Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4MuonDecayChannelWithSpin class implementa 26 // G4MuonDecayChannelWithSpin class implementation 27 // 27 // 28 // References: 28 // References: 29 // - Florian Scheck "Muon Physics", in Physics 29 // - Florian Scheck "Muon Physics", in Physics Reports 30 // (Review Section of Physics Letters) 44, N 30 // (Review Section of Physics Letters) 44, No. 4 (1978) 31 // 187-248. North-Holland Publishing Company 31 // 187-248. North-Holland Publishing Company, Amsterdam at page 210 cc. 32 // - W.E. Fisher and F. Scheck, Nucl. Phys. B8 32 // - W.E. Fisher and F. Scheck, Nucl. Phys. B83 (1974) 25. 33 33 34 // Authors: P.Gumplinger and T.MacPhail, 17 Au << 34 // Authors: P.Gumplinger and T.MacPhail, 17 August 2004 35 // ------------------------------------------- 35 // -------------------------------------------------------------------- 36 36 37 #include "G4MuonDecayChannelWithSpin.hh" 37 #include "G4MuonDecayChannelWithSpin.hh" 38 38 39 #include "G4DecayProducts.hh" << 40 #include "G4LorentzVector.hh" << 41 #include "G4PhysicalConstants.hh" 39 #include "G4PhysicalConstants.hh" 42 #include "G4SystemOfUnits.hh" 40 #include "G4SystemOfUnits.hh" 43 #include "Randomize.hh" 41 #include "Randomize.hh" 44 42 45 G4MuonDecayChannelWithSpin::G4MuonDecayChannel << 43 #include "G4DecayProducts.hh" 46 << 44 #include "G4LorentzVector.hh" 47 : G4MuonDecayChannel(theParentName, theBR) << 48 {} << 49 45 50 G4MuonDecayChannelWithSpin& << 46 G4MuonDecayChannelWithSpin::G4MuonDecayChannelWithSpin() 51 G4MuonDecayChannelWithSpin::operator=(const G4 << 47 : G4MuonDecayChannel() 52 { 48 { 53 if (this != &right) { << 49 } >> 50 >> 51 G4MuonDecayChannelWithSpin:: >> 52 G4MuonDecayChannelWithSpin(const G4String& theParentName, >> 53 G4double theBR) >> 54 : G4MuonDecayChannel(theParentName,theBR) >> 55 { >> 56 } >> 57 >> 58 G4MuonDecayChannelWithSpin::~G4MuonDecayChannelWithSpin() >> 59 { >> 60 } >> 61 >> 62 G4MuonDecayChannelWithSpin:: >> 63 G4MuonDecayChannelWithSpin(const G4MuonDecayChannelWithSpin& right) >> 64 : G4MuonDecayChannel(right) >> 65 { >> 66 } >> 67 >> 68 G4MuonDecayChannelWithSpin& G4MuonDecayChannelWithSpin:: >> 69 operator=(const G4MuonDecayChannelWithSpin& right) >> 70 { >> 71 if (this != &right) >> 72 { 54 kinematics_name = right.kinematics_name; 73 kinematics_name = right.kinematics_name; 55 verboseLevel = right.verboseLevel; 74 verboseLevel = right.verboseLevel; 56 rbranch = right.rbranch; 75 rbranch = right.rbranch; 57 76 58 // copy parent name 77 // copy parent name 59 delete parent_name; 78 delete parent_name; 60 parent_name = new G4String(*right.parent_n 79 parent_name = new G4String(*right.parent_name); 61 80 62 // clear daughters_name array 81 // clear daughters_name array 63 ClearDaughtersName(); 82 ClearDaughtersName(); 64 83 65 // recreate array 84 // recreate array 66 numberOfDaughters = right.numberOfDaughter 85 numberOfDaughters = right.numberOfDaughters; 67 if (numberOfDaughters > 0) { << 86 if ( numberOfDaughters > 0 ) >> 87 { 68 daughters_name = new G4String*[numberOfD 88 daughters_name = new G4String*[numberOfDaughters]; 69 // copy daughters name 89 // copy daughters name 70 for (G4int index = 0; index < numberOfDa << 90 for (G4int index=0; index<numberOfDaughters; ++index) >> 91 { 71 daughters_name[index] = new