Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/src/G4MicroElecMaterialStructure.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /materials/src/G4MicroElecMaterialStructure.cc (Version 11.3.0) and /materials/src/G4MicroElecMaterialStructure.cc (Version 10.7)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // G4MicroElecMaterialStructure.cc, 2011/08/29     27 // G4MicroElecMaterialStructure.cc, 2011/08/29 A.Valentin, M. Raine are with CEA [a]
 28 //                          2020/05/20 P. Caro     28 //                          2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 29 //                   Q. Gibaru is with CEA [a]     29 //                   Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 30 //                    M. Raine and D. Lambert      30 //                    M. Raine and D. Lambert are with CEA [a]
 31 //                                                 31 //
 32 // A part of this work has been funded by the      32 // A part of this work has been funded by the French space agency(CNES[c])
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France       33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T     34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED     35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 36 //                                                 36 //
 37 // Based on the following publications             37 // Based on the following publications
 38 //  - A.Valentin, M. Raine,                        38 //  - A.Valentin, M. Raine, 
 39 //    Inelastic cross-sections of low energy e     39 //    Inelastic cross-sections of low energy electrons in silicon
 40 //        for the simulation of heavy ion trac     40 //        for the simulation of heavy ion tracks with the Geant4-DNA toolkit,
 41 //        NSS Conf. Record 2010, pp. 80-85         41 //        NSS Conf. Record 2010, pp. 80-85
 42 //             https://doi.org/10.1109/NSSMIC.     42 //             https://doi.org/10.1109/NSSMIC.2010.5873720
 43 //                                                 43 //
 44 //      - A.Valentin, M. Raine, M.Gaillardin,      44 //      - A.Valentin, M. Raine, M.Gaillardin, P.Paillet
 45 //        Geant4 physics processes for microdo     45 //        Geant4 physics processes for microdosimetry simulation:
 46 //        very low energy electromagnetic mode     46 //        very low energy electromagnetic models for electrons in Silicon,
 47 //             https://doi.org/10.1016/j.nimb.     47 //             https://doi.org/10.1016/j.nimb.2012.06.007
 48 //        NIM B, vol. 288, pp. 66-73, 2012, pa     48 //        NIM B, vol. 288, pp. 66-73, 2012, part A
 49 //        heavy ions in Si, NIM B, vol. 287, p     49 //        heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B
 50 //             https://doi.org/10.1016/j.nimb.     50 //             https://doi.org/10.1016/j.nimb.2012.07.028
 51 //                                                 51 //
 52 //  - M. Raine, M. Gaillardin, P. Paillet          52 //  - M. Raine, M. Gaillardin, P. Paillet
 53 //        Geant4 physics processes for silicon     53 //        Geant4 physics processes for silicon microdosimetry simulation: 
 54 //        Improvements and extension of the en     54 //        Improvements and extension of the energy-range validity up to 10 GeV/nucleon
 55 //        NIM B, vol. 325, pp. 97-100, 2014        55 //        NIM B, vol. 325, pp. 97-100, 2014
 56 //             https://doi.org/10.1016/j.nimb.     56 //             https://doi.org/10.1016/j.nimb.2014.01.014
 57 //                                                 57 //
 58 //      - J. Pierron, C. Inguimbert, M. Belhaj     58 //      - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 59 //        Electron emission yield for low ener     59 //        Electron emission yield for low energy electrons: 
 60 //        Monte Carlo simulation and experimen     60 //        Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 61 //        Journal of Applied Physics 121 (2017     61 //        Journal of Applied Physics 121 (2017) 215107. 
 62 //               https://doi.org/10.1063/1.498     62 //               https://doi.org/10.1063/1.4984761
 63 //                                                 63 //
 64 //      - P. Caron,                                64 //      - P. Caron,
 65 //        Study of Electron-Induced Single-Eve     65 //        Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 66 //        PHD, 16th October 2019                   66 //        PHD, 16th October 2019
 67 //                                                 67 //
 68 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine     68 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 69 //        Geant4 physics processes for microdo     69 //        Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 70 //        Extension of MicroElec to very low e     70 //        Extension of MicroElec to very low energies and new materials
 71 //        NIM B, 2020, in review.                  71 //        NIM B, 2020, in review.
