Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/src/G4Material.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /materials/src/G4Material.cc (Version 11.3.0) and /materials/src/G4Material.cc (Version 9.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25                                                <<  25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Material.cc,v 1.42 2008/08/13 16:06:42 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-02 $
                                                   >>  29 //
                                                   >>  30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  31 //
 26 // 26-06-96, Code uses operators (+=, *=, ++,      32 // 26-06-96, Code uses operators (+=, *=, ++, -> etc.) correctly, P. Urban
 27 // 10-07-96, new data members added by L.Urban     33 // 10-07-96, new data members added by L.Urban
 28 // 12-12-96, new data memberfFreeElecDensitys  <<  34 // 12-12-96, new data members added by L.Urban
 29 // 20-01-97, aesthetic rearrangement. RadLengt     35 // 20-01-97, aesthetic rearrangement. RadLength calculation modified.
 30 //           Data members Zeff and Aeff REMOVE     36 //           Data members Zeff and Aeff REMOVED (i.e. passed to the Elements).
 31 //           (local definition of Zeff in Dens     37 //           (local definition of Zeff in DensityEffect and FluctModel...)
 32 //           Vacuum defined as a G4State. Mixt <<  38 //           Vacuum defined as a G4State. Mixture flag removed, M.Maire. 
 33 // 29-01-97, State=Vacuum automatically set de     39 // 29-01-97, State=Vacuum automatically set density=0 in the contructors.
 34 //           Subsequent protections have been  <<  40 //           Subsequent protections have been put in the calculation of 
 35 //           MeanExcEnergy, ShellCorrectionVec     41 //           MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire.
 36 // 11-02-97, ComputeDensityEffect() rearranged     42 // 11-02-97, ComputeDensityEffect() rearranged, M.Maire.
 37 // 20-03-97, corrected initialization of point     43 // 20-03-97, corrected initialization of pointers, M.Maire.
 38 // 28-05-98, the kState=kVacuum has been remov     44 // 28-05-98, the kState=kVacuum has been removed.
 39 //           automatic check for a minimal den <<  45 //           automatic check for a minimal density, M.Maire 
 40 // 12-06-98, new method AddMaterial() allowing <<  46 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire  
 41 // 09-07-98, ionisation parameters removed fro     47 // 09-07-98, ionisation parameters removed from the class, M.Maire
 42 // 05-10-98, change names: NumDensity -> NbOfA     48 // 05-10-98, change names: NumDensity -> NbOfAtomsPerVolume
 43 // 18-11-98, new interface to SandiaTable          49 // 18-11-98, new interface to SandiaTable
 44 // 19-01-99  enlarge tolerance on test of cohe     50 // 19-01-99  enlarge tolerance on test of coherence of gas conditions
 45 // 19-07-99, Constructors with chemicalFormula     51 // 19-07-99, Constructors with chemicalFormula added by V.Ivanchenko
 46 // 16-01-01, Nuclear interaction length, M.Mai     52 // 16-01-01, Nuclear interaction length, M.Maire
 47 // 12-03-01, G4bool fImplicitElement;              53 // 12-03-01, G4bool fImplicitElement;
 48 //           copy constructor and assignement      54 //           copy constructor and assignement operator revised (mma)
 49 // 03-05-01, flux.precision(prec) at begin/end     55 // 03-05-01, flux.precision(prec) at begin/end of operator<<
 50 // 17-07-01, migration to STL. M. Verderi.         56 // 17-07-01, migration to STL. M. Verderi.
 51 // 14-09-01, Suppression of the data member fI     57 // 14-09-01, Suppression of the data member fIndexInTable
 52 // 26-02-02, fIndexInTable renewed                 58 // 26-02-02, fIndexInTable renewed
 53 // 16-04-02, G4Exception put in constructor wi     59 // 16-04-02, G4Exception put in constructor with chemical formula
 54 // 06-05-02, remove the check of the ideal gas     60 // 06-05-02, remove the check of the ideal gas state equation
 55 // 06-08-02, remove constructors with chemical     61 // 06-08-02, remove constructors with chemical formula (mma)
 56 // 22-01-04, proper STL handling of theElement     62 // 22-01-04, proper STL handling of theElementVector (Hisaya)
 57 // 30-03-05, warning in GetMaterial(materialNa <<  63 // 30-03-05, warning in GetMaterial(materialName) 
 58 // 09-03-06, minor change of printout (V.Ivanc <<  64 // 09-03-06, minor change of printout (V.Ivanchenko) 
 59 // 10-01-07, compute fAtomVector in the case o <<  65 // 10-01-07, compute fAtomVector in the case of mass fraction (V.Ivanchenko) 
 60 // 27-07-07, improve destructor (V.Ivanchenko) <<  66 // 27-07-07, improve destructor (V.Ivanchenko) 
 61 // 18-10-07, moved definition of mat index to  <<  67 // 18-10-07, move definition of material index to InitialisePointers (V.Ivanchenko) 
 62 // 13-08-08, do not use fixed size arrays (V.I <<  68 // 13-08-08, do not use fixed size arrays (V.Ivanchenko) 
 63 // 26-10-11, new scheme for G4Exception  (mma) <<  69 // 
 64 // 13-04-12, map<G4Material*,G4double> fMatCom << 
 65 // 21-04-12, fMassOfMolecule, computed for Ato << 
 66                                                    70 
 67 #include "G4Material.hh"                       <<  71 // 
                                                   >>  72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 68                                                    73 
 69 #include "G4ApplicationState.hh"               <<  74 #include "G4Material.hh"
 70 #include "G4AtomicShells.hh"                   << 
 71 #include "G4ExtendedMaterial.hh"               << 
 72 #include "G4Pow.hh"                            << 
 73 #include "G4NistManager.hh"                    << 
 74 #include "G4PhysicalConstants.hh"              << 
 75 #include "G4StateManager.hh"                   << 
 76 #include "G4SystemOfUnits.hh"                  << 
 77 #include "G4UnitsTable.hh"                         75 #include "G4UnitsTable.hh"
 78                                                << 
 79 #include <iomanip>                                 76 #include <iomanip>
 80                                                    77 
                                                   >>  78 
                                                   >>  79 G4MaterialTable G4Material::theMaterialTable;
                                                   >>  80 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 82                                                    82 
 83 // Constructor to create a material from scrat     83 // Constructor to create a material from scratch
 84                                                    84 
 85 G4Material::G4Material(const G4String& name, G <<  85 G4Material::G4Material(const G4String& name, G4double z,
 86   G4State state, G4double temp, G4double press <<  86                        G4double a, G4double density, 
 87   : fName(name)                                <<  87                        G4State state, G4double temp, G4double pressure)
                                                   >>  88   : fName(name)          
 88 {                                                  89 {
 89   InitializePointers();                            90   InitializePointers();
 90                                                <<  91     
 91   if (density < universe_mean_density) {       <<  92   if (density < universe_mean_density)
 92     G4cout << " G4Material WARNING:"           <<  93      { G4cerr << "--- Warning from G4Material::G4Material()"
 93            << " define a material with density <<  94               << " define a material with density=0 is not allowed. \n"
 94            << " The material " << name << " wi <<  95               << " The material " << name << " will be constructed with the"
 95            << " default minimal density: " <<  <<  96               << " default minimal density: " << universe_mean_density/(g/cm3) 
 96            << G4endl;                          <<  97               << "g/cm3" << G4endl;
 97     density = universe_mean_density;           <<  98        density = universe_mean_density;
 98   }                                            <<  99      } 
 99                                                << 100 
100   fDensity = density;                          << 101   fDensity  = density;
101   fState = state;                              << 102   fState    = state;
102   fTemp = temp;                                << 103   fTemp     = temp;
103   fPressure = pressure;                           104   fPressure = pressure;
                                                   >> 105   fChemicalFormula = " ";
104                                                   106 
105   // Initialize theElementVector allocating on    107   // Initialize theElementVector allocating one
