Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ParticleTable << 27 // 26 // 28 // Class description: << 27 // $Id$ 29 // 28 // 30 // G4ParticleTable is the table of pointers to << 29 // 31 // It is a "singleton" (only one static object << 30 // ------------------------------------------------------------ 32 // Each G4ParticleDefinition pointer is stored << 31 // GEANT 4 class header file 33 // to itself. So, each G4ParticleDefinition ob << 32 // 34 // name. << 33 // History: first implementation, based on object model of 35 << 34 // 27 June 1996, H.Kurashige 36 // Authors: G.Cosmo, 2 December 1995 - Design, << 35 // ------------------------------------------------------------ 37 // H.Kurashige, 27 June 1996 - First << 36 // added fParticleMessenger 14 Nov., 97 H.Kurashige 38 // History: << 37 // added Create/DeleteMessenger 06 Jul., 98 H.Kurashige 39 // - 14 Nov 1997, H.Kurashige - Added messenge << 38 // modified FindIon 02 Aug., 98 H.Kurashige 40 // - 24 Sep 1998, H.Kurashige - Added dictiona << 39 // added dictionary for encoding 24 Sep., 98 H.Kurashige 41 // - 28 Oct 1999, H.Kurashige - Migration to S << 40 // added RemoveAllParticles() 8 Nov., 98 H.Kurashige 42 // - 15 Sep 2017, K.L.Genser - Added support f << 41 // -------------------------------- 43 // ------------------------------------------- << 42 // fixed some improper codings 08 Apr., 99 H.Kurashige 44 #ifndef G4ParticleTable_hh << 43 // modified FindIon/GetIon methods 17 AUg., 99 H.Kurashige 45 #define G4ParticleTable_hh 1 << 44 // implement new version for using STL map instaed of RW PtrHashedDictionary >> 45 // 28 ct., 99 H.Kurashige >> 46 // modified implementation of Remove 21 Mar.,08 H.Kurashige >> 47 >> 48 #ifndef G4ParticleTable_h >> 49 #define G4ParticleTable_h 1 46 50 47 #include "G4ParticleDefinition.hh" << 48 #include "G4ParticleTableIterator.hh" << 49 #include "G4Threading.hh" << 50 #include "G4ios.hh" 51 #include "G4ios.hh" 51 #include "globals.hh" 52 #include "globals.hh" >> 53 #include "G4ParticleDefinition.hh" >> 54 52 55 53 #include <map> 56 #include <map> >> 57 #include "G4ParticleTableIterator.hh" 54 58 55 class G4UImessenger; 59 class G4UImessenger; 56 class G4ParticleMessenger; 60 class G4ParticleMessenger; 57 class G4IonTable; 61 class G4IonTable; >> 62 class G4ShortLivedTable; 58 63 59 class G4ParticleTable 64 class G4ParticleTable 60 { 65 { 61 public: << 66 // Class Description 62 using G4PTblDictionary = G4ParticleTableIt << 67 // G4ParticleTable is the table of pointer to G4ParticleDefinition 63 using G4PTblDicIterator = G4ParticleTableI << 68 // G4ParticleTable is a "singleton" (only one and staic object) 64 using G4PTblEncodingDictionary = G4Particl << 69 // In G4ParticleTable, each G4ParticleDefinition pointer is stored 65 using G4PTblEncodingDicIterator = G4Partic << 70 // with its name as a key to itself. So, each G4ParticleDefinition 66 << 71 // object must have unique name for itself. 67 virtual ~G4ParticleTable(); << 72 // 68 << 73 69 // Copy constructor and assignment operato << 74 public: 70 G4ParticleTable(const G4ParticleTable&) = << 75 71 G4ParticleTable& operator=(const G4Particl << 76 typedef G4ParticleTableIterator<G4String, G4ParticleDefinition*>::Map G4PTblDictionary; 72 << 77 typedef G4ParticleTableIterator<G4String, G4ParticleDefinition*> G4PTblDicIterator; 73 // This method is similar to the construct << 78 typedef G4ParticleTableIterator<G4int, G4ParticleDefinition*>::Map