 72 //                                                 72 //
 73 //                                                 73 //
 74 //....oooOO0OOooo........oooOO0OOooo........oo     74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 
 75                                                    75 
 76 #include "G4MicroElecMaterialStructure.hh"         76 #include "G4MicroElecMaterialStructure.hh"
 77 #include "G4EnvironmentUtils.hh"               << 
 78 #include "G4SystemOfUnits.hh"                      77 #include "G4SystemOfUnits.hh"
 79                                                    78 
 80 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 81                                                    80 
 82 G4MicroElecMaterialStructure::G4MicroElecMater     81 G4MicroElecMaterialStructure::G4MicroElecMaterialStructure(const G4String& matName)
 83 {                                                  82 {
 84   materialName = matName;                          83   materialName = matName;
 85   if (matName == "Vacuum" || matName == "uum")     84   if (matName == "Vacuum" || matName == "uum") {
 86     workFunction = 0;                              85     workFunction = 0;
 87     initialEnergy = 0;                             86     initialEnergy = 0;
 88   }                                                87   }
 89   else {                                           88   else {
 90     ReadMaterialFile();                            89     ReadMaterialFile();
 91   }                                                90   }
 92   nLevels = (G4int)energyConstant.size();      <<  91   nLevels = energyConstant.size();
 93 }                                                  92 }
 94                                                    93 
                                                   >>  94 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >>  95 
                                                   >>  96 G4MicroElecMaterialStructure::~G4MicroElecMaterialStructure()
                                                   >>  97 {}
 95                                                    98 
 96 //....oooOO0OOooo........oooOO0OOooo........oo     99 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
                                                   >> 100 
 97 void G4MicroElecMaterialStructure::ReadMateria    101 void G4MicroElecMaterialStructure::ReadMaterialFile() 
 98 {                                                 102 {
 99   const char* path = G4FindDataDir("G4LEDATA") << 103   char *path = std::getenv("G4LEDATA");
100                                                << 104   
101   if (materialName[0] == 'G' && materialName[1 << 105   if (materialName(0) == 'G' && materialName(1) == '4') {
102     //in the case the NIST database is used       106     //in the case the NIST database is used
103     materialName.erase(0, 1);                     107     materialName.erase(0, 1);
104     materialName.erase(0, 1);                     108     materialName.erase(0, 1);
105     materialName.erase(0, 1);                     109     materialName.erase(0, 1);
106   }                                               110   }
107                                                   111   
108   std::ostringstream fileName;                    112   std::ostringstream fileName;
109   fileName << path << "/microelec/Structure/Da    113   fileName << path << "/microelec/Structure/Data_" + materialName + ".dat";
110   std::ifstream fichier(fileName.str().c_str()    114   std::ifstream fichier(fileName.str().c_str());
111                                                   115   
112   int varLength = 0;                              116   int varLength = 0;
113   G4String nameParameter;                         117   G4String nameParameter;
114                                                   118   
115   G4String unitName;                              119   G4String unitName;  
116   G4double unitValue;                             120   G4double unitValue;
117   G4double data;                                  121   G4double data;
118   G4String filler;                                122   G4String filler;  
119   G4String type;                                  123   G4String type;
120                                                   124   
121   if (fichier)                                    125   if (fichier)
122     {                                             126     {
123       fichier >> filler >> type;                  127       fichier >> filler >> type;
124       materialName = filler;                      128       materialName = filler;
125       if (type == "Compound") {isCompound = tr    129       if (type == "Compound") {isCompound = true; Z = 0; }
126       else { isCompound = false; Z = std::stoi    130       else { isCompound = false; Z = std::stoi(type); }
127       while(!fichier.eof()) {                     131       while(!fichier.eof()) {
128                                                   132   
129   getline(fichier, filler);                       133   getline(fichier, filler);
130   std::stringstream line(filler);                 134   std::stringstream line(filler);
131                                                   135   
132   if (filler[0] == '#' || filler.empty()) {con << 136   if (filler(0) == '#' || filler.empty()) {continue;}
133                                                   137   
134   line >> varLength;                              138   line >> varLength;
135   line >> nameParameter;                          139   line >> nameParameter;
136   line >> unitName;                               140   line >> unitName;
137   unitValue = ConvertUnit(unitName);              141   unitValue = ConvertUnit(unitName);
138                                                   142   
139   for (int i = 0; i < varLength; i++)             143   for (int i = 0; i < varLength; i++)
140     {                                             144     {
141       line >> data; data = data*unitValue;        145       line >> data; data = data*unitValue;
142                                                << 146       
143       if(nameParameter == "WorkFunction")      << 147       if (nameParameter == "WorkFunction") workFunction = data;
144       {                                        << 148       if (nameParameter == "EnergyGap") energyGap = data;
145         workFunction = data;                   << 149       
146       }                                        << 150       if (nameParameter == "EnergyPeak") energyConstant.push_back(data);