106   // element corresponding to this material       108   // element corresponding to this material
107   fNbComponents = fNumberOfElements = 1;       << 109   maxNbComponents        = fNumberOfComponents = fNumberOfElements = 1;
108   theElementVector = new G4ElementVector();    << 110   fArrayLength           = maxNbComponents;
109                                                << 111   fImplicitElement       = true;
110   // take element from DB                      << 112   theElementVector       = new G4ElementVector();
111   G4NistManager* nist = G4NistManager::Instanc << 113   theElementVector->push_back( new G4Element(name, " ", z, a));  
112   G4int iz = G4lrint(z);                       << 114   fMassFractionVector    = new G4double[1];
113   auto elm = nist->FindOrBuildElement(iz);     << 115   fMassFractionVector[0] = 1. ;
114   if (elm == nullptr) {                        << 116   
115     elm = new G4Element("ELM_" + name, name, z << 117   (*theElementVector)[0] -> increaseCountUse();
116   }                                            << 118   
117   theElementVector->push_back(elm);            << 119   if (fState == kStateUndefined)
118                                                << 120     {
119   fMassFractionVector = new G4double[1];       << 121      if (fDensity > kGasThreshold) fState = kStateSolid;
120   fMassFractionVector[0] = 1.;                 << 122      else                          fState = kStateGas;
121   fMassOfMolecule = a / CLHEP::Avogadro;       << 
122                                                << 
123   if (fState == kStateUndefined) {             << 
124     if (fDensity > kGasThreshold) {            << 
125       fState = kStateSolid;                    << 
126     }                                          << 
127     else {                                     << 
128       fState = kStateGas;                      << 
129     }                                             123     }
130   }                                            << 
131                                                   124 
132   ComputeDerivedQuantities();                     125   ComputeDerivedQuantities();
133 }                                                 126 }
134                                                   127 
135 //....oooOO0OOooo........oooOO0OOooo........oo    128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
136                                                   129 
137 // Constructor to create a material from a Lis    130 // Constructor to create a material from a List of constituents
138 // (elements and/or materials)  added with Add    131 // (elements and/or materials)  added with AddElement or AddMaterial
139                                                   132 
140 G4Material::G4Material(const G4String& name, G << 133 G4Material::G4Material(const G4String& name, G4double density,
141   G4double temp, G4double pressure)            << 134                        G4int nComponents,
142   : fName(name)                                << 135                        G4State state, G4double temp, G4double pressure)
                                                   >> 136   : fName(name)          
143 {                                                 137 {
144   InitializePointers();                           138   InitializePointers();
145                                                << 139     
146   if (density < universe_mean_density) {       << 140   if (density < universe_mean_density)
147     G4cout << "--- Warning from G4Material::G4 << 141     {G4cerr << "--- Warning from G4Material::G4Material()"
148            << " define a material with density << 142             << " define a material with density=0 is not allowed. \n"
149            << " The material " << name << " wi << 143             << " The material " << name << " will be constructed with the"
150            << " default minimal density: " <<  << 144             << " default minimal density: " << universe_mean_density/(g/cm3) 
151            << G4endl;                          << 145             << "g/cm3" << G4endl;
152     density = universe_mean_density;           << 146      density = universe_mean_density;
153   }                                            << 147     }
154                                                << 148         
155   fDensity = density;                          << 149   fDensity  = density;
156   fState = state;                              << 150   fState    = state;
157   fTemp = temp;                                << 151   fTemp     = temp;
158   fPressure = pressure;                           152   fPressure = pressure;
159                                                << 153   fChemicalFormula = " ";
160   fNbComponents = nComponents;                 << 154     
161   fMassFraction = true;                        << 155   maxNbComponents     = nComponents;
162                                                << 156   fArrayLength        = maxNbComponents;
163   if (fState == kStateUndefined) {             << 157   fNumberOfComponents = fNumberOfElements = 0;
164     if (fDensity > kGasThreshold) {            << 158   fImplicitElement    = false;
165       fState = kStateSolid;                    << 159   theElementVector    = new G4ElementVector();
166     }                                          << 160   theElementVector->reserve(maxNbComponents);  
167     else {                                     << 161     
168       fState = kStateGas;                      << 162   if (fState == kStateUndefined) 
                                                   >> 163     {
                                                   >> 164       if (fDensity > kGasThreshold) fState = kStateSolid;
                                                   >> 165       else                          fState = kStateGas;
169     }                                             166     }
170   }                                            << 
171 }                                                 167 }
172                                                   168 
173 //....oooOO0OOooo........oooOO0OOooo........oo    169 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
174                                                   170 
175 // Constructor to create a material from base  << 171 // Fake default constructor - sets only member data and allocates memory
                                                   >> 172 //                            for usage restricted to object persistency
176                                                   173 
177 G4Material::G4Material(const G4String& name, G << 174 G4Material::G4Material(__void__&)
178   G4State state, G4double temp, G4double press << 175   : fNumberOfComponents(0), fNumberOfElements(0), theElementVector(0), 
179   : fName(name)                                << 176     fImplicitElement(false), fMassFractionVector(0), fAtomsVector(0), 
                                                   >> 177     fMaterialPropertiesTable(0), fIndexInTable(0), 
                                                   >> 178     VecNbOfAtomsPerVolume(0), fIonisation(0), fSandiaTable(0)
180 {                                                 179 {
181   InitializePointers();                        << 
182                                                << 
183   if (density < universe_mean_density) {       << 
184     G4cout << "--- Warning from G4Material::G4 << 
185            << " define a material with density << 
186            << " The material " << name << " wi << 
187            << " default minimal density: " <<  << 
188            << G4endl;                          << 
189     density = universe_mean_density;           << 
190   }                                            << 
191                                                << 
192   fDensity = density;                          << 
193   fState = state;                              << 
194   fTemp = temp;                                << 
195   fPressure = pressure;                        << 
196                                                << 
197   fBaseMaterial = bmat;                        << 
198   auto ptr = bmat;                             << 
199   if (nullptr != ptr) {                        << 
200     while (true) {                             << 
201       ptr = ptr->GetBaseMaterial();            << 
202       if (nullptr == ptr) {                    << 
203         break;                                 << 
204       }                                        << 
205       fBaseMaterial = ptr;                     << 
206     }                                          << 
207   }                                            << 
208                                                << 
209   fChemicalFormula = fBaseMaterial->GetChemica << 
