 68 SetParent("pi-"); 82 SetNumberOfDaughters(3); 69 SetNumberOfDaughters(3); 83 SetDaughter(0, "e-"); 70 SetDaughter(0, "e-"); 84 SetDaughter(1, "gamma"); 71 SetDaughter(1, "gamma"); 85 SetDaughter(2, "anti_nu_e"); 72 SetDaughter(2, "anti_nu_e"); 86 } << 73 } else { 87 else { << 88 #ifdef G4VERBOSE 74 #ifdef G4VERBOSE 89 if (GetVerboseLevel() > 0) { << 75 if (GetVerboseLevel()>0) { 90 G4cout << "G4RadiativePionDecayChannel:: << 76 G4cout << "G4RadiativePionDecayChannel:: constructor :"; 91 G4cout << "Parent particle is not charge << 77 G4cout << " parent particle is not charged pion but "; 92 G4cout << theParentName << G4endl; 78 G4cout << theParentName << G4endl; 93 } 79 } 94 #endif 80 #endif 95 } 81 } >> 82 >> 83 beta = 3.6612e-03; >> 84 >> 85 cib = 1.16141e-03; >> 86 csdp = 3.45055e-02; >> 87 csdm = 5.14122e-03; >> 88 cif = 4.63543e-05; >> 89 cig = 1.78928e-05; >> 90 >> 91 xl = 2.*0.1*MeV/139.57*MeV; >> 92 yl = ((1.-xl) + std::sqrt((1-xl)*(1-xl)+4*beta*beta))/2.; >> 93 >> 94 xu = 1. - (yl - std::sqrt(yl*yl-4.*beta*beta))/2.; >> 95 yu = 1. + beta*beta; >> 96 >> 97 d2wmax = D2W(xl,yl); >> 98 >> 99 } >> 100 >> 101 G4PionRadiativeDecayChannel::~G4PionRadiativeDecayChannel() >> 102 { >> 103 } >> 104 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel(const G4PionRadiativeDecayChannel &right) >> 105 :G4VDecayChannel(right), >> 106 beta(right.beta),cib(right.cib),csdp(right.csdp), >> 107 csdm(right.csdm),cif(right.cif),cig(right.cig), >> 108 xl(right.xl), yl(right.yl), xu(right.xu), yu(right.yu), >> 109 d2wmax(right.d2wmax) >> 110 { 96 } 111 } 97 112 98 G4PionRadiativeDecayChannel& << 113 G4PionRadiativeDecayChannel & G4PionRadiativeDecayChannel::operator=(const G4PionRadiativeDecayChannel & right) 99 G4PionRadiativeDecayChannel::operator=(const G << 100 { 114 { 101 if (this != &right) { << 115 if (this != &right) { 102 kinematics_name = right.kinematics_name; 116 kinematics_name = right.kinematics_name; 103 verboseLevel = right.verboseLevel; 117 verboseLevel = right.verboseLevel; 104 rbranch = right.rbranch; 118 rbranch = right.rbranch; 105 119 106 // copy parent name 120 // copy parent name 107 parent_name = new G4String(*right.parent_n 121 parent_name = new G4String(*right.parent_name); 108 122 109 // clear daughters_name array 123 // clear daughters_name array 110 ClearDaughtersName(); 124 ClearDaughtersName(); 111 125 112 // recreate array 126 // recreate array 113 numberOfDaughters = right.numberOfDaughter 127 numberOfDaughters = right.numberOfDaughters; 114 if (numberOfDaughters > 0) { << 128 if ( numberOfDaughters >0 ) { 115 if (daughters_name != nullptr) ClearDaug << 129 if (daughters_name !=0) ClearDaughtersName(); 116 daughters_name = new G4String*[numberOfD 130 daughters_name = new G4String*[numberOfDaughters]; 117 // copy daughters name << 131 //copy daughters name 118 for (G4int index = 0; index < numberOfDa << 132 for (G4int index=0; index < numberOfDaughters; index++) { 119 daughters_name[index] = new G4String(* << 133 daughters_name[index] = new G4String(*right.daughters_name[index]); 120 } 134 } 121 } 135 } >> 136 beta = right.beta; >> 137 cib = right.cib; >> 138 csdp = right.csdp; >> 139 csdm = right.csdm; >> 140 cif = right.cif; >> 141 cig = right.cig; >> 142 xl = right.xl; >> 143 yl = right.yl; >> 144 xu = right.xu; >> 145 yu = right.yu; >> 