G4PTblEncodingDictionary; 74 // thread to achieve the partial effect as << 79 typedef G4ParticleTableIterator<G4int, G4ParticleDefinition*> G4PTblEncodingDicIterator; 75 void WorkerG4ParticleTable(); << 80 76 << 81 protected: 77 // This method is similar to the destructo << 82 // default constructor 78 // thread to achieve the partial effect as << 83 G4ParticleTable(); 79 void DestroyWorkerG4ParticleTable(); << 84 // Copy constructor and assignment operator 80 << 85 G4ParticleTable(const G4ParticleTable &right); 81 // Return the pointer to the G4ParticleTab << 86 G4ParticleTable & operator=(const G4ParticleTable &); 82 // G4ParticleTable is a "singleton" and ca << 87 83 // function. At the first time of calling << 88 public: 84 // G4ParticleTable object is instantiated << 89 virtual ~G4ParticleTable(); 85 static G4ParticleTable* GetParticleTable() << 90 86 << 91 public: // With Description 87 // Returns TRUE if the ParticleTable conta << 92 static G4ParticleTable* GetParticleTable(); 88 inline G4bool contains(const G4ParticleDef << 93 // return the pointer to G4ParticleTable object 89 G4bool contains(const G4String& particle_n << 94 // G4ParticleTable is a "singleton" and can get its pointer by this function 90 << 95 // At the first time of calling this function, the G4ParticleTable object 91 // Returns the number of particles in the << 96 // is instantiated 92 G4int entries() const; << 97 93 G4int size() const; << 98 G4bool contains(const G4ParticleDefinition *particle); 94 << 99 G4bool contains(const G4String &particle_name); 95 // Returns a pointer to the i-th particle << 100 // returns TRUE if the ParticleTable contains 96 // 0 <= index < entries() << 101 97 G4ParticleDefinition* GetParticle(G4int in << 102 G4int entries() const; 98 << 103 G4int size() const; 99 // Returns the name of i-th particle in th << 104 // returns the number of Particles in the ParticleTable 100 const G4String& GetParticleName(G4int inde << 105 101 << 106 G4ParticleDefinition* GetParticle(G4int index); 102 // Returns a pointer to the particle (0 if << 107 // returns a pointer to i-th particles in the ParticleTable 103 G4ParticleDefinition* FindParticle(G4int P << 108 // 0<= index < entries() 104 G4ParticleDefinition* FindParticle(const G << 109 105 G4ParticleDefinition* FindParticle(const G << 110 const G4String& GetParticleName(G4int index); 106 << 111 // returns name of i-th particles in the ParticleTable 107 // Returns a pointer to its anti-particle << 112 108 inline G4ParticleDefinition* FindAntiParti << 113 G4ParticleDefinition* FindParticle(G4int PDGEncoding ); 109 inline G4ParticleDefinition* FindAntiParti << 114 G4ParticleDefinition* FindParticle(const G4String &particle_name); 110 inline G4ParticleDefinition* FindAntiParti << 115 G4ParticleDefinition* FindParticle(const G4ParticleDefinition *particle); 111 << 116 // returns a pointer to the particle (0 if not contained) 112 // Returns the pointer to the Iterator << 117 113 G4PTblDicIterator* GetIterator() const; << 118 G4ParticleDefinition* FindAntiParticle(G4int PDGEncoding ); 114 << 119 G4ParticleDefinition* FindAntiParticle(const G4String &particle_name); 115 // Dumps information of particles specifie << 120 G4ParticleDefinition* FindAntiParticle(const G4ParticleDefinition *particle); 116 void DumpTable(const G4String& particle_na << 121 // returns a pointer to its anti-particle (0 if not contained) 117 << 122 118 // Returns the pointer to the G4IonTable o << 123 