210   fMassOfMolecule = fBaseMaterial->GetMassOfMo << 
211                                                << 
212   fNumberOfElements = (G4int)fBaseMaterial->Ge << 
213   fNbComponents = fNumberOfElements;           << 
214                                                << 
215   CopyPointersOfBaseMaterial();                << 
216 }                                                 180 }
217                                                   181 
218 //....oooOO0OOooo........oooOO0OOooo........oo    182 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
219                                                   183 
220 G4Material::~G4Material()                      << 184 // AddElement -- composition by atom count
221 {                                              << 
222   if (fBaseMaterial == nullptr) {              << 
223     delete theElementVector;                   << 
224     delete fSandiaTable;                       << 
225     delete[] fMassFractionVector;              << 
226     delete[] fAtomsVector;                     << 
227   }                                            << 
228   delete fIonisation;                          << 
229   delete[] fVecNbOfAtomsPerVolume;             << 
230                                                   185 
231   // Remove this material from the MaterialTab << 186 void G4Material::AddElement(G4Element* element, G4int nAtoms)
232   //                                           << 187 {   
233   (*GetMaterialTable())[fIndexInTable] = nullp << 188   // initialization
234 }                                              << 189   if ( fNumberOfElements == 0 ) {
235                                                << 190      fAtomsVector        = new G4int   [fArrayLength];
236 //....oooOO0OOooo........oooOO0OOooo........oo << 191      fMassFractionVector = new G4double[fArrayLength];
237                                                << 
238 void G4Material::InitializePointers()          << 
239 {                                              << 
240   fBaseMaterial = nullptr;                     << 
241   fMaterialPropertiesTable = nullptr;          << 
242   theElementVector = nullptr;                  << 
243   fAtomsVector = nullptr;                      << 
244   fMassFractionVector = nullptr;               << 
245   fVecNbOfAtomsPerVolume = nullptr;            << 
246                                                << 
247   fIonisation = nullptr;                       << 
248   fSandiaTable = nullptr;                      << 
249                                                << 
250   fDensity = fFreeElecDensity = fTemp = fPress << 
251   fTotNbOfAtomsPerVolume = 0.0;                << 
252   fTotNbOfElectPerVolume = 0.0;                << 
253   fRadlen = fNuclInterLen = fMassOfMolecule =  << 
254                                                << 
255   fState = kStateUndefined;                    << 
256   fNumberOfElements = fNbComponents = fIdxComp << 
257   fMassFraction = true;                        << 
258   fChemicalFormula = "";                       << 
259                                                << 
260   // Store in the static Table of Materials    << 
261   fIndexInTable = GetMaterialTable()->size();  << 
262   for (std::size_t i = 0; i < fIndexInTable; + << 
263     if ((*GetMaterialTable())[i]->GetName() == << 
264       G4cout << "G4Material WARNING: duplicate << 
265       break;                                   << 
266     }                                          << 
267   }                                               192   }
268   GetMaterialTable()->push_back(this);         << 
269 }                                              << 
270                                                << 
271 //....oooOO0OOooo........oooOO0OOooo........oo << 
272                                                   193 
273 void G4Material::ComputeDerivedQuantities()    << 194   // filling ...
274 {                                              << 195   if ( G4int(fNumberOfElements) < maxNbComponents ) {
275   // Header routine to compute various propert << 196      theElementVector->push_back(element);     
276   //                                           << 197      fAtomsVector       [fNumberOfElements] = nAtoms;
277   // Number of atoms per volume (per element), << 198      fNumberOfComponents = ++fNumberOfElements;
278   G4double Zi, Ai;                             << 199      element->increaseCountUse();
279   fTotNbOfAtomsPerVolume = 0.;                 << 200   } else {
280   delete[] fVecNbOfAtomsPerVolume;             << 201     G4cerr << "G4Material::AddElement ERROR for " << fName << " nElement= " 
281   fVecNbOfAtomsPerVolume = new G4double[fNumbe << 202      <<  fNumberOfElements << G4endl;
282   fTotNbOfElectPerVolume = 0.;                 << 203     G4Exception
283   fFreeElecDensity = 0.;                       << 204     ("ERROR!!! - Attempt to add more than the declared number of elements.");
284   const G4double elecTh = 15. * CLHEP::eV;  // << 
285   for (G4int i = 0; i < fNumberOfElements; ++i << 
286     Zi = (*theElementVector)[i]->GetZ();       << 
287     Ai = (*theElementVector)[i]->GetA();       << 
288     fVecNbOfAtomsPerVolume[i] = Avogadro * fDe << 
289     fTotNbOfAtomsPerVolume += fVecNbOfAtomsPer << 
290     fTotNbOfElectPerVolume += fVecNbOfAtomsPer << 
291     if (fState != kStateGas) {                 << 
292       fFreeElecDensity +=                      << 
293         fVecNbOfAtomsPerVolume[i] * G4AtomicSh << 
294     }                                          << 
295   }                                               205   }
                                                   >> 206   // filled.
                                                   >> 207   if ( G4int(fNumberOfElements) == maxNbComponents ) {     
                                                   >> 208      // compute proportion by mass
                                                   >> 209      size_t i=0;
                                                   >> 210      G4double Zmol(0.), Amol(0.);
                                                   >> 211      for (i=0;i<fNumberOfElements;i++) {
                                                   >> 212        Zmol +=  fAtomsVector[i]*(*theElementVector)[i]->GetZ();
                                                   >> 213        Amol +=  fAtomsVector[i]*(*theElementVector)[i]->GetA();
                                                   >> 214      }
                                                   >> 215      for (i=0;i<fNumberOfElements;i++) {
                                                   >> 216        fMassFractionVector[i] = fAtomsVector[i]
                                                   >> 217                          *(*theElementVector)[i]->GetA()/Amol;
                                                   >> 218      }
296                                                   219 
297   ComputeRadiationLength();                    << 220      ComputeDerivedQuantities();
298   ComputeNuclearInterLength();                 << 
299                                                << 
300   if (fIonisation == nullptr) {                << 
301     fIonisation = new G4IonisParamMat(this);   << 
302   }                                            << 
303   if (fSandiaTable == nullptr) {               << 
304     fSandiaTable = new G4SandiaTable(this);    << 
305   }                                               221   }
306 }                                                 222 }
307                                                   223 
308 //....oooOO0OOooo........oooOO0OOooo........oo    224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
309                                                   225 
310 void G4Material::CopyPointersOfBaseMaterial()  << 226 // AddElement -- composition by fraction of mass
311 {                                              << 
312   G4double factor = fDensity / fBaseMaterial-> << 
313   fTotNbOfAtomsPerVolume = factor * fBaseMater << 
314   fTotNbOfElectPerVolume = factor * fBaseMater << 
315   fFreeElecDensity = factor * fBaseMaterial->G << 
316                                                << 
317   if (fState == kStateUndefined) {             << 
318     fState = fBaseMaterial->GetState();        << 
319   }                                            << 
320                                                << 
321   theElementVector = const_cast<G4ElementVecto << 
322   fMassFractionVector = const_cast<G4double*>( << 
323   fAtomsVector = const_cast<G4int*>(fBaseMater << 
324                                                << 
325   const G4double* v = fBaseMaterial->GetVecNbO << 
326   delete[] fVecNbOfAtomsPerVolume;             << 
327   fVecNbOfAtomsPerVolume = new G4double[fNumbe << 
328   for (G4int i = 0; i < fNumberOfElements; ++i << 
329     fVecNbOfAtomsPerVolume[i] = factor * v[i]; << 
330   }                                            << 
331   fRadlen = fBaseMaterial->GetRadlen() / facto << 
332   fNuclInterLen = fBaseMaterial->GetNuclearInt << 
333                                                   227 
334   if (fIonisation == nullptr) {                << 228 void G4Material::AddElement(G4Element* element, G4double fraction)
335     fIonisation = new G4IonisParamMat(this);   << 
336   }                                            << 
337   fIonisation->SetMeanExcitationEnergy(fBaseMa << 
338   if (fBaseMaterial->GetIonisation()->GetDensi << 
339     ComputeDensityEffectOnFly(true);           << 
340   }                                            << 
341                                                << 
342   fSandiaTable = fBaseMaterial->GetSandiaTable << 
343   fMaterialPropertiesTable = fBaseMaterial->Ge << 
344 }                                              << 
345                                                << 
346 //....oooOO0OOooo........oooOO0OOooo........oo << 
347                                                << 
348 void G4Material::AddElementByNumberOfAtoms(con << 
349 {                                                 229 {
350   // perform checks consistency                << 230   // initialization
351   if (0 == fIdxComponent) {                    << 231   if (fNumberOfComponents == 0) {
352     fMassFraction = false;                     << 232     fMassFractionVector = new G4double[fArrayLength];
353     fAtoms = new std::vector<G4int>;           << 233     fAtomsVector        = new G4int   [fArrayLength];
354     fElm = new std::vector<const G4Element*>;  << 
355   }                                            << 
356   if (fIdxComponent >= fNbComponents) {        << 
357     G4ExceptionDescription ed;                 << 
358     ed << "For material " << fName << " and ad << 
359        << " with Natoms=" << nAtoms            << 
360        << " wrong attempt to add more than the << 
361        << " >= " << fNbComponents;             << 
362     G4Exception("G4Material::AddElementByNumbe << 
363   }                                            << 
364   if (fMassFraction) {                         << 
365     G4ExceptionDescription ed;                 << 
366     ed << "For material " << fName << " and ad << 
367        << " with Natoms=" << nAtoms << " probl << 
368        << "addition of elements by mass fracti << 
369     G4Exception("G4Material::AddElementByNumbe << 
370   }                                            << 
371   if (0 >= nAtoms) {                           << 
372     G4ExceptionDescription ed;                 << 
373     ed << "For material " << fName << " and ad << 
374        << " with Natoms=" << nAtoms << " probl << 
375     G4Exception("G4Material::AddElementByNumbe << 
376   }                                               234   }
377                                                   235 
378   // filling                                   << 236   // filling ...
379   G4bool isAdded = false;                      << 237   if (G4int(fNumberOfComponents) < maxNbComponents) {
380   if (! fElm->empty()) {                       << 238       size_t el = 0;
381     for (G4int i = 0; i < fNumberOfElements; + << 239       while ((el<fNumberOfElements)&&(element!=(*theElementVector)[el])) el++;
382       if (elm == (*fElm)[i]) {                 << 240       if (el<fNumberOfElements) fMassFractionVector[el] += fraction;
383         (*fAtoms)[i] += nAtoms;                << 241       else {
384         isAdded = true;                        << 242   theElementVector->push_back(element); 
385         break;                                 << 243         fMassFractionVector[el] = fraction;
                                                   >> 244         fNumberOfElements++;
                                                   >> 245   element->increaseCountUse();
386       }                                           246       }
387     }                                          << 247       fNumberOfComponents++;  
388   }                                            << 248   } else {
389   if (! isAdded) {                             << 249     G4cerr << "G4Material::AddElement ERROR for " << fName << " nElement= " 
390     fElm->push_back(elm);                      << 250      <<  fNumberOfElements << G4endl;
391     fAtoms->push_back(nAtoms);                 << 251     G4Exception
392     ++fNumberOfElements;                       << 252     ("ERROR!!! - Attempt to add more than the declared number of components.");
393   }                                            << 253   }    
394   ++fIdxComponent;                             << 254 
395                                                << 255   // filled.
396   // is filled - complete composition of atoms << 256   if (G4int(fNumberOfComponents) == maxNbComponents) {
397   if (fIdxComponent == fNbComponents) {        << 257 
398     theElementVector = new G4ElementVector();  << 258      size_t i=0;
399     theElementVector->reserve(fNumberOfElement << 259      G4double Zmol(0.), Amol(0.);
400     fAtomsVector = new G4int[fNumberOfElements << 260      // check sum of weights -- OK?
401     fMassFractionVector = new G4double[fNumber << 261      G4double wtSum(0.0);
402                                                << 262      for (i=0;i<fNumberOfElements;i++) {
403     G4double Amol = 0.;                        << 263        wtSum += fMassFractionVector[i];
404     for (G4int i = 0; i < fNumberOfElements; + << 264        Zmol +=  fMassFractionVector[i]*(*theElementVector)[i]->GetZ();
405       theElementVector->push_back((*fElm)[i]); << 265        Amol +=  fMassFractionVector[i]*(*theElementVector)[i]->GetA();
406       fAtomsVector[i] = (*fAtoms)[i];          << 266      }
407       G4double w = fAtomsVector[i] * (*fElm)[i << 267      if (std::abs(1.-wtSum) > perThousand) {
408       Amol += w;                               << 268        G4cerr << "WARNING !! for " << fName << " sum of fractional masses "
409       fMassFractionVector[i] = w;              << 269               <<  wtSum << " is not 1 - results may be wrong" 
410     }                                          << 270               << G4endl;
411     for (G4int i = 0; i < fNumberOfElements; + << 271      }
412       fMassFractionVector[i] /= Amol;          << 272      for (i=0;i<fNumberOfElements;i++) {
413     }                                          << 273        fAtomsVector[i] = 
414     delete fAtoms;                             << 274    G4int(fMassFractionVector[i]*Amol/(*theElementVector)[i]->GetA()+0.5);
415     delete fElm;                               << 275      }
416     fMassOfMolecule = Amol / CLHEP::Avogadro;  << 276      
417     ComputeDerivedQuantities();                << 277      ComputeDerivedQuantities();
418   }                                               278   }
419 }                                                 279 }
420                                                   280 
421 //....oooOO0OOooo........oooOO0OOooo........oo    281 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
422                                                   282 
423 void G4Material::AddElementByMassFraction(cons << 283 // AddMaterial -- composition by fraction of mass
424 {                                              << 
425   // perform checks consistency                << 
426   if (fraction < 0.0 || fraction > 1.0) {      << 
427     G4ExceptionDescription ed;                 << 
428     ed << "For material " << fName << " and ad << 
429        << " massFraction= " << fraction << " i << 
430     G4Exception("G4Material::AddElementByMassF << 
431   }                                            << 
432   if (! fMassFraction) {                       << 
433     G4ExceptionDescription ed;                 << 
434     ed << "For material " << fName << " and ad << 
435        << ", massFraction= " << fraction << ", << 
436        << " problem: cannot add by mass fracti << 
437        << "addition of elements by number of a << 
438     G4Exception("G4Material::AddElementByMassF << 
439   }                                            << 
440   if (fIdxComponent >= fNbComponents) {        << 
441     G4ExceptionDescription ed;                 << 
442     ed << "For material " << fName << " and ad << 
443        << ", massFraction= " << fraction << ", << 
444        << "; attempt to add more than the decl << 
445        << " >= " << fNbComponents;             << 
446     G4Exception("G4Material::AddElementByMassF << 
447   }                                            << 
448   if (0 == fIdxComponent) {                    << 
449     fElmFrac = new std::vector<G4double>;      << 
450     fElm = new std::vector<const G4Element*>;  << 
451   }                                            << 
452                                                << 