G4String(* 92 daughters_name[index] = new G4String(*right.daughters_name[index]); 72 } 93 } 73 } 94 } 74 } 95 } 75 return *this; 96 return *this; 76 } 97 } 77 98 78 G4DecayProducts* G4MuonDecayChannelWithSpin::D << 99 G4DecayProducts* G4MuonDecayChannelWithSpin::DecayIt(G4double) 79 { 100 { 80 // This version assumes V-A coupling with 1s 101 // This version assumes V-A coupling with 1st order radiative correctons, 81 // the standard model Michel pa 102 // the standard model Michel parameter values, but 82 // gives incorrect energy spect 103 // gives incorrect energy spectrum for neutrinos 83 104 84 #ifdef G4VERBOSE 105 #ifdef G4VERBOSE 85 if (GetVerboseLevel() > 1) G4cout << "G4Muon << 106 if (GetVerboseLevel()>1) G4cout << "G4MuonDecayChannelWithSpin::DecayIt "; 86 #endif 107 #endif 87 108 88 CheckAndFillParent(); 109 CheckAndFillParent(); 89 CheckAndFillDaughters(); 110 CheckAndFillDaughters(); 90 111 91 // parent mass 112 // parent mass 92 G4double parentmass = G4MT_parent->GetPDGMas 113 G4double parentmass = G4MT_parent->GetPDGMass(); 93 114 94 G4double EMMU = parentmass; 115 G4double EMMU = parentmass; 95 116 96 // daughters'mass << 117 //daughters'mass 97 G4double daughtermass[3]; << 118 G4double daughtermass[3]; 98 // G4double sumofdaughtermass = 0.0; << 119 G4double sumofdaughtermass = 0.0; 99 for (G4int index = 0; index < 3; ++index) { << 120 for (G4int index=0; index<3; ++index) >> 121 { 100 daughtermass[index] = G4MT_daughters[index 122 daughtermass[index] = G4MT_daughters[index]->GetPDGMass(); 101 // sumofdaughtermass += daughtermass[index << 123 sumofdaughtermass += daughtermass[index]; 102 } 124 } 103 125 104 G4double EMASS = daughtermass[0]; 126 G4double EMASS = daughtermass[0]; 105 127 106 // create parent G4DynamicParticle at rest 128 // create parent G4DynamicParticle at rest 107 G4ThreeVector dummy; 129 G4ThreeVector dummy; 108 auto parentparticle = new G4DynamicParticle( << 130 G4DynamicParticle* parentparticle >> 131 = new G4DynamicParticle( G4MT_parent, dummy, 0.0); 109 // create G4Decayproducts 132 // create G4Decayproducts 110 auto products = new G4DecayProducts(*parentp << 133 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 111 delete parentparticle; 134 delete parentparticle; 112 135 113 // calculate electron energy 136 // calculate electron energy 114 137 115 G4double michel_rho = 0.75; // Standard Mod << 138 G4double michel_rho = 0.75; //Standard Model Michel rho 116 G4double michel_delta = 0.75; // Standard M << 139 G4double michel_delta = 0.75; //Standard Model Michel delta 117 G4double michel_xsi = 1.00; // Standard Mod << 140 G4double michel_xsi = 1.00; //Standard Model Michel xsi 118 G4double michel_eta = 0.00; // Standard Mod << 141 G4double michel_eta = 0.00; //Standard Model eta 119 142 120 G4double rndm, x, ctheta; 143 G4double rndm, x, ctheta; 121 144 122 G4double FG; << 145 G4double FG; 123 G4double FG_max = 2.00; 146 G4double FG_max = 2.00; 124 147 125 G4double W_mue = (EMMU * EMMU + EMASS * EMAS << 148 G4double W_mue = (EMMU*EMMU+EMASS*EMASS)/(2.*EMMU); 126 G4double x0 = EMASS / W_mue; << 149 G4double x0 = EMASS/W_mue; 127 << 128 G4double x0_squared = x0 * x0; << 129 150 >> 151 G4double x0_squared = x0*x0; >> 152 130 // ***************************************** 153 // *************************************************** 131 // x0 <= x <= 1. and -1 <= y <= 1 154 // x0 <= x <= 1. and -1 <= y <= 1 132 // 155 // 133 // F(x,y) = f(x)*g(x,y); g(x,y) = 1.