Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // >> 8 // $Id: G4Neutron.cc,v 1.4 2000/02/27 06:17:04 kurasige Exp $ >> 9 // GEANT4 tag $Name: geant4-02-00 $ >> 10 // >> 11 // 26 // ------------------------------------------- 12 // ---------------------------------------------------------------------- 27 // GEANT 4 class implementation file 13 // GEANT 4 class implementation file 28 // 14 // >> 15 // For information related to this code contact: >> 16 // CERN, CN Division, ASD Group 29 // History: first implementation, based o 17 // History: first implementation, based on object model of 30 // 4th April 1996, G.Cosmo 18 // 4th April 1996, G.Cosmo 31 // H.Kurashige 7 July 19 // H.Kurashige 7 July 1996 32 // add neutron life time Oct 17 2000 << 33 // ******************************************* 20 // ********************************************************************** 34 // New impelemenataion as an utility class M << 21 #include "g4std/fstream" 35 // ------------------------------------------- << 22 #include "g4std/iomanip" 36 23 37 #include "G4Neutron.hh" 24 #include "G4Neutron.hh" 38 25 39 #include "G4DecayTable.hh" << 26 // ###################################################################### 40 #include "G4NeutronBetaDecayChannel.hh" << 27 // ### NEUTRON ### 41 #include "G4ParticleTable.hh" << 28 // ###################################################################### 42 #include "G4PhysicalConstants.hh" << 29 43 #include "G4String.hh" << 30 G4Neutron::G4Neutron( 44 #include "G4SystemOfUnits.hh" << 31 const G4String& aName, G4double mass, 45 #include "G4Types.hh" << 32 G4double width, G4double charge, 46 #include "G4VDecayChannel.hh" << 33 G4int iSpin, G4int iParity, >> 34 G4int iConjugation, G4int iIsospin, >> 35 G4int iIsospin3, G4int gParity, >> 36 const G4String& pType, G4int lepton, >> 37 G4int baryon, G4int encoding, >> 38 G4bool stable, G4double lifetime, >> 39 G4DecayTable *decaytable ) >> 40 : G4VBaryon( aName,mass,width,charge,iSpin,iParity, >> 41 iConjugation,iIsospin,iIsospin3,gParity,pType, >> 42 lepton,baryon,encoding,stable,lifetime,decaytable ) >> 43 { >> 44 SetParticleSubType("nucleon"); >> 45 } 47 46 48 G4Neutron* G4Neutron::theInstance = nullptr; << 47 // ...................................................................... >> 48 // ... static member definitions ... >> 49 // ...................................................................... >> 50 // >> 51 // Arguments for constructor are as follows >> 52 // name mass width charge >> 53 // 2*spin parity C-conjugation >> 54 // 2*Isospin 2*Isospin3 G-parity >> 55 // type lepton number baryon number PDG encoding >> 56 // stable lifetime decay table 49 57 50 G4Neutron* G4Neutron::Definition() << 58 G4Neutron G4Neutron::theNeutron( 51 { << 59 "neutron", 0.93956563*GeV, 0.0*MeV, 0.0, 52 if (theInstance != nullptr) return theInstan << 53 const G4String name = "neutron"; << 54 // search in particle table] << 55 G4ParticleTable* pTable = G4ParticleTable::G << 56 auto anInstance = static_cast<G4Ions*>(pTabl << 57 if (anInstance == nullptr) { << 58 // create particle << 59 // << 60 // Arguments for constructor are as fol << 61 // name mass << 62 // 2*spin parity C- << 63 // 2*Isospin 2*Isospin3 << 64 // type lepton number ba << 65 // stable lifetime << 66 // shortlived subType << 67 // use constants in CLHEP << 68 // static const double neutron_mass_c2 = << 69 << 70 // clang-format off << 71 anInstance = new G4Ions( << 72 name, neutron_mass_c2, 7.478e << 73 1, +1, 0, 60 1, +1, 0, 74 1, -1, 0, 61 1, -1, 0, 75 "baryon", 0, + 62 "baryon", 0, +1, 2112, 76 false, 880.2*second, nullptr, << 63 true, -1.0, NULL 77 false, "nucleon", -2112, << 64 ); 78 0.0, 0 << 79 ); << 80 // clang-format on << 81 << 82 // Magnetic Moment << 83 G4double mN = eplus * hbar_Planck / 2. / ( << 84 anInstance->SetPDGMagneticMoment(-1.913042 << 85 // create Decay Table << 86 auto table = new G4DecayTable(); << 87 // create a decay channel << 88 G4VDecayChannel* mode = new G4NeutronBetaD << 89 table->Insert(mode); << 90 anInstance->SetDecayTable(table); << 91 } << 92 theInstance = static_cast<G4Neutron*>(anInst << 93 return theInstance; << 94 } << 95 65 96 G4Neutron* G4Neutron::NeutronDefinition() << 66 G4Neutron* G4Neutron::NeutronDefinition(){return &theNeutron;} 97 { << 67 // initialization for static cut values 98 return Definition(); << 68 G4double G4Neutron::theNeutronLengthCut = -1.0; 99 } << 69 G4double* G4Neutron::theNeutronKineticEnergyCuts = NULL; 100 70 101 G4Neutron* G4Neutron::Neutron() << 71 // ********************************************************************** >> 72 // **************************** SetCuts ********************************* >> 73 // ********************************************************************** >> 74 // In this version Input Cut Value is meaning less >> 75 // theKineticEnergyCuts for all materials are set to LowestEnergy >> 76 void G4Neutron::SetCuts(G4double aCut) 102 { 77 { 103 return Definition(); << 78 theCutInMaxInteractionLength = aCut; >> 79 >> 80 const G4MaterialTable* materialTable = G4Material::GetMaterialTable(); >> 81 // Create the vector of cuts in energy >> 82 // corresponding to the stopping range cut >> 83 if(theKineticEnergyCuts) delete [] theKineticEnergyCuts; >> 84 theKineticEnergyCuts = new G4double [materialTable->length()]; >> 85 >> 86 // Build range vector for every material, convert cut into energy-cut, >> 87 // fill theKineticEnergyCuts and delete the range vector >> 88 for (G4int J=0; J<materialTable->length(); J++) >> 89 { >> 90 G4Material* aMaterial = (*materialTable)[J]; >> 91 theKineticEnergyCuts[J] = LowestEnergy; >> 92 } >> 93 theNeutronLengthCut = theCutInMaxInteractionLength; >> 94 theNeutronKineticEnergyCuts = theKineticEnergyCuts; >> 95 // Rebuild the physics tables for every process for this particle type >> 96 104 } 97 } >> 98 >> 99 >> 100 >> 101 >> 102 >> 103 >> 104 105 105