453   // filling                                   << 
454   G4bool isAdded = false;                      << 
455   if (! fElm->empty()) {                       << 
456     for (G4int i = 0; i < fNumberOfElements; + << 
457       if (elm == (*fElm)[i]) {                 << 
458         (*fElmFrac)[i] += fraction;            << 
459         isAdded = true;                        << 
460         break;                                 << 
461       }                                        << 
462     }                                          << 
463   }                                            << 
464   if (! isAdded) {                             << 
465     fElm->push_back(elm);                      << 
466     fElmFrac->push_back(fraction);             << 
467     ++fNumberOfElements;                       << 
468   }                                            << 
469   ++fIdxComponent;                             << 
470                                                << 
471   // is filled                                 << 
472   if (fIdxComponent == fNbComponents) {        << 
473     FillVectors();                             << 
474   }                                            << 
475 }                                              << 
476                                                << 
477 //....oooOO0OOooo........oooOO0OOooo........oo << 
478                                                   284 
479 // composition by fraction of mass             << 
480 void G4Material::AddMaterial(G4Material* mater    285 void G4Material::AddMaterial(G4Material* material, G4double fraction)
481 {                                                 286 {
482   if (fraction < 0.0 || fraction > 1.0) {      << 287   // initialization
483     G4ExceptionDescription ed;                 << 288   if (fNumberOfComponents == 0) {
484     ed << "For material " << fName << " and ad << 289     fMassFractionVector = new G4double[fArrayLength];
485        << ", massFraction= " << fraction << "  << 290     fAtomsVector        = new G4int   [fArrayLength];
486     G4Exception("G4Material::AddMaterial()", " << 291   }
487   }                                            << 292 
488   if (! fMassFraction) {                       << 293   size_t nelm = material->GetNumberOfElements();
489     G4ExceptionDescription ed;                 << 294 
490     ed << "For material " << fName << " and ad << 295   // arrays should be extended
491        << ", massFraction= " << fraction << ", << 296   if(nelm > 1) {
492        << " problem: cannot add by mass fracti << 297     G4int nold    = fArrayLength;
493        << "addition of elements by number of a << 298     fArrayLength += nelm - 1;
494     G4Exception("G4Material::AddMaterial()", " << 299     G4double* v1 = new G4double[fArrayLength];
495   }                                            << 300     G4int* i1    = new G4int[fArrayLength];
496   if (fIdxComponent >= fNbComponents) {        << 301     for(G4int i=0; i<nold; i++) {
497     G4ExceptionDescription ed;                 << 302       v1[i] = fMassFractionVector[i];
498     ed << "For material " << fName << " and ad << 303       i1[i] = fAtomsVector[i];
499        << ", massFraction= " << fraction       << 304     }
500        << "; attempt to add more than the decl << 305     delete [] fAtomsVector;
501        << " >= " << fNbComponents;             << 306     delete [] fMassFractionVector;
502     G4Exception("G4Material::AddMaterial()", " << 307     fMassFractionVector = v1;
503   }                                            << 308     fAtomsVector = i1;
504   if (0 == fIdxComponent) {                    << 309   }
505     fElmFrac = new std::vector<G4double>;      << 310 
506     fElm = new std::vector<const G4Element*>;  << 311   // filling ...
507   }                                            << 312   if (G4int(fNumberOfComponents) < maxNbComponents) {
508                                                << 313      for (size_t elm=0; elm<nelm; elm++)
509   // filling                                   << 314        {
510   auto nelm = (G4int)material->GetNumberOfElem << 315         G4Element* element = (*(material->GetElementVector()))[elm];
511   for (G4int j = 0; j < nelm; ++j) {           << 316         size_t el = 0;
512     auto elm = material->GetElement(j);        << 317         while ((el<fNumberOfElements)&&(element!=(*theElementVector)[el])) el++;
513     auto frac = material->GetFractionVector(); << 318         if (el < fNumberOfElements) fMassFractionVector[el] += fraction
514     G4bool isAdded = false;                    << 319                                           *(material->GetFractionVector())[elm];
515     if (! fElm->empty()) {                     << 320         else {
516       for (G4int i = 0; i < fNumberOfElements; << 321     theElementVector->push_back(element); 
517         if (elm == (*fElm)[i]) {               << 322           fMassFractionVector[el] = fraction
518           (*fElmFrac)[i] += fraction * frac[j] << 323                                     *(material->GetFractionVector())[elm];
519           isAdded = true;                      << 324           fNumberOfElements++;
520           break;                               << 325     element->increaseCountUse();
521         }                                         326         }
522       }                                        << 327        } 
523     }                                          << 328       fNumberOfComponents++;  
524     if (! isAdded) {                           << 329   } else {
525       fElm->push_back(elm);                    << 330     G4cerr << "G4Material::AddElement ERROR for " << fName << " nElement= " 
526       fElmFrac->push_back(fraction * frac[j]); << 331      <<  fNumberOfElements << G4endl;
527       ++fNumberOfElements;                     << 332     G4Exception
528     }                                          << 333       ("ERROR!!! - Attempt to add more than the declared number of components.");
529   }                                            << 334   }    
530                                                << 335 
531   fMatComponents[material] = fraction;         << 336   // filled.
532   ++fIdxComponent;                             << 337   if (G4int(fNumberOfComponents) == maxNbComponents) {
533                                                << 338      size_t i=0;
534   // is filled                                 << 339      G4double Zmol(0.), Amol(0.);
535   if (fIdxComponent == fNbComponents) {        << 340      // check sum of weights -- OK?
536     FillVectors();                             << 341      G4double wtSum(0.0);
                                                   >> 342      for (i=0;i<fNumberOfElements;i++) {
                                                   >> 343        wtSum += fMassFractionVector[i];
                                                   >> 344        Zmol +=  fMassFractionVector[i]*(*theElementVector)[i]->GetZ();
                                                   >> 345        Amol +=  fMassFractionVector[i]*(*theElementVector)[i]->GetA();
                                                   >> 346      }
                                                   >> 347      if (std::abs(1.-wtSum) > perThousand) {
                                                   >> 348        G4cerr << "WARNING !! for " << fName << " sum of fractional masses "
                                                   >> 349               <<  wtSum << " is not 1 - results may be wrong" 
                                                   >> 350               << G4endl;
                                                   >> 351      }
                                                   >> 352      for (i=0;i<fNumberOfElements;i++) {
                                                   >> 353        fAtomsVector[i] = 
                                                   >> 354    G4int(fMassFractionVector[i]*Amol/(*theElementVector)[i]->GetA()+0.5);
                                                   >> 355      }
                                                   >> 356      
                                                   >> 357      ComputeDerivedQuantities();
537   }                                               358   }
538 }                                                 359 }
539                                                   360 
540 //....oooOO0OOooo........oooOO0OOooo........oo    361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
541                                                   362 
542 void G4Material::FillVectors()                 << 363 void G4Material::ComputeDerivedQuantities()
543 {                                                 364 {
544   // there are material components             << 365   // Header routine to compute various properties of material.