+g 156 // F(x,y) = f(x)*g(x,y); g(x,y) = 1.+g(x)*y 134 // ***************************************** 157 // *************************************************** 135 158 136 // ***** sampling F(x,y) directly (brute for 159 // ***** sampling F(x,y) directly (brute force) ***** 137 160 138 const std::size_t MAX_LOOP = 10000; << 161 const std::size_t MAX_LOOP=10000; 139 for (std::size_t loop_count = 0; loop_count << 162 for (std::size_t loop_count=0; loop_count<MAX_LOOP; ++loop_count) >> 163 { 140 // Sample the positron energy by sampling 164 // Sample the positron energy by sampling from F 141 165 142 rndm = G4UniformRand(); 166 rndm = G4UniformRand(); 143 167 144 x = x0 + rndm * (1. - x0); << 168 x = x0 + rndm*(1.-x0); 145 169 146 G4double x_squared = x * x; << 170 G4double x_squared = x*x; 147 171 148 G4double F_IS, F_AS, G_IS, G_AS; 172 G4double F_IS, F_AS, G_IS, G_AS; 149 173 150 F_IS = 1. / 6. * (-2. * x_squared + 3. * x << 174 F_IS = 1./6.*(-2.*x_squared+3.*x-x0_squared); 151 F_AS = 1. / 6. * std::sqrt(x_squared - x0_ << 175 F_AS = 1./6.*std::sqrt(x_squared-x0_squared) 152 << 176 *(2.*x-2.+std::sqrt(1.-x0_squared)); 153 G_IS = 2. / 9. * (michel_rho - 0.75) * (4. << 177 154 G_IS = G_IS + michel_eta * (1. - x) * x0; << 178 G_IS = 2./9.*(michel_rho-0.75)*(4.*x_squared-3.*x-x0_squared); 155 << 179 G_IS = G_IS + michel_eta*(1.-x)*x0; 156 G_AS = 3. * (michel_xsi - 1.) * (1. - x); << 180 157 G_AS = << 181 G_AS = 3.*(michel_xsi-1.)*(1.-x); 158 G_AS + 2. * (michel_xsi * michel_delta - << 182 G_AS = G_AS+2.*(michel_xsi*michel_delta-0.75) 159 G_AS = 1. / 9. * std::sqrt(x_squared - x0_ << 183 *(4.*x-4.+std::sqrt(1.-x0_squared)); >> 184 G_AS = 1./9.*std::sqrt(x_squared-x0_squared)*G_AS; 160 185 161 F_IS = F_IS + G_IS; 186 F_IS = F_IS + G_IS; 162 F_AS = F_AS + G_AS; 187 F_AS = F_AS + G_AS; 163 188 164 // *** Radiative Corrections *** 189 // *** Radiative Corrections *** 165 190 166 const G4double omega = std::log(EMMU / EMA << 191 const G4double omega = std::log(EMMU/EMASS); 167 G4double R_IS = F_c(x, x0, omega); << 192 G4double R_IS = F_c(x,x0,omega); 168 193 169 G4double F = 6. * F_IS + R_IS / std::sqrt( << 194 G4double F = 6.*F_IS + R_IS/std::sqrt(x_squared-x0_squared); 170 195 171 // *** Radiative Corrections *** 196 // *** Radiative Corrections *** 172 197 173 G4double R_AS = F_theta(x, x0, omega); << 198 G4double R_AS = F_theta(x,x0,omega); 174 199 175 rndm = G4UniformRand(); 200 rndm = G4UniformRand(); 176 201 177 ctheta = 2. * rndm - 1.; << 202 ctheta = 2.*rndm-1.; 178 203 179 G4double G = 6. * F_AS - R_AS / std::sqrt( << 204 G4double G = 6.*F_AS - R_AS/std::sqrt(x_squared-x0_squared); 180 205 181 FG = std::sqrt(x_squared - x0_squared) * F << 206 FG = std::sqrt(x_squared-x0_squared)*F*(1.