G4ParticleDefinition* FindIon( G4int atomicNumber, 119 G4IonTable* GetIonTable() const; << 124 G4int atomicMass, 120 << 125 G4double excitationEnergy ); 121 // Inserts the particle into ParticleTable << 126 G4ParticleDefinition* FindIon( G4int atomicNumber, 122 // Returned value is the same as particle << 127 G4int atomicMass, 123 // or the pointer to another G4ParticleD << 128 G4int numberOfLambda, 124 // which has same particle name << 129 G4double excitationEnergy ); 125 // or nullptr if failing to insert by ot << 130 // return the pointer to an ion (returns 0 if the ion does not exist) 126 G4ParticleDefinition* Insert(G4ParticleDef << 131 // the ion has excitation energy nearest to given excitationEnergy (0: ground state) 127 << 132 128 // Removes the particle from the table (no << 133 G4ParticleDefinition* GetIon( G4int atomicNumber, 129 G4ParticleDefinition* Remove(G4ParticleDef << 134 G4int atomicMass, 130 << 135 G4double excitationEnergy); 131 // Removes all particles from G4ParticleTa << 136 G4ParticleDefinition* GetIon( G4int atomicNumber, 132 void RemoveAllParticles(); << 137 G4int atomicMass, 133 << 138 G4int numberOfLambda, 134 // Removes and deletes all particles from << 139 G4double excitationEnergy); 135 void DeleteAllParticles(); << 140 // return the pointer to an ion ( create ion if the ion does not exist) 136 << 141 // It has excitation energy nearest to given excitationEnergy (0: ground state) 137 // Creates messenger << 142 138 G4UImessenger* CreateMessenger(); << 143 G4ParticleDefinition* FindIon( G4int atomicNumber, 139 << 144 G4int atomicMass, 140 void SelectParticle(const G4String& name); << 145 G4int dummy1, 141 << 146 G4int dummy2 ); 142 inline const G4ParticleDefinition* GetSele << 147 // return the pointer to an ion 143 << 148 // !! This routine behaves same as GetIon( atomicNumber, atomicMass, 0) 144 inline void SetVerboseLevel(G4int value); << 149 // !! The third and fourth arguments are meaningless 145 inline G4int GetVerboseLevel() const; << 150 // !! This routine is provided for compatibility to old version 146 << 151 147 inline void SetReadiness(G4bool val = true << 152 G4PTblDicIterator* GetIterator(); 148 inline G4bool GetReadiness() const; << 153 // return the pointer of Iterator (RW compatible) 149 << 154 150 inline G4ParticleDefinition* GetGenericIon << 155 void DumpTable(const G4String &particle_name = "ALL"); 151 inline void SetGenericIon(G4ParticleDefini << 156 // dump information of particles specified by name 152 << 157 153 inline G4ParticleDefinition* GetGenericMuo << 158 public: //With Description 154 inline void SetGenericMuonicAtom(G4Particl << 159 155 << 160 G4IonTable* GetIonTable(); 156 // Public data --------------------------- << 161 // return the pointer to G4IonTable object 157 << 162 158 // These fields should be thread local or << 163 const G4ShortLivedTable* GetShortLivedTable(); 159 // class, we can change any member field a << 164 // return the pointer to G4ShortLivedTable object 160 // because there is only one instance. The << 165 161 // "G4ThreadLocal" << 166 public: // With Description 162 G4ParticleMessenger* fParticleMessenger = << 167 G4ParticleDefinition* Insert(G4ParticleDefinition *particle); 163 static G4ThreadLocal G4PTblDictionary* fDi << 168 // insert the particle into ParticleTable 164 static G4ThreadLocal G4PTblDicIterator* fI << 169 // return value is same as particle if successfully inserted 165 static G4ThreadLocal G4PTblEncodingDiction << 170 // or pointer to another G4ParticleDefinition object 166 << 171 // which has same name of particle 167 // Particle table is being shared << 172 // or 0 if fail to insert by another reason 168 static G4ParticleTable* fgParticleTable; << 173 169 << 174 G4ParticleDefinition* Remove(G4ParticleDefinition *particle); 170 // This field should be thread private. Ho << 175 // Remove the particle from the table (not delete) 171 // of the ion table pointer. So we change << 176 172 // G4IonTable to be thread local << 177 void RemoveAllParticles(); 173 G4IonTable* fIonTable = nullptr; << 178 // remove all particles from G4ParticleTable 174 << 179 175 // These shadow pointers are used by each << 180 void DeleteAllParticles(); 176 // from the master thread << 181 // remove and delete all particles from G4ParticleTable 177 // << 182 178 static G4PTblDictionary* fDictionaryShadow << 183 public: 179 static G4PTblDicIterator* fIteratorShadow; << 184 G4UImessenger* CreateMessenger(); 180 static G4PTblEncodingDictionary* fEncoding << 185 void DeleteMessenger(); 181 << 186 // create/delete messenger for the particle table 182 #ifdef G4MULTITHREADED << 187 183 // Shared instance of a mutex << 188 protected: 184 static G4GLOB_DLL G4Mutex& particleTableMu << 189 G4PTblDictionary* GetDictionary(); 185 static G4GLOB_DLL G4int& lockCount(); << 190 186 #endif << 191 const G4String& GetKey(const G4ParticleDefinition *particle) const; 187 << 192 // return key value of the particle (i.e. particle name) 188 protected: << 193 189 const G4PTblDictionary* GetDictionary() co << 194 const G4PTblEncodingDictionary* GetEncodingDictionary(); 190 << 195 // return the pointer to EncodingDictionary 191 // Returns key value of the particle (i.e. << 196 192 inline const G4String& GetKey(const G4Part << 197 private: 193 << 198 G4int verboseLevel; 194 // Returns the pointer to EncodingDictiona << 199 // controle flag for output message 195 const G4PTblEncodingDictionary* GetEncodin << 200 // 0: Silent 196 << 201 // 1: Warning message 197 private: << 202 // 2: More 198 // Provate default constructor << 203 199 G4ParticleTable(); << 204 public: 200 << 205 void SetVerboseLevel(G4int value); 201 void CheckReadiness() const; << 206 G4int GetVerboseLevel() const; >> 207 >> 208 private: >> 209 G4ParticleMessenger* fParticleMessenger; >> 210 G4PTblDictionary* fDictionary; >> 211 G4PTblDicIterator* fIterator; >> 212 G4PTblEncodingDictionary* fEncodingDictionary; >> 213 >> 214 static G4ParticleTable* fgParticleTable; >> 215 >> 216 G4IonTable* fIonTable; >> 217 G4ShortLivedTable* fShortLivedTable; >> 218 >> 219 G4String noName; >> 220 >> 221 G4bool readyToUse; >> 222 >> 223 public: >> 224 void SetReadiness(G4bool val=true); >> 225 G4bool GetReadiness() const; >> 226 private: >> 227 void CheckReadiness(); >> 228 }; >> 229 #include "G4ParticleTable.icc" 202 230 203 // Private data -------------------------- << 231 #endif 204 232 205 G4ParticleDefinition* genericIon = nullptr << 206 G4ParticleDefinition* genericMuonicAtom = << 207 const G4ParticleDefinition* selectedPartic << 208 233 209 const G4String noName = " "; << 210 G4String selectedName = "undefined"; << 211 234 212 // Control flag for output message << 213 // 0: Silent << 214 // 1: Warning message << 215 // 2: More << 216 G4int verboseLevel = 1; << 217 235 218 G4bool readyToUse = false; << 219 }; << 220 236 221 #include "G4ParticleTable.icc" << 222 237 223 #endif << 224 238