545   theElementVector = new G4ElementVector();    << 366   // 
546   theElementVector->reserve(fNumberOfElements) << 
547   fAtomsVector = new G4int[fNumberOfElements]; << 
548   fMassFractionVector = new G4double[fNumberOf << 
549                                                << 
550   G4double wtSum(0.0);                         << 
551   for (G4int i = 0; i < fNumberOfElements; ++i << 
552     theElementVector->push_back((*fElm)[i]);   << 
553     fMassFractionVector[i] = (*fElmFrac)[i];   << 
554     wtSum += fMassFractionVector[i];           << 
555   }                                            << 
556   delete fElmFrac;                             << 
557   delete fElm;                                 << 
558                                                   367 
559   // check sum of weights -- OK?               << 368   // Number of atoms per volume (per element), total nb of electrons per volume
560   if (std::abs(1. - wtSum) > perThousand) {    << 369   G4double Zi, Ai;
561     G4ExceptionDescription ed;                 << 370   TotNbOfAtomsPerVolume = 0.;
562     ed << "For material " << fName << " sum of << 371   if (VecNbOfAtomsPerVolume) delete [] VecNbOfAtomsPerVolume;
563        << " is not 1 - results may be wrong";  << 372   VecNbOfAtomsPerVolume = new G4double[fNumberOfElements];
564     G4Exception("G4Material::FillVectors()", " << 373   TotNbOfElectPerVolume = 0.;
565   }                                            << 374   for (size_t i=0;i<fNumberOfElements;i++) {
566   G4double coeff = (wtSum > 0.0) ? 1. / wtSum  << 375      Zi = (*theElementVector)[i]->GetZ();
567   G4double Amol(0.);                           << 376      Ai = (*theElementVector)[i]->GetA();
568   for (G4int i = 0; i < fNumberOfElements; ++i << 377      VecNbOfAtomsPerVolume[i] = Avogadro*fDensity*fMassFractionVector[i]/Ai;
569     fMassFractionVector[i] *= coeff;           << 378      TotNbOfAtomsPerVolume += VecNbOfAtomsPerVolume[i];
570     Amol += fMassFractionVector[i] * (*theElem << 379      TotNbOfElectPerVolume += VecNbOfAtomsPerVolume[i]*Zi;
571   }                                            << 
572   for (G4int i = 0; i < fNumberOfElements; ++i << 
573     fAtomsVector[i] = G4lrint(fMassFractionVec << 
574   }                                               380   }
575   ComputeDerivedQuantities();                  << 381         
                                                   >> 382   ComputeRadiationLength();
                                                   >> 383   ComputeNuclearInterLength();
                                                   >> 384 
                                                   >> 385   if (fIonisation) delete fIonisation;
                                                   >> 386   fIonisation  = new G4IonisParamMat(this);
                                                   >> 387   if (fSandiaTable) delete fSandiaTable;
                                                   >> 388   fSandiaTable = new G4SandiaTable(this);
576 }                                                 389 }
577                                                   390 
578 //....oooOO0OOooo........oooOO0OOooo........oo    391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
579                                                   392 
580 void G4Material::ComputeRadiationLength()         393 void G4Material::ComputeRadiationLength()
581 {                                                 394 {
582   G4double radinv = 0.0;                       << 395   G4double radinv = 0.0 ;
583   for (G4int i = 0; i < fNumberOfElements; ++i << 396   for (size_t i=0;i<fNumberOfElements;i++) {
584     radinv += fVecNbOfAtomsPerVolume[i] * ((*t << 397      radinv += VecNbOfAtomsPerVolume[i]*((*theElementVector)[i]->GetfRadTsai());
585   }                                            << 398    }
586   fRadlen = (radinv <= 0.0 ? DBL_MAX : 1. / ra << 399   fRadlen = (radinv <= 0.0 ? DBL_MAX : 1./radinv);
587 }                                                 400 }
588                                                   401 
589 //....oooOO0OOooo........oooOO0OOooo........oo    402 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
590                                                   403 
591 void G4Material::ComputeNuclearInterLength()      404 void G4Material::ComputeNuclearInterLength()
592 {                                                 405 {
593   const G4double lambda1 = CLHEP::amu*CLHEP::c << 406   const G4double lambda0 = 35*g/cm2;
594   G4double NILinv = 0.0;                          407   G4double NILinv = 0.0;
595   for (G4int i = 0; i < fNumberOfElements; ++i << 408   for (size_t i=0;i<fNumberOfElements;i++) {
596     G4int Z = (*theElementVector)[i]->GetZasIn << 409      NILinv +=
597     G4double A = (*theElementVector)[i]->GetN( << 410      VecNbOfAtomsPerVolume[i]*std::pow(((*theElementVector)[i]->GetN()),0.6666667); 
598     if (1 == Z) {                              << 411    }
599       NILinv += fVecNbOfAtomsPerVolume[i] * A; << 412   NILinv *= amu/lambda0; 
600     }                                          << 413   fNuclInterLen = (NILinv <= 0.0 ? DBL_MAX : 1./NILinv);
601     else {                                     << 
602       NILinv += fVecNbOfAtomsPerVolume[i] * G4 << 
603     }                                          << 
604   }                                            << 
605   NILinv *= lambda1;                           << 
606   fNuclInterLen = 1.e+20*CLHEP::m;             << 
607   if (fNuclInterLen * NILinv > 1.0) {          << 
608     fNuclInterLen = 1.0 / NILinv;              << 
609   }                                            << 
610 }                                                 414 }
611                                                   415 
612 //....oooOO0OOooo........oooOO0OOooo........oo    416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
613                                                   417 
614 void G4Material::SetChemicalFormula(const G4St << 418 void G4Material::InitializePointers()
615 {                                                 419 {
616   if (! IsLocked()) {                          << 420   theElementVector         = 0;
617     fChemicalFormula = chF;                    << 421   fMassFractionVector      = 0;
618   }                                            << 422   fAtomsVector             = 0;
619 }                                              << 423   fMaterialPropertiesTable = 0;
620                                                << 424     
621 //....oooOO0OOooo........oooOO0OOooo........oo << 425   VecNbOfAtomsPerVolume    = 0;
                                                   >> 426   fIonisation              = 0;
                                                   >> 427   fSandiaTable             = 0;
622                                                   428 
623 void G4Material::SetFreeElectronDensity(G4doub << 429   // Store in the static Table of Materials
624 {                                              << 430   theMaterialTable.push_back(this);
625   if (val >= 0. && ! IsLocked()) {             << 431   fIndexInTable = theMaterialTable.size() - 1;
626     fFreeElecDensity = val;                    << 
627   }                                            << 
628 }                                                 432 }
629                                                   433 
630 //....oooOO0OOooo........oooOO0OOooo........oo    434 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
631                                                   435 
632 void G4Material::ComputeDensityEffectOnFly(G4b << 436 const G4MaterialTable* G4Material::GetMaterialTable()
633 {                                                 437 {
634   if (! IsLocked()) {                          << 438   return &theMaterialTable;
635     if (nullptr == fIonisation) {              << 
636       fIonisation = new G4IonisParamMat(this); << 
637     }                                          << 
638     fIonisation->ComputeDensityEffectOnFly(val << 
639   }                                            << 
640 }                                                 439 }
641                                                   440 
642 //....oooOO0OOooo........oooOO0OOooo........oo    441 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
643                                                   442 
644 G4MaterialTable* G4Material::GetMaterialTable( << 443 size_t G4Material::GetNumberOfMaterials()
645 {                                                 444 {
646   struct Holder {                              << 445   return theMaterialTable.size();
647     G4MaterialTable instance;                  << 
648     ~Holder() {                                << 
649       for(auto item : instance)                << 
650         delete item;                           << 
651     }                                          << 
652   };                                           << 
653   static Holder _holder;                       << 
654   return &_holder.instance;                    << 
655 }                                                 446 }
656                                                   447 
657 //....oooOO0OOooo........oooOO0OOooo........oo    448 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
658                                                   449 
659 std::size_t G4Material::GetNumberOfMaterials() << 450 G4Material* G4Material::GetMaterial(G4String materialName, G4bool warning)
                                                   >> 451 {  
                                                   >> 452   // search the material by its name 
                                                   >> 453   for (size_t J=0 ; J<theMaterialTable.size() ; J++)
                                                   >> 454    {
                                                   >> 455     if (theMaterialTable[J]->GetName() == materialName)
                                                   >> 456        return theMaterialTable[J];
                                                   >> 457    }
                                                   >> 458    
                                                   >> 459   // the material does not exist in the table
                                                   >> 460   if (warning) {
                                                   >> 461   G4cout << "\n---> warning from G4Material::GetMaterial(). The material: "
                                                   >> 462          << materialName << " does not exist in the table. Return NULL pointer."
