Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 << 25 // >> 26 // $Id: G4Material.cc 106243 2017-09-26 01:56:43Z gcosmo $ >> 27 // >> 28 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 29 // 26 // 26-06-96, Code uses operators (+=, *=, ++, 30 // 26-06-96, Code uses operators (+=, *=, ++, -> etc.) correctly, P. Urban 27 // 10-07-96, new data members added by L.Urban 31 // 10-07-96, new data members added by L.Urban 28 // 12-12-96, new data memberfFreeElecDensitys << 32 // 12-12-96, new data members added by L.Urban 29 // 20-01-97, aesthetic rearrangement. RadLengt 33 // 20-01-97, aesthetic rearrangement. RadLength calculation modified. 30 // Data members Zeff and Aeff REMOVE 34 // Data members Zeff and Aeff REMOVED (i.e. passed to the Elements). 31 // (local definition of Zeff in Dens 35 // (local definition of Zeff in DensityEffect and FluctModel...) 32 // Vacuum defined as a G4State. Mixt << 36 // Vacuum defined as a G4State. Mixture flag removed, M.Maire. 33 // 29-01-97, State=Vacuum automatically set de 37 // 29-01-97, State=Vacuum automatically set density=0 in the contructors. 34 // Subsequent protections have been << 38 // Subsequent protections have been put in the calculation of 35 // MeanExcEnergy, ShellCorrectionVec 39 // MeanExcEnergy, ShellCorrectionVector, DensityEffect, M.Maire. 36 // 11-02-97, ComputeDensityEffect() rearranged 40 // 11-02-97, ComputeDensityEffect() rearranged, M.Maire. 37 // 20-03-97, corrected initialization of point 41 // 20-03-97, corrected initialization of pointers, M.Maire. 38 // 28-05-98, the kState=kVacuum has been remov 42 // 28-05-98, the kState=kVacuum has been removed. 39 // automatic check for a minimal den << 43 // automatic check for a minimal density, M.Maire 40 // 12-06-98, new method AddMaterial() allowing << 44 // 12-06-98, new method AddMaterial() allowing mixture of materials, M.Maire 41 // 09-07-98, ionisation parameters removed fro 45 // 09-07-98, ionisation parameters removed from the class, M.Maire 42 // 05-10-98, change names: NumDensity -> NbOfA 46 // 05-10-98, change names: NumDensity -> NbOfAtomsPerVolume 43 // 18-11-98, new interface to SandiaTable 47 // 18-11-98, new interface to SandiaTable 44 // 19-01-99 enlarge tolerance on test of cohe 48 // 19-01-99 enlarge tolerance on test of coherence of gas conditions 45 // 19-07-99, Constructors with chemicalFormula 49 // 19-07-99, Constructors with chemicalFormula added by V.Ivanchenko 46 // 16-01-01, Nuclear interaction length, M.Mai 50 // 16-01-01, Nuclear interaction length, M.Maire 47 // 12-03-01, G4bool fImplicitElement; 51 // 12-03-01, G4bool fImplicitElement; 48 // copy constructor and assignement 52 // copy constructor and assignement operator revised (mma) 49 // 03-05-01, flux.precision(prec) at begin/end 53 // 03-05-01, flux.precision(prec) at begin/end of operator<< 50 // 17-07-01, migration to STL. M. Verderi. 54 // 17-07-01, migration to STL. M. Verderi. 51 // 14-09-01, Suppression of the data member fI 55 // 14-09-01, Suppression of the data member fIndexInTable 52 // 26-02-02, fIndexInTable renewed 56 // 26-02-02, fIndexInTable renewed 53 // 16-04-02, G4Exception put in constructor wi 57 // 16-04-02, G4Exception put in constructor with chemical formula 54 // 06-05-02, remove the check of the ideal gas 58 // 06-05-02, remove the check of the ideal gas state equation 55 // 06-08-02, remove constructors with chemical 59 // 06-08-02, remove constructors with chemical formula (mma) 56 // 22-01-04, proper STL handling of theElement 60 // 22-01-04, proper STL handling of theElementVector (Hisaya) 57 // 30-03-05, warning in GetMaterial(materialNa << 61 // 30-03-05, warning in GetMaterial(materialName) 58 // 09-03-06, minor change of printout (V.Ivanc << 62 // 09-03-06, minor change of printout (V.Ivanchenko) 59 // 10-01-07, compute fAtomVector in the case o << 63 // 10-01-07, compute fAtomVector in the case of mass fraction (V.Ivanchenko) 60 // 27-07-07, improve destructor (V.Ivanchenko) << 64 // 27-07-07, improve destructor (V.Ivanchenko) 61 // 18-10-07, moved definition of mat index to << 65 // 18-10-07, move definition of material index to InitialisePointers (V.Ivanchenko) 62 // 13-08-08, do not use fixed size arrays (V.I 66 // 13-08-08, do not use fixed size arrays (V.Ivanchenko) 63 // 26-10-11, new scheme for G4Exception (mma) 67 // 26-10-11, new scheme for G4Exception (mma) 64 // 13-04-12, map<G4Material*,G4double> fMatCom 68 // 13-04-12, map<G4Material*,G4double> fMatComponents, filled in AddMaterial() 65 // 21-04-12, fMassOfMolecule, computed for Ato 69 // 21-04-12, fMassOfMolecule, computed for AtomsCount (mma) >> 70 // >> 71 // >> 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 73 67 #include "G4Material.hh" << 74 #include <iomanip> 68 75 69 #include "G4ApplicationState.hh" << 76 #include "G4Material.hh" 70 #include "G4AtomicShells.hh" << 71 #include "G4ExtendedMaterial.hh" << 72 #include "G4Pow.hh" << 73 #include "G4NistManager.hh" 77 #include "G4NistManager.hh" >> 78 #include "G4UnitsTable.hh" 74 #include "G4PhysicalConstants.hh" 79 #include "G4PhysicalConstants.hh" 75 #include "G4StateManager.hh" << 76 #include "G4SystemOfUnits.hh" 80 #include "G4SystemOfUnits.hh" 77 #include "G4UnitsTable.hh" << 81 #include "G4Exp.hh" >> 82 #include "G4Log.hh" 78 83 79 #include <iomanip> << 84 G4MaterialTable G4Material::theMaterialTable; >> 85 >> 86 #ifdef G4MULTITHREADED >> 87 G4Mutex G4Material::materialMutex = G4MUTEX_INITIALIZER; >> 88 #endif 80 89 81 //....oooOO0OOooo........oooOO0OOooo........oo 90 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 82 91 83 // Constructor to create a material from scrat 92 // Constructor to create a material from scratch 84 93 85 G4Material::G4Material(const G4String& name, G << 94 G4Material::G4Material(const G4String& name, G4double z, 86 G4State state, G4double temp, G4double press << 95 G4double a, G4double density, 87 : fName(name) << 96 G4State state, G4double temp, G4double pressure) >> 97 : fName(name) 88 { 98 { 89 InitializePointers(); 99 InitializePointers(); 90 << 100 91 if (density < universe_mean_density) { << 101 if (density < universe_mean_density) 92 G4cout << " G4Material WARNING:" << 102 { 93 << " define a material with density << 103 G4cout << " G4Material WARNING:" 94 << " The material " << name << " wi << 104 << " define a material with density=0 is not allowed. \n" 95 << " default minimal density: " << << 105 << " The material " << name << " will be constructed with the" 96 << G4endl; << 106 << " default minimal density: " << universe_mean_density/(g/cm3) 97 density = universe_mean_density; << 107 << "g/cm3" << G4endl; 98 } << 108 density = universe_mean_density; 99 << 109 } 100 fDensity = density; << 110 101 fState = state; << 111 fDensity = density; 102 fTemp = temp; << 112 fState = state; >> 113 fTemp = temp; 103 fPressure = pressure; 114 fPressure = pressure; 104 115 105 // Initialize theElementVector allocating on 116 // Initialize theElementVector allocating one 106 // element corresponding to this material 117 // element corresponding to this material 107 fNbComponents = fNumberOfElements = 1; << 118 maxNbComponents = fNumberOfComponents = fNumberOfElements = 1; 108 theElementVector = new G4ElementVector(); << 119 fArrayLength = maxNbComponents; 109 << 120 theElementVector = new G4ElementVector(); 110 // take element from DB << 121 111 G4NistManager* nist = G4NistManager::Instanc << 122 const std::vector<G4String> elmnames = >> 123 G4NistManager::Instance()->GetNistElementNames(); >> 124 G4String enam, snam; 112 G4int iz = G4lrint(z); 125 G4int iz = G4lrint(z); 113 auto elm = nist->FindOrBuildElement(iz); << 126 if(iz < (G4int)elmnames.size()) { 114 if (elm == nullptr) { << 127 snam = elmnames[iz]; 115 elm = new G4Element("ELM_" + name, name, z << 128 enam = snam; 116 } << 129 } else { 117 theElementVector->push_back(elm); << 130 enam = "ELM_" + name; 118 << 131 snam = name; 119 fMassFractionVector = new G4double[1]; << 132 } 120 fMassFractionVector[0] = 1.; << 133 theElementVector->push_back(new G4Element(enam, snam, z, a)); 121 fMassOfMolecule = a / CLHEP::Avogadro; << 134 122 << 135 fMassFractionVector = new G4double[1]; 123 if (fState == kStateUndefined) { << 136 fMassFractionVector[0] = 1. ; 124 if (fDensity > kGasThreshold) { << 137 fMassOfMolecule = a/CLHEP::Avogadro; 125 fState = kStateSolid; << 138 126 } << 139 if (fState == kStateUndefined) 127 else { << 140 { 128 fState = kStateGas; << 141 if (fDensity > kGasThreshold) { fState = kStateSolid; } >> 142 else { fState = kStateGas; } 129 } 143 } 130 } << 131 144 132 ComputeDerivedQuantities(); 145 ComputeDerivedQuantities(); 133 } 146 } 134 147 135 //....oooOO0OOooo........oooOO0OOooo........oo 148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 136 149 137 // Constructor to create a material from a Lis 150 // Constructor to create a material from a List of constituents 138 // (elements and/or materials) added with Add 151 // (elements and/or materials) added with AddElement or AddMaterial 139 152 140 G4Material::G4Material(const G4String& name, G << 153 G4Material::G4Material(const G4String& name, G4double density, 141 G4double temp, G4double pressure) << 154 G4int nComponents, 142 : fName(name) << 155 G4State state, G4double temp, G4double pressure) >> 156 : fName(name) 143 { 157 { 144 InitializePointers(); 158 InitializePointers(); 145 << 159 146 if (density < universe_mean_density) { << 160 if (density < universe_mean_density) 147 G4cout << "--- Warning from G4Material::G4 << 161 { 148 << " define a material with density << 162 G4cout << "--- Warning from G4Material::G4Material()" 149 << " The material " << name << " wi << 163 << " define a material with density=0 is not allowed. \n" 150 << " default minimal density: " << << 164 << " The material " << name << " will be constructed with the" 151 << G4endl; << 165 << " default minimal density: " << universe_mean_density/(g/cm3) 152 density = universe_mean_density; << 166 << "g/cm3" << G4endl; 153 } << 167 density = universe_mean_density; 154 << 168 } 155 fDensity = density; << 169 156 fState = state; << 170 fDensity = density; 157 fTemp = temp; << 171 fState = state; >> 172 fTemp = temp; 158 fPressure = pressure; 173 fPressure = pressure; 159 << 174 160 fNbComponents = nComponents; << 175 maxNbComponents = nComponents; 161 fMassFraction = true; << 176 fArrayLength = maxNbComponents; 162 << 177 fNumberOfComponents = fNumberOfElements = 0; 163 if (fState == kStateUndefined) { << 178 theElementVector = new G4ElementVector(); 164 if (fDensity > kGasThreshold) { << 179 theElementVector->reserve(maxNbComponents); 165 fState = kStateSolid; << 180 166 } << 181 if (fState == kStateUndefined) 167 else { << 182 { 168 fState = kStateGas; << 183 if (fDensity > kGasThreshold) { fState = kStateSolid; } >> 184 else { fState = kStateGas; } 169 } 185 } 170 } << 171 } 186 } 172 187 173 //....oooOO0OOooo........oooOO0OOooo........oo 188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 174 189 175 // Constructor to create a material from base 190 // Constructor to create a material from base material 176 191 177 G4Material::G4Material(const G4String& name, G << 192 G4Material::G4Material(const G4String& name, G4double density, 178 G4State state, G4double temp, G4double press << 193 const G4Material* bmat, 179 : fName(name) << 194 G4State state, G4double temp, G4double pressure) >> 195 : fName(name) 180 { 196 { 181 InitializePointers(); 197 InitializePointers(); >> 198 >> 199 if (density < universe_mean_density) >> 200 { >> 201 G4cout << "--- Warning from G4Material::G4Material()" >> 202 << " define a material with density=0 is not allowