Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4PionRadiativeDecayChannel class implement 26 // G4PionRadiativeDecayChannel class implementation 27 // GEANT 4 class header file 27 // GEANT 4 class header file 28 // 28 // 29 // Author: P.Gumplinger, 30 July 2007 << 29 // Author: P.Gumplinger, 30 July 2007 30 // Reference: M. Blecher, TRIUMF/PIENU Technot 30 // Reference: M. Blecher, TRIUMF/PIENU Technote 31 // "Inclusion of pi->enug in the Mo << 31 // "Inclusion of pi->enug in the Monte Carlo" 32 // ------------------------------------------- 32 // -------------------------------------------------------------------- 33 33 34 #include "G4PionRadiativeDecayChannel.hh" 34 #include "G4PionRadiativeDecayChannel.hh" 35 35 36 #include "G4DecayProducts.hh" << 37 #include "G4LorentzVector.hh" << 38 #include "G4PhysicalConstants.hh" 36 #include "G4PhysicalConstants.hh" 39 #include "G4SystemOfUnits.hh" 37 #include "G4SystemOfUnits.hh" 40 #include "Randomize.hh" 38 #include "Randomize.hh" >> 39 #include "G4DecayProducts.hh" >> 40 #include "G4LorentzVector.hh" 41 41 42 namespace 42 namespace 43 { 43 { 44 const G4double beta = 3.6612e-03; << 44 const G4double beta = 3.6612e-03; 45 const G4double cib = 1.16141e-03; << 45 const G4double cib = 1.16141e-03; 46 const G4double csdp = 3.45055e-02; << 46 const G4double csdp = 3.45055e-02; 47 const G4double csdm = 5.14122e-03; << 47 const G4double csdm = 5.14122e-03; 48 const G4double cif = 4.63543e-05; << 48 const G4double cif = 4.63543e-05; 49 const G4double cig = 1.78928e-05; << 49 const G4double cig = 1.78928e-05; 50 const G4double xl = 2. * 0.1 * MeV / 139.57 * << 50 const G4double xl = 2.*0.1*MeV/139.57*MeV; 51 const G4double yl = ((1. - xl) + std::sqrt((1 << 51 const G4double yl = ((1.-xl) + std::sqrt((1-xl)*(1-xl)+4*beta*beta))/2.; 52 << 52 53 const G4double xu = 1. - (yl - std::sqrt(yl * << 53 const G4double xu = 1. - (yl - std::sqrt(yl*yl-4.*beta*beta))/2.; 54 const G4double yu = 1. + beta * beta; << 54 const G4double yu = 1. + beta*beta; 55 << 55 56 inline G4double D2W(const G4double x, const G4 << 56 inline G4double D2W(const G4double x,const G4double y) 57 { << 57 { 58 return cib * (1. - y) * (1. + ((1. - x) * (1 << 58 return cib*(1.-y)*(1.+((1.-x)*(1.-x)))/((x*x)*(x+y-1.)) + 59 + csdp * (1. - x) * ((x + y - 1.) * ( << 59 csdp*(1.-x)*((x+y-1.)*(x+y-1.)) + 60 + cif * (x - 1.) * (1. - y) / x + cig << 60 csdm*(1.-x)*((1.-y)*(1.-y)) + >> 61 cif*(x-1.)*(1.-y)/x + >> 62 cig*(1.-y)*(1.-x+(x*x)/(x+y-1.))/x; >> 63 } >> 64 >> 65 const G4double d2wmax = D2W(xl,yl); 61 } 66 } 62 67 63 const G4double d2wmax = D2W(xl, yl); << 68 // -------------------------------------------------------------------- 64 } // namespace << 69 G4PionRadiativeDecayChannel::G4PionRadiativeDecayChannel() >> 70 : G4VDecayChannel() >> 71 { >> 72 } 65 73 66 G4PionRadiativeDecayChannel::G4PionRadiativeDe << 74 // -------------------------------------------------------------------- 67 << 75 G4PionRadiativeDecayChannel:: >> 76 G4PionRadiativeDecayChannel(const G4String& theParentName, >> 77 G4double theBR) 68 : G4VDecayChannel("Radiative Pion Decay", 1) 78 : G4VDecayChannel("Radiative Pion Decay", 1) 69 { 79 { 70 // set names for daughter particles 80 // set names for daughter particles 71 if (theParentName == "pi+") { << 81 if (theParentName == "pi+") >> 82 { 72 SetBR(theBR); 83 SetBR(theBR); 73 SetParent("pi+"); 84 SetParent("pi+"); 74 SetNumberOfDaughters(3); 85 SetNumberOfDaughters(3); 75 SetDaughter(0, "e+"); 86 SetDaughter(0, "e+"); 76 SetDaughter(1, "gamma"); 87 SetDaughter(1, "gamma"); 77 SetDaughter(2, "nu_e"); 88 SetDaughter(2, "nu_e"); 78 } 89 } 79 else if (theParentName == "pi-") { << 90 else if (theParentName == "pi-") >> 91 { 80 SetBR(theBR); 92 SetBR(theBR); 81 SetParent("pi-"); 93 SetParent("pi-"); 82 SetNumberOfDaughters(3); 94 SetNumberOfDaughters(3); 83 SetDaughter(0, "e-"); 95 SetDaughter(0, "e-"); 84 SetDaughter(1, "gamma"); 96 SetDaughter(1, "gamma"); 85 SetDaughter(2, "anti_nu_e"); 97 SetDaughter(2, "anti_nu_e"); 86 } 98 } 87 else { << 99 else >> 100 { 88 #ifdef G4VERBOSE 101 #ifdef G4VERBOSE 89 if (GetVerboseLevel() > 0) { << 102 if (GetVerboseLevel()>0) 90 G4cout << "G4RadiativePionDecayChannel:: << 103 { >> 104 G4cout << "G4RadiativePionDecayChannel::G4PionRadiativeDecayChannel()" >> 105 << G4endl; 91 G4cout << "Parent particle is not charge 106 G4cout << "Parent particle is not charged pion: "; 92 G4cout << theParentName << G4endl; 107 G4cout << theParentName << G4endl; 93 } 108 } 94 #endif 109 #endif 95 } 110 } 96 } 111 } 97 112 >> 113 // -------------------------------------------------------------------- >> 114 G4PionRadiativeDecayChannel::~G4PionRadiativeDecayChannel() >> 115 { >> 116 } >> 117 >> 118 // -------------------------------------------------------------------- >> 119 G4PionRadiativeDecayChannel:: >> 120 G4PionRadiativeDecayChannel(const G4PionRadiativeDecayChannel& right) >> 121 : G4VDecayChannel(right) >> 122 { >> 123 } >> 124 98 G4PionRadiativeDecayChannel& 125 G4PionRadiativeDecayChannel& 99 G4PionRadiativeDecayChannel::operator=(const G 126 G4PionRadiativeDecayChannel::operator=(const G4PionRadiativeDecayChannel& right) 100 { 127 { 101 if (this != &right) { << 128 if (this != &right) >> 129 { 102 kinematics_name = right.kinematics_name; 130 kinematics_name = right.kinematics_name; 103 verboseLevel = right.verboseLevel; 131 verboseLevel = right.verboseLevel; 104 rbranch = right.rbranch; 132 rbranch = right.rbranch; 105 133 106 // copy parent name 134 // copy parent name 107 parent_name = new G4String(*right.parent_n 135 parent_name = new G4String(*right.parent_name); 108 136 109 // clear daughters_name array 137 // clear daughters_name array 110 ClearDaughtersName(); 138 ClearDaughtersName(); 111 139 112 // recreate array 140 // recreate array 113 numberOfDaughters = right.numberOfDaughter 141 numberOfDaughters = right.numberOfDaughters; 114 if (numberOfDaughters > 0) { << 142 if ( numberOfDaughters >0 ) >> 143 { 115 if (daughters_name != nullptr) ClearDaug 144 if (daughters_name != nullptr) ClearDaughtersName(); 116 daughters_name = new G4String*[numberOfD 145 daughters_name = new G4String*[numberOfDaughters]; 117 // copy daughters name << 146 //copy daughters name 118 for (G4int index = 0; index < numberOfDa << 147 for (G4int index=0; index<numberOfDaughters; ++index) >> 148 { 119 daughters_name[index] = new G4String(* 149 daughters_name[index] = new G4String(*right.daughters_name[index]); 120 } 150 } 121 } 151 } 122 } 152 } 123 return *this; 153 return *this; 124 } 154 } 125 155 126 G4DecayProducts* G4PionRadiativeDecayChannel:: << 156 // -------------------------------------------------------------------- >> 157 G4DecayProducts* G4PionRadiativeDecayChannel::DecayIt(G4double) 127 { 158 { >> 159 128 #ifdef G4VERBOSE 160 #ifdef G4VERBOSE 129 if (GetVerboseLevel() > 1) G4cout << "G4Pion << 161 if (GetVerboseLevel()>1) >> 162 G4cout << "G4PionRadiativeDecayChannel::DecayIt "; 130 #endif 163 #endif 131 164 132 CheckAndFillParent(); 165 CheckAndFillParent(); 133 CheckAndFillDaughters(); 166 CheckAndFillDaughters(); 134 167 135 // parent mass 168 // parent mass 136 G4double parentmass = G4MT_parent->GetPDGMas 169 G4double parentmass = G4MT_parent->GetPDGMass(); 137 170 138 G4double EMPI = parentmass; 171 G4double EMPI = parentmass; 139 172 140 // daughters'mass 173 // daughters'mass 141 const G4int N_DAUGHTER = 3; << 174 const G4int N_DAUGHTER=3; 142 G4double daughtermass[N_DAUGHTER]; << 175 G4double daughtermass[N_DAUGHTER]; 143 // G4double sumofdaughtermass = 0.0; << 176 G4double sumofdaughtermass = 0.0; 144 for (G4int index = 0; index < N_DAUGHTER; ++ << 177 for (G4int index=0; index<N_DAUGHTER; ++index) >> 178 { 145 daughtermass[index] = G4MT_daughters[index 179 daughtermass[index] = G4MT_daughters[index]->GetPDGMass(); 146 // sumofdaughtermass += daughtermass[index << 180 sumofdaughtermass += daughtermass[index]; 147 } 181 } 148 182 149 G4double EMASS = daughtermass[0]; 183 G4double EMASS = daughtermass[0]; 150 184 151 // create parent G4DynamicParticle at rest 185 // create parent G4DynamicParticle at rest 152 G4ThreeVector dummy; 186 G4ThreeVector dummy; 153 auto parentparticle = new G4DynamicParticle( << 187 G4DynamicParticle* parentparticle >> 188 = new G4DynamicParticle( G4MT_parent, dummy, 0.0); 154 // create G4Decayproducts 189 // create G4Decayproducts 155 auto products = new G4DecayProducts(*parentp << 190 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 156 delete parentparticle; 191 delete parentparticle; 157 192 158 G4double x, y; 193 G4double x, y; 159 194 160 const std::size_t MAX_LOOP = 1000; << 195 const std::size_t MAX_LOOP=1000; 161 196 162 for (std::size_t loop_counter1 = 0; loop_cou << 197 for (std::size_t loop_counter1=0; loop_counter1<MAX_LOOP; ++loop_counter1) 163 for (std::size_t loop_counter2 = 0; loop_c << 198 { 164 x = xl + G4UniformRand() * (xu - xl); << 199 for (std::size_t loop_counter2=0; loop_counter2<MAX_LOOP; ++loop_counter2) 165 y = yl + G4UniformRand() * (yu - yl); << 200 { 166 if (x + y > 1.) break; << 201 x = xl + G4UniformRand()*(xu-xl); >> 202 y = yl + G4UniformRand()*(yu-yl); >> 203 if (x+y > 1.) break; 167 } 204 } 168 G4double d2w = D2W(x, y); << 205 G4double d2w = D2W(x,y); 169 if (d2w > G4UniformRand() * d2wmax) break; << 206 if (d2w > G4UniformRand()*d2wmax) break; 170 } 207 } 171 208 172 // Calculate the angle between positron and 209 // Calculate the angle between positron and photon (cosine) 173 // 210 // 174 G4double cthetaGE = << 211 G4double cthetaGE = (y*(x-2.)+2.*(1.-x+beta*beta)) / 175 (y * (x - 2.) + 2. * (1. - x + beta * beta << 212 (x*std::sqrt(y*y-4.