147       if(nameParameter == "EnergyGap")         << 151       if (nameParameter == "EnergyLimit") LimitEnergy.push_back(data);
148       {                                        << 152       if (nameParameter == "EADL") EADL_Enumerator.push_back(data);
149         energyGap = data;                      << 153       
150       }                                        << 154       if (nameParameter == "WeaklyBoundShell")
151                                                << 
152       if(nameParameter == "EnergyPeak")        << 
153       {                                        << 
154         energyConstant.push_back(data);        << 
155       }                                        << 
156       if(nameParameter == "EnergyLimit")       << 
157       {                                        << 
158         LimitEnergy.push_back(data);           << 
159       }                                        << 
160       if(nameParameter == "EADL")              << 
161       {                                        << 
162         EADL_Enumerator.push_back(data);       << 
163       }                                        << 
164                                                << 
165       if (nameParameter == "WeaklyBoundShell") << 
166         {if (data == 0) { isShellWeaklyBoundVe    155         {if (data == 0) { isShellWeaklyBoundVector.push_back(false); }
167     else {isShellWeaklyBoundVector.push_back(t    156     else {isShellWeaklyBoundVector.push_back(true);}}
168                                                << 157       
169         if(nameParameter == "WeaklyBoundInitia << 158       if (nameParameter == "WeaklyBoundInitialEnergy") initialEnergy = data;
170         {                                      << 159       
171           initialEnergy = data;                << 160       if (nameParameter == "ShellAtomicNumber") compoundShellZ.push_back(data);
172         }                                      << 161       
173                                                << 162       if (nameParameter == "DielectricModelLowEnergyLimit_e") limitInelastic[0]=data;
174         if(nameParameter == "ShellAtomicNumber << 163       if (nameParameter == "DielectricModelHighEnergyLimit_e") limitInelastic[1] = data;
175         {                                      << 164       if (nameParameter == "DielectricModelLowEnergyLimit_p") limitInelastic[2] = data;
176           compoundShellZ.push_back(data);      << 165       if (nameParameter == "DielectricModelHighEnergyLimit_p") limitInelastic[3] = data;
177         }                                      << 166       
178                                                << 167       if (nameParameter == "ElasticModelLowEnergyLimit") limitElastic[0] = data;
179         if(nameParameter == "DielectricModelLo << 168       if (nameParameter == "ElasticModelHighEnergyLimit") limitElastic[1] = data;
180         {                                      << 169     }
181           flimitInelastic[0] = data;           << 
182         }                                      << 
183         if(nameParameter == "DielectricModelHi << 
184         {                                      << 
185           flimitInelastic[1] = data;           << 
186         }                                      << 
187         if(nameParameter == "DielectricModelLo << 
188         {                                      << 
189           flimitInelastic[2] = data;           << 
190         }                                      << 
191         if(nameParameter == "DielectricModelHi << 
192         {                                      << 
193           flimitInelastic[3] = data;           << 
194         }                                      << 
195                                                << 
196         if(nameParameter == "ElasticModelLowEn << 
197         {                                      << 
198           flimitElastic[0] = data;             << 
199         }                                      << 
200         if(nameParameter == "ElasticModelHighE << 
201         {                                      << 
202           flimitElastic[1] = data;             << 
203         }                                      << 
204     }                                          << 
205       }                                           170       }
206       fichier.close();  // on ferme le fichier    171       fichier.close();  // on ferme le fichier
207     }                                             172     }
208   else {                                          173   else {
209     G4String str = "file ";                       174     G4String str = "file ";
210     str += fileName.str() + " not found!";        175     str += fileName.str() + " not found!";
211     G4Exception("G4MicroElecMaterialStructure:    176     G4Exception("G4MicroElecMaterialStructure::ReadMaterialFile", "em0002", FatalException, str);
212   }                                               177   }
213 }                                                 178 }
214                                                   179 
215 //....oooOO0OOooo........oooOO0OOooo........oo    180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
216                                                   181 
217 G4double G4MicroElecMaterialStructure::Energy(    182 G4double G4MicroElecMaterialStructure::Energy(G4int level)
218 {                                                 183 {
219   return (level >= 0 && level < nLevels) ? ene    184   return (level >= 0 && level < nLevels) ? energyConstant[level] : 0.0;
220 }                                                 185 }
221                                                   186 
222 //....oooOO0OOooo........oooOO0OOooo........oo    187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223                                                   188 
224 G4double G4MicroElecMaterialStructure::GetZ(G4    189 G4double G4MicroElecMaterialStructure::GetZ(G4int Shell)
225 {                                                 190 {
226   if (Shell >= 0 && Shell < nLevels) {            191   if (Shell >= 0 && Shell < nLevels) {
227     if(!isCompound)                            << 192     if (!isCompound) return Z;
228     {                                          << 193     else return compoundShellZ[Shell];
229       return Z;                                << 
230     }                                          << 
231     else                                       << 
232     {                                          << 