146 d2wmax = right.d2wmax; 122 } 147 } 123 return *this; 148 return *this; 124 } 149 } 125 150 126 G4DecayProducts* G4PionRadiativeDecayChannel:: << 151 G4DecayProducts *G4PionRadiativeDecayChannel::DecayIt(G4double) 127 { 152 { >> 153 128 #ifdef G4VERBOSE 154 #ifdef G4VERBOSE 129 if (GetVerboseLevel() > 1) G4cout << "G4Pion << 155 if (GetVerboseLevel()>1) >> 156 G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 130 #endif 157 #endif 131 158 132 CheckAndFillParent(); << 159 if (parent == 0) FillParent(); 133 CheckAndFillDaughters(); << 160 if (daughters == 0) FillDaughters(); 134 161 135 // parent mass 162 // parent mass 136 G4double parentmass = G4MT_parent->GetPDGMas << 163 G4double parentmass = parent->GetPDGMass(); 137 164 138 G4double EMPI = parentmass; 165 G4double EMPI = parentmass; 139 166 140 // daughters'mass << 167 //daughters'mass 141 const G4int N_DAUGHTER = 3; << 168 G4double daughtermass[3]; 142 G4double daughtermass[N_DAUGHTER]; << 169 G4double sumofdaughtermass = 0.0; 143 // G4double sumofdaughtermass = 0.0; << 170 for (G4int index=0; index<3; index++){ 144 for (G4int index = 0; index < N_DAUGHTER; ++ << 171 daughtermass[index] = daughters[index]->GetPDGMass(); 145 daughtermass[index] = G4MT_daughters[index << 172 sumofdaughtermass += daughtermass[index]; 146 // sumofdaughtermass += daughtermass[index << 147 } 173 } 148 174 149 G4double EMASS = daughtermass[0]; 175 G4double EMASS = daughtermass[0]; 150 176 151 // create parent G4DynamicParticle at rest << 177 //create parent G4DynamicParticle at rest 152 G4ThreeVector dummy; 178 G4ThreeVector dummy; 153 auto parentparticle = new G4DynamicParticle( << 179 G4DynamicParticle * parentparticle = 154 // create G4Decayproducts << 180 new G4DynamicParticle( parent, dummy, 0.0); 155 auto products = new G4DecayProducts(*parentp << 181 //create G4Decayproducts >> 182 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 156 delete parentparticle; 183 delete parentparticle; 157 184 158 G4double x, y; << 185 G4double x, y, d2w; 159 186 160 const std::size_t MAX_LOOP = 1000; << 187 do { 161 188 162 for (std::size_t loop_counter1 = 0; loop_cou << 189 do { 163 for (std::size_t loop_counter2 = 0; loop_c << 190 164 x = xl + G4UniformRand() * (xu - xl); << 191 x = xl + G4UniformRand()*(xu-xl); 165 y = yl + G4UniformRand() * (yu - yl); << 192 y = yl + G4UniformRand()*(yu-yl); 166 if (x + y > 1.) break; << 193 167 } << 194 } while (x+y <= 1.); 168 G4double d2w = D2W(x, y); << 195 169 if (d2w > G4UniformRand() * d2wmax) break; << 196 d2w = D2W(x,y); 170 } << 197 >> 198 } while (d2w <= G4UniformRand()*d2wmax); 171 199 172 // Calculate the angle between positron and << 200 //----------------------------------------------------------------------- 173 // << 201 // 174 G4double cthetaGE = << 202 // Calculate the angle between positron and photon (cosine) 175 (y * (x - 2.) + 2. * (1. - x + beta * beta << 203 // >> 204 G4double cthetaGE = (y*(x-2.)+2.*(1.-x+beta*beta)) / >> 205 (x*std::sqrt(y*y-4.