*beta*beta)); 176 213 177 G4double G = x * EMPI / 2.; << 214 G4double G = x * EMPI/2.; 178 G4double E = y * EMPI / 2.; << 215 G4double E = y * EMPI/2.; 179 216 180 if (E < EMASS) E = EMASS; 217 if (E < EMASS) E = EMASS; 181 218 182 // calculate daughter momentum 219 // calculate daughter momentum 183 G4double daughtermomentum[2]; 220 G4double daughtermomentum[2]; 184 221 185 daughtermomentum[0] = std::sqrt(E * E - EMAS << 222 daughtermomentum[0] = std::sqrt(E*E - EMASS*EMASS); 186 223 187 G4double cthetaE = 2. * G4UniformRand() - 1. << 224 G4double cthetaE = 2.*G4UniformRand()-1.; 188 G4double sthetaE = std::sqrt(1. - cthetaE * << 225 G4double sthetaE = std::sqrt(1.-cthetaE*cthetaE); 189 226 190 G4double phiE = twopi * G4UniformRand() * ra << 227 G4double phiE = twopi*G4UniformRand()*rad; 191 G4double cphiE = std::cos(phiE); 228 G4double cphiE = std::cos(phiE); 192 G4double sphiE = std::sin(phiE); 229 G4double sphiE = std::sin(phiE); 193 230 194 // Coordinates of the decay positron 231 // Coordinates of the decay positron 195 // 232 // 196 G4double px = sthetaE * cphiE; << 233 G4double px = sthetaE*cphiE; 197 G4double py = sthetaE * sphiE; << 234 G4double py = sthetaE*sphiE; 198 G4double pz = cthetaE; 235 G4double pz = cthetaE; 199 236 200 G4ThreeVector direction0(px, py, pz); << 237 G4ThreeVector direction0(px,py,pz); 201 238 202 auto daughterparticle0 = << 239 G4DynamicParticle * daughterparticle0 203 new G4DynamicParticle(G4MT_daughters[0], d << 240 = new G4DynamicParticle(G4MT_daughters[0], daughtermomentum[0]*direction0); 204 241 205 products->PushProducts(daughterparticle0); 242 products->PushProducts(daughterparticle0); 206 243 207 daughtermomentum[1] = G; 244 daughtermomentum[1] = G; 208 245 209 G4double sthetaGE = std::sqrt(1. - cthetaGE << 246 G4double sthetaGE = std::sqrt(1.-cthetaGE*cthetaGE); 210 247 211 G4double phiGE = twopi * G4UniformRand() * r << 248 G4double phiGE = twopi*G4UniformRand()*rad; 212 G4double cphiGE = std::cos(phiGE); 249 G4double cphiGE = std::cos(phiGE); 213 G4double sphiGE = std::sin(phiGE); 250 G4double sphiGE = std::sin(phiGE); 214 251 215 // Coordinates of the decay gamma with respe 252 // Coordinates of the decay gamma with respect to the decay positron 216 // 253 // 217 px = sthetaGE * cphiGE; << 254 px = sthetaGE*cphiGE; 218 py = sthetaGE * sphiGE; << 255 py = sthetaGE*sphiGE; 219 pz = cthetaGE; 256 pz = cthetaGE; 220 257 221 G4ThreeVector direction1(px, py, pz); << 258 G4ThreeVector direction1(px,py,pz); 222 259 223 direction1.rotateUz(direction0); 260 direction1.rotateUz(direction0); 224 261 225 auto daughterparticle1 = << 262 G4DynamicParticle * daughterparticle1 226 new G4DynamicParticle(G4MT_daughters[1], d << 263 = new G4DynamicParticle(G4MT_daughters[1], daughtermomentum[1]*direction1); 227 264 228 products->PushProducts(daughterparticle1); 265 products->PushProducts(daughterparticle1); 229 266 230 // output message 267 // output message 231 #ifdef G4VERBOSE 268 #ifdef G4VERBOSE 232 if (GetVerboseLevel() > 1) { << 269 if (GetVerboseLevel()>1) >> 270 { 233 G4cout << "G4PionRadiativeDecayChannel::De 271 G4cout << "G4PionRadiativeDecayChannel::DecayIt() -"; 234 G4cout << " create decay products in rest 272 G4cout << " create decay products in rest frame " << G4endl; 235 products->DumpInfo(); 273 products->DumpInfo(); 236 } 274 } 237 #endif 275 #endif 238 276 239 return products; 277 return products; 240 } 278 } 241 279