+(G/F)*ctheta); 182 207 183 if (FG > FG_max) { << 208 if(FG>FG_max) 184 G4Exception("G4MuonDecayChannelWithSpin: << 209 { >> 210 G4Exception("G4MuonDecayChannelWithSpin::DecayIt()", >> 211 "PART113", JustWarning, 185 "Problem in Muon Decay: FG > 212 "Problem in Muon Decay: FG > FG_max"); 186 FG_max = FG; 213 FG_max = FG; 187 } 214 } 188 215 189 rndm = G4UniformRand(); 216 rndm = G4UniformRand(); 190 217 191 if (FG >= rndm * FG_max) break; << 218 if (FG >= rndm*FG_max) break; 192 } 219 } 193 220 194 G4double energy = x * W_mue; 221 G4double energy = x * W_mue; 195 222 196 rndm = G4UniformRand(); 223 rndm = G4UniformRand(); 197 224 198 G4double phi = twopi * rndm; 225 G4double phi = twopi * rndm; 199 226 200 if (energy < EMASS) energy = EMASS; << 227 if(energy < EMASS) energy = EMASS; 201 228 202 // Calculate daughter momentum 229 // Calculate daughter momentum 203 G4double daughtermomentum[3]; 230 G4double daughtermomentum[3]; 204 231 205 daughtermomentum[0] = std::sqrt(energy * ene << 232 daughtermomentum[0] = std::sqrt(energy*energy - EMASS*EMASS); 206 233 207 G4double stheta = std::sqrt(1. - ctheta * ct << 234 G4double stheta = std::sqrt(1.-ctheta*ctheta); 208 G4double cphi = std::cos(phi); 235 G4double cphi = std::cos(phi); 209 G4double sphi = std::sin(phi); 236 G4double sphi = std::sin(phi); 210 237 211 // Coordinates of the decay positron with re 238 // Coordinates of the decay positron with respect to the muon spin 212 G4double px = stheta * cphi; << 239 G4double px = stheta*cphi; 213 G4double py = stheta * sphi; << 240 G4double py = stheta*sphi; 214 G4double pz = ctheta; 241 G4double pz = ctheta; 215 242 216 G4ThreeVector direction0(px, py, pz); << 243 G4ThreeVector direction0(px,py,pz); 217 244 218 direction0.rotateUz(parent_polarization); 245 direction0.rotateUz(parent_polarization); 219 246 220 auto daughterparticle0 = << 247 G4DynamicParticle * daughterparticle0 221 new G4DynamicParticle(G4MT_daughters[0], d << 248 = new G4DynamicParticle( G4MT_daughters[0], daughtermomentum[0]*direction0); 222 249 223 products->PushProducts(daughterparticle0); 250 products->PushProducts(daughterparticle0); 224 251 >> 252 225 // daughter 1 ,2 (neutrinos) 253 // daughter 1 ,2 (neutrinos) 226 // create neutrinos in the C.M frame of two 254 // create neutrinos in the C.M frame of two neutrinos 227 G4double energy2 = parentmass - energy; << 255 G4double energy2 = parentmass-energy; 228 G4double vmass = std::sqrt((energy2 - daught << 256 G4double vmass = std::sqrt((energy2-daughtermomentum[0]) 229 G4double beta = -1.0 * daughtermomentum[0] / << 257 * (energy2+daughtermomentum[0])); 230 G4double costhetan = 2. * G4UniformRand() - << 258 G4double beta = -1.0*daughtermomentum[0]/energy2; 231 G4double sinthetan = std::sqrt((1.0 - costhe << 259 G4double costhetan = 2.*G4UniformRand()-1.0; 232 G4double phin = twopi * G4UniformRand() * ra << 260 G4double sinthetan = std::sqrt((1.0-costhetan)*(1.0+costhetan)); >> 261 G4double phin = twopi*G4UniformRand()*rad; 233 G4double sinphin = std::sin(phin); 262 G4double sinphin = std::sin(phin); 234 G4double cosphin = std::cos(phin); 263 G4double cosphin = std::cos(phin); 235 264 236 G4ThreeVector direction1(sinthetan * cosphin << 265 G4ThreeVector direction1(sinthetan*cosphin,sinthetan*sinphin,costhetan); 237 auto daughterparticle1 = new G4DynamicPartic << 266 G4DynamicParticle * daughterparticle1 238 auto daughterparticle2 = << 267 = new G4DynamicParticle( G4MT_daughters[1], direction1*(vmass/2.)); 239 new G4DynamicParticle(G4MT_daughters[2], d << 268 G4DynamicParticle * daughterparticle2 >> 269 = new G4DynamicParticle( G4MT_daughters[2], direction1*(-1.0*vmass/2.)); 240 270 241 // boost to the muon rest frame 271 // boost to the muon rest frame 242 G4LorentzVector p4; 272 G4LorentzVector p4; 243 p4 = daughterparticle1->Get4Momentum(); 273 p4 = daughterparticle1->Get4Momentum(); 244 p4.boost(direction0.x() * beta, direction0.y << 274 p4.boost( direction0.x()*beta, direction0.y()*beta, direction0.z()*beta); 245 daughterparticle1->Set4Momentum(p4); 275 daughterparticle1->Set4Momentum(p4); 246 p4 = daughterparticle2->Get4Momentum(); 276 p4 = daughterparticle2->Get4Momentum(); 247 p4.boost(direction0.x() * beta, direction0.y << 277 p4.boost( direction0.x()*beta, direction0.y()*beta, direction0.z()*beta); 248 daughterparticle2->Set4Momentum(p4); 278 daughterparticle2->Set4Momentum(p4); 249 products->PushProducts(daughterparticle1); 279 products->PushProducts(daughterparticle1); 250 products->PushProducts(daughterparticle2); 280 products->PushProducts(daughterparticle2); 251 daughtermomentum[1] = daughterparticle1->Get 281 daughtermomentum[1] = daughterparticle1->GetTotalMomentum(); 252 daughtermomentum[2] = daughterparticle2->Get 282 daughtermomentum[2] = daughterparticle2->GetTotalMomentum(); 253 283 254 // output message 284 // output message 255 #ifdef G4VERBOSE 285 #ifdef G4VERBOSE 256 if (GetVerboseLevel() > 1) { << 286 if (GetVerboseLevel()>1) >> 287 { 257 G4cout << "G4MuonDecayChannelWithSpin::Dec 288 G4cout << "G4MuonDecayChannelWithSpin::DecayIt "; 258 G4cout << " create decay products in rest << 289 G4cout << " create decay products in rest frame " <<G4endl; 259 G4double TT = daughterparticle0->GetTotalE << 290 G4double TT = daughterparticle0->GetTotalEnergy() 260 + daughterparticle2->GetTota << 291 + daughterparticle1->GetTotalEnergy() 261 G4cout << "e " << daughterparticle0->GetT << 292 + daughterparticle2->GetTotalEnergy(); 262 G4cout << "nu1" << daughterparticle1->GetT << 293 G4cout << "e " << daughterparticle0->GetTotalEnergy()/MeV << G4endl; 263 G4cout << "nu2" << daughterparticle2->GetT << 294 G4cout << "nu1" << daughterparticle1->GetTotalEnergy()/MeV << G4endl; 264 G4cout << "total" << (TT - parentmass) / k << 295 G4cout << "nu2" << daughterparticle2->GetTotalEnergy()/MeV << G4endl; 265 if (GetVerboseLevel() > 2) { << 296 G4cout << "total" << (TT-parentmass)/keV << G4endl; 266 products->DumpInfo(); << 297 if (GetVerboseLevel()>2) { products->DumpInfo(); } 267 } << 268 } 298 } 269 #endif 299 #endif 270 300 271 return products; 301 return products; 272 } 302 } 273 303 274 G4double G4MuonDecayChannelWithSpin::R_c(G4dou << 304 G4double G4MuonDecayChannelWithSpin::R_c(G4double x,G4double omega) 275 { 305 { 276 auto n_max = (G4int)(100. * x); << 306 G4int n_max = (G4int)(100.*x); 277 307 278 if (n_max < 10) n_max = 10; << 308 if(n_max<10)n_max=10; 279 309 280 G4double L2 = 0.0; 310 G4double L2 = 0.0; 281 311 282 for (G4int n = 1; n <= n_max; ++n) { << 312 for(G4int n=1; n<=n_max; ++n) 283 L2 += std::pow(x, n) / (n * n); << 313 { >> 314 L2 += std::pow(x,n)/(n*n); 284 } 315 } 285 316 286 G4double r_c; 317 G4double r_c; 287 318 288 r_c = 2. * L2 - (pi * pi / 3.) - 2.; << 319 r_c = 2.*L2-(pi*pi/3.)-2.; 289 r_c = r_c + omega * (1.5 + 2. * std::log((1. << 320 r_c = r_c + omega * (1.5+2.*std::log((1.-x)/x)); 290 r_c = r_c - std::log(x) * (2. * std::log(x) << 321 r_c = r_c - std::log(x)*(2.*std::log(x)-1.); 291 r_c = r_c + (3. * std::log(x) - 1. - 1. / x) << 322 r_c = r_c + (3.*std::log(x)-1.-1./x)*std::log(1.-x); 292 323 293 return r_c; 324 return r_c; 294 } 325 } 295 326