*beta*beta)); 176 206 177 G4double G = x * EMPI / 2.; << 207 // 178 G4double E = y * EMPI / 2.; << 208 //----------------------------------------------------------------------- >> 209 // >> 210 G4double G = x * EMPI/2.; >> 211 G4double E = y * EMPI/2.; >> 212 // >> 213 //----------------------------------------------------------------------- >> 214 // 179 215 180 if (E < EMASS) E = EMASS; 216 if (E < EMASS) E = EMASS; 181 217 182 // calculate daughter momentum 218 // calculate daughter momentum 183 G4double daughtermomentum[2]; 219 G4double daughtermomentum[2]; 184 220 185 daughtermomentum[0] = std::sqrt(E * E - EMAS << 221 daughtermomentum[0] = std::sqrt(E*E - EMASS*EMASS); 186 222 187 G4double cthetaE = 2. * G4UniformRand() - 1. << 223 G4double cthetaE = 2.*G4UniformRand()-1.; 188 G4double sthetaE = std::sqrt(1. - cthetaE * << 224 G4double sthetaE = std::sqrt(1.-cthetaE*cthetaE); 189 225 190 G4double phiE = twopi * G4UniformRand() * ra << 226 G4double phiE = twopi*G4UniformRand()*rad; 191 G4double cphiE = std::cos(phiE); 227 G4double cphiE = std::cos(phiE); 192 G4double sphiE = std::sin(phiE); 228 G4double sphiE = std::sin(phiE); 193 229 194 // Coordinates of the decay positron << 230 //Coordinates of the decay positron 195 // << 231 196 G4double px = sthetaE * cphiE; << 232 G4double px = sthetaE*cphiE; 197 G4double py = sthetaE * sphiE; << 233 G4double py = sthetaE*sphiE; 198 G4double pz = cthetaE; 234 G4double pz = cthetaE; 199 235 200 G4ThreeVector direction0(px, py, pz); << 236 G4ThreeVector direction0(px,py,pz); 201 237 202 auto daughterparticle0 = << 238 G4DynamicParticle * daughterparticle0 203 new G4DynamicParticle(G4MT_daughters[0], d << 239 = new G4DynamicParticle( daughters[0], daughtermomentum[0]*direction0); 204 240 205 products->PushProducts(daughterparticle0); 241 products->PushProducts(daughterparticle0); 206 242 207 daughtermomentum[1] = G; 243 daughtermomentum[1] = G; 208 244 209 G4double sthetaGE = std::sqrt(1. - cthetaGE << 245 G4double sthetaGE = std::sqrt(1.-cthetaGE*cthetaGE); 210 246 211 G4double phiGE = twopi * G4UniformRand() * r << 247 G4double phiGE = twopi*G4UniformRand()*rad; 212 G4double cphiGE = std::cos(phiGE); 248 G4double cphiGE = std::cos(phiGE); 213 G4double sphiGE = std::sin(phiGE); 249 G4double sphiGE = std::sin(phiGE); 214 250 215 // Coordinates of the decay gamma with respe << 251 //Coordinates of the decay gamma with respect to the decay positron 216 // << 252 217 px = sthetaGE * cphiGE; << 253 px = sthetaGE*cphiGE; 218 py = sthetaGE * sphiGE; << 254 py = sthetaGE*sphiGE; 219 pz = cthetaGE; 255 pz = cthetaGE; 220 256 221 G4ThreeVector direction1(px, py, pz); << 257 G4ThreeVector direction1(px,py,pz); 222 258 223 direction1.rotateUz(direction0); 259 direction1.rotateUz(direction0); 224 260 225 auto daughterparticle1 = << 261 G4DynamicParticle * daughterparticle1 226 new G4DynamicParticle(G4MT_daughters[1], d << 262 = new G4DynamicParticle( daughters[1], daughtermomentum[1]*direction1); 227 263 228 products->PushProducts(daughterparticle1); 264 products->PushProducts(daughterparticle1); 229 265 230 // output message << 266 // output message 231 #ifdef G4VERBOSE 267 #ifdef G4VERBOSE 232 if (GetVerboseLevel() > 1) { << 268 if (GetVerboseLevel()>1) { 233 G4cout << "G4PionRadiativeDecayChannel::De << 269 G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 234 G4cout << " create decay products in rest << 270 G4cout << " create decay products in rest frame " <<G4endl; 235 products->DumpInfo(); 271 products->DumpInfo(); 236 } 272 } 237 #endif 273 #endif 238 274 239 return products; 275 return products; >> 276 240 } 277 } 241 278