233       return compoundShellZ[Shell];            << 
234     }                                          << 
235   }                                            << 
236   else                                         << 
237   {                                            << 
238     return 0;                                  << 
239   }                                               194   }
                                                   >> 195   else return 0;
240 }                                                 196 }
241                                                   197 
242 //....oooOO0OOooo........oooOO0OOooo........oo    198 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
243                                                   199 
244 G4double G4MicroElecMaterialStructure::Convert    200 G4double G4MicroElecMaterialStructure::ConvertUnit(const G4String& unitName)
245 {                                                 201 {
246   G4double unitValue = 0;                         202   G4double unitValue = 0;
247   if(unitName == "meV")                        << 203   if (unitName == "meV") unitValue = 1e-3*CLHEP::eV;
248   {                                            << 204   else if (unitName == "eV") unitValue = CLHEP::eV;
249     unitValue = 1e-3 * CLHEP::eV;              << 205   else if (unitName == "keV") unitValue = CLHEP::keV;
250   }                                            << 206   else if (unitName == "MeV") unitValue = CLHEP::MeV;
251   else if(unitName == "eV")                    << 207   else if (unitName == "noUnit") unitValue = 1;
252   {                                            << 208   
253     unitValue = CLHEP::eV;                     << 
254   }                                            << 
255   else if(unitName == "keV")                   << 
256   {                                            << 
257     unitValue = CLHEP::keV;                    << 
258   }                                            << 
259   else if(unitName == "MeV")                   << 
260   {                                            << 
261     unitValue = CLHEP::MeV;                    << 
262   }                                            << 
263   else if(unitName == "noUnit")                << 
264   {                                            << 
265     unitValue = 1;                             << 
266   }                                            << 
267                                                << 
268   return unitValue;                               209   return unitValue;
269 }                                                 210 }
270                                                   211 
271 //....oooOO0OOooo........oooOO0OOooo........oo    212 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
272                                                   213 
273 G4double G4MicroElecMaterialStructure::GetLimi    214 G4double G4MicroElecMaterialStructure::GetLimitEnergy(G4int level)
274 {                                                 215 {
275   G4double E = LimitEnergy[level];                216   G4double E = LimitEnergy[level];
276   if (IsShellWeaklyBound(level)) { E = energyG    217   if (IsShellWeaklyBound(level)) { E = energyGap+ initialEnergy; }
277   return E;                                       218   return E;
278 }                                                 219 }
279                                                   220 
280 //....oooOO0OOooo........oooOO0OOooo........oo    221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
281                                                   222 
282 G4double G4MicroElecMaterialStructure::GetInel    223 G4double G4MicroElecMaterialStructure::GetInelasticModelLowLimit(G4int pdg)
283 {                                                 224 {
284   G4double res = 0.0;                             225   G4double res = 0.0;
285   if(pdg == 11)                                << 226   if (pdg == 11) res = limitInelastic[0];
286   {                                            << 227   else if (pdg == 2212) res = limitInelastic[2];
287     res = flimitInelastic[0];                  << 
288   }                                            << 
289   else if(pdg == 2212)                         << 
290   {                                            << 
291     res = flimitInelastic[2];                  << 
292   }                                            << 
293   return res;                                     228   return res;
294 }                                                 229 }
295                                                   230 
296 //....oooOO0OOooo........oooOO0OOooo........oo    231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
297                                                   232 
298 G4double G4MicroElecMaterialStructure::GetInel    233 G4double G4MicroElecMaterialStructure::GetInelasticModelHighLimit(G4int pdg)
299 {                                                 234 {
300   G4double res = 0.0;                             235   G4double res = 0.0;
301   if(pdg == 11)                                << 236   if (pdg == 11) res = limitInelastic[1];
302   {                                            << 237   else if (pdg == 2212) res = limitInelastic[3];
303     res = flimitInelastic[1];                  << 
304   }                                            << 
305   else if(pdg == 2212)                         << 
306   {                                            << 
307     res = flimitInelastic[3];                  << 
308   }                                            << 
309   return res;                                     238   return res;
310 }                                                 239 }
311                                                   240 
312 //....oooOO0OOooo........oooOO0OOooo........oo    241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
313                                                   242 
314 G4bool G4MicroElecMaterialStructure::IsShellWe    243 G4bool G4MicroElecMaterialStructure::IsShellWeaklyBound(G4int level)
315 {                                                 244 {
316   return isShellWeaklyBoundVector[level];         245   return isShellWeaklyBoundVector[level];
317 }                                                 246 }
318                                                   247 
319 //....oooOO0OOooo........oooOO0OOooo........oo    248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320                                                   249 
321                                                   250