                                                   >> 463    << G4endl;
                                                   >> 464   }  
                                                   >> 465   return 0;          
                                                   >> 466 }
660                                                   467 
661 //....oooOO0OOooo........oooOO0OOooo........oo    468 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
662                                                   469 
663 G4Material* G4Material::GetMaterial(const G4St << 470 G4Material::G4Material(const G4Material& right)
664 {                                                 471 {
665   // search the material by its name           << 472   InitializePointers();
666   for (auto const & j : *GetMaterialTable()) { << 473   *this = right;
667     if (j->GetName() == materialName) {        << 
668       return j;                                << 
669     }                                          << 
670   }                                            << 
671                                                << 
672   // the material does not exist in the table  << 
673   if (warn) {                                  << 
674     G4cout << "G4Material::GetMaterial() WARNI << 
675            << " does not exist in the table. R << 
676   }                                            << 
677   return nullptr;                              << 
678 }                                                 474 }
679                                                   475 
680 //....oooOO0OOooo........oooOO0OOooo........oo    476 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
681                                                   477 
682 G4Material* G4Material::GetMaterial(G4double z << 478 G4Material::~G4Material()
683 {                                                 479 {
684   // search the material by its name           << 480   //  G4cout << "### Destruction of material " << fName << " started" <<G4endl;
685   for (auto const & mat : *GetMaterialTable()) << 481   if (theElementVector)       delete    theElementVector;
686     if (1 == mat->GetNumberOfElements() && z = << 482   if (fMassFractionVector)    delete [] fMassFractionVector;
687         dens == mat->GetDensity())             << 483   if (fAtomsVector)           delete [] fAtomsVector;
688     {                                          << 484   if (VecNbOfAtomsPerVolume)  delete [] VecNbOfAtomsPerVolume;
689       return mat;                              << 485   if (fIonisation)            delete    fIonisation;
690     }                                          << 486   if (fSandiaTable)           delete    fSandiaTable;
691   }                                            << 487   
692   return nullptr;                              << 488   // Remove this material from theMaterialTable.
                                                   >> 489   //
                                                   >> 490   theMaterialTable[fIndexInTable] = 0;
693 }                                                 491 }
694                                                   492 
695 //....oooOO0OOooo........oooOO0OOooo........oo    493 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
696                                                   494 
697 G4Material* G4Material::GetMaterial(std::size_ << 495 const G4Material& G4Material::operator=(const G4Material& right)
698 {                                                 496 {
699   // search the material by its name           << 497   if (this != &right)
700   for (auto const & mat : *GetMaterialTable()) << 498     {
701     if (nComp == mat->GetNumberOfElements() && << 499       fName                    = right.fName;
702       return mat;                              << 500       fChemicalFormula         = right.fChemicalFormula;
703     }                                          << 501       fDensity                 = right.fDensity;
704   }                                            << 502       fState                   = right.fState;
705   return nullptr;                              << 503       fTemp                    = right.fTemp;
                                                   >> 504       fPressure                = right.fPressure;
                                                   >> 505            
                                                   >> 506       if (fImplicitElement)    delete    ((*theElementVector)[0]);      
                                                   >> 507       if (theElementVector)    delete    theElementVector;
                                                   >> 508       if (fMassFractionVector) delete [] fMassFractionVector;
                                                   >> 509       if (fAtomsVector)        delete [] fAtomsVector;
                                                   >> 510       
                                                   >> 511       maxNbComponents          = right.maxNbComponents;
                                                   >> 512       fNumberOfComponents      = right.fNumberOfComponents;
                                                   >> 513       fNumberOfElements        = right.fNumberOfElements;     
                                                   >> 514       fImplicitElement         = right.fImplicitElement;
                                                   >> 515       
                                                   >> 516       if (fImplicitElement) {
                                                   >> 517         G4double z = (*right.theElementVector)[0]->GetZ();
                                                   >> 518   G4double a = (*right.theElementVector)[0]->GetA();
                                                   >> 519         theElementVector          = new G4ElementVector(1,(G4Element*)0);
                                                   >> 520   (*theElementVector)[0]    = new G4Element(fName," ",z,a);
                                                   >> 521   fMassFractionVector       = new G4double[1];
                                                   >> 522   fMassFractionVector[0]    = 1.;
                                                   >> 523       } else {    
                                                   >> 524         theElementVector       = new G4ElementVector(fNumberOfElements,0);
                                                   >> 525         fMassFractionVector    = new G4double[fNumberOfElements];     
                                                   >> 526         for (size_t i=0; i<fNumberOfElements; i++) {
                                                   >> 527            (*theElementVector)[i]= (*right.theElementVector)[i];
                                                   >> 528            fMassFractionVector[i]= right.fMassFractionVector[i];
                                                   >> 529         }
                                                   >> 530       }
                                                   >> 531       
                                                   >> 532       if (right.fAtomsVector) { 
                                                   >> 533         fAtomsVector       = new G4int[fNumberOfElements];
                                                   >> 534         for (size_t i=0; i<fNumberOfElements; i++)              
                                                   >> 535            fAtomsVector[i] = right.fAtomsVector[i];
                                                   >> 536       }
                                                   >> 537            
                                                   >> 538       fMaterialPropertiesTable = right.fMaterialPropertiesTable;
                                                   >> 539       
                                                   >> 540       ComputeDerivedQuantities();      
                                                   >> 541     } 
                                                   >> 542   return *this;
706 }                                                 543 }
707                                                   544 
708 //....oooOO0OOooo........oooOO0OOooo........oo    545 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
709                                                   546 
710 G4double G4Material::GetZ() const              << 547 G4int G4Material::operator==(const G4Material& right) const
711 {                                                 548 {
712   if (fNumberOfElements > 1) {                 << 549   return (this == (G4Material *) &right);
713     G4ExceptionDescription ed;                 << 
714     ed << "For material " << fName << " ERROR  << 
715        << " > 1, which is not allowed";        << 
716     G4Exception("G4Material::GetZ()", "mat036" << 
717   }                                            << 
718   return (*theElementVector)[0]->GetZ();       << 
719 }                                                 550 }
720                                                   551 
721 //....oooOO0OOooo........oooOO0OOooo........oo    552 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
722                                                   553 
723 G4double G4Material::GetA() const              << 554 G4int G4Material::operator!=(const G4Material& right) const
724 {                                                 555 {
725   if (fNumberOfElements > 1) {                 << 556   return (this != (G4Material *) &right);
726     G4ExceptionDescription ed;                 << 
727     ed << "For material " << fName << " ERROR  << 
728        << " > 1, which is not allowed";        << 
729     G4Exception("G4Material::GetA()", "mat036" << 
730   }                                            << 
731   return (*theElementVector)[0]->GetA();       << 
732 }                                                 557 }
733                                                   558 
734 //....oooOO0OOooo........oooOO0OOooo........oo    559 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
735                                                   560 
736 std::ostream& operator<<(std::ostream& flux, c << 561 
                                                   >> 562 std::ostream& operator<<(std::ostream& flux, G4Material* material)
737 {                                                 563 {
738   std::ios::fmtflags mode = flux.flags();         564   std::ios::fmtflags mode = flux.flags();
739   flux.setf(std::ios::fixed, std::ios::floatfi << 565   flux.setf(std::ios::fixed,std::ios::floatfield);
740   G4long prec = flux.precision(3);                566   G4long prec = flux.precision(3);
741                                                << 567   
742   flux << " Material: " << std::setw(8) << mat << 568   flux
743        << " "                                  << 569     << " Material: "         << std::setw(8) <<  material->fName
744        << "  density: " << std::setw(6) << std << 570     << " " << material->fChemicalFormula << " "
745        << G4BestUnit(material->fDensity, "Volu << 571     << "  density: "         << std::setw(6) << std::setprecision(3)  
746        << std::setprecision(3) << G4BestUnit(m << 572     << G4BestUnit(material->fDensity,"Volumic Mass") 
747        << "  Nucl.Int.Length: " << std::setw(7 << 573     << "  RadL: "            << std::setw(7)  << std::setprecision(3)  
748        << G4BestUnit(material->fNuclInterLen,  << 574     << G4BestUnit(material->fRadlen,"Length")
749        << std::setw(30) << "  Imean: " << std: << 575     << "  Nucl.Int.Length: " << std::setw(7)  << std::setprecision(3)  
750        << G4BestUnit(material->GetIonisation() << 576     << G4BestUnit(material->fNuclInterLen,"Length")    
751        << "  temperature: " << std::setw(6) << << 577     << "  Imean: "           << std::setw(7)  << std::setprecision(3)  
752        << (material->fTemp) / CLHEP::kelvin << << 578     << G4BestUnit(material->GetIonisation()->GetMeanExcitationEnergy(),"Energy");
753        << "  pressure: " << std::setw(6) << st << 579     
754        << (material->fPressure) / CLHEP::atmos << 580   if(material->fState == kStateGas)
755        << "\n";                                << 581     flux
756                                                << 582       << "  temperature: " << std::setw(6) << std::setprecision(2)  
757   for (G4int i = 0; i < material->fNumberOfEle << 583       << (material->fTemp)/kelvin << " K"
758     flux << "\n   ---> " << (*(material->theEl << 584       << "  pressure: "    << std::setw(6) << std::setprecision(2)   
759          << "\n          ElmMassFraction: " << << 585       << (material->fPressure)/atmosphere << " atm";
760          << (material->fMassFractionVector[i]) << 586 
761          << "  ElmAbundance " << std::setw(6)  << 587   for (size_t i=0; i<material->fNumberOfElements; i++)
762          << 100 * (material->fVecNbOfAtomsPerV << 588     flux 
763          << " % \n";                           << 589       << "\n   ---> " << (*(material->theElementVector))[i] 
764   }                                            << 590       << "  ElmMassFraction: " << std::setw(6)<< std::setprecision(2) 
765   flux.precision(prec);                        << 591       << (material->fMassFractionVector[i])/perCent << " %" 
766   flux.setf(mode, std::ios::floatfield);       << 592       << "  ElmAbundance "     << std::setw(6)<< std::setprecision(2) 
767                                                << 593       << 100*(material->VecNbOfAtomsPerVolume[i])/(material->TotNbOfAtomsPerVolume)
768   if (material->IsExtended()) {                << 594       << " %";
769     static_cast<const G4ExtendedMaterial*>(mat << 595 
770   }                                            << 596   flux.precision(prec);    
771                                                << 597   flux.setf(mode,std::ios::floatfield);
                                                   >> 598             
772   return flux;                                    599   return flux;
773 }                                                 600 }
774                                                   601 
775 //....oooOO0OOooo........oooOO0OOooo........oo    602 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
776                                                   603 
777 std::ostream& operator<<(std::ostream& flux, c << 604  std::ostream& operator<<(std::ostream& flux, G4Material& material)
778 {                                                 605 {
779   flux << &material;                           << 606   flux << &material;        
780   return flux;                                    607   return flux;
781 }                                                 608 }
782                                                   609 
783 //....oooOO0OOooo........oooOO0OOooo........oo    610 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
784                                                << 611      
785 std::ostream& operator<<(std::ostream& flux, c << 612 std::ostream& operator<<(std::ostream& flux, G4MaterialTable MaterialTable)
786 {                                                 613 {
787   // Dump info for all known materials         << 614  //Dump info for all known materials
788   flux << "\n***** Table : Nb of materials = " << 615    flux << "\n***** Table : Nb of materials = " << MaterialTable.size() 
789                                                << 616         << " *****\n" << G4endl;
790   for (auto i : MaterialTable) {               << 617         
791     flux << i << G4endl << G4endl;             << 618    for (size_t i=0; i<MaterialTable.size(); i++) flux << MaterialTable[i] 
792   }                                            << 619                                                        << G4endl << G4endl;
793                                                << 
794   return flux;                                 << 
795 }                                              << 
796                                                   620 
797 //....oooOO0OOooo........oooOO0OOooo........oo << 621    return flux;
798                                                << 622 }      
799 G4bool G4Material::IsExtended() const { return << 
800                                                   623 
801 //....oooOO0OOooo........oooOO0OOooo........oo    624 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
802                                                << 
803 void G4Material::SetMaterialPropertiesTable(G4 << 
804 {                                              << 
805   if (fMaterialPropertiesTable != anMPT && ! I << 
806     delete fMaterialPropertiesTable;           << 
807     fMaterialPropertiesTable = anMPT;          << 
808   }                                            << 
809 }                                              << 
810                                                << 
811 //....oooOO0OOooo........oooOO0OOooo........oo << 
812                                                << 
813 G4bool G4Material::IsLocked()                  << 
814 {                                              << 
815   auto state = G4StateManager::GetStateManager << 
816   return state != G4State_PreInit && state !=  << 
817 }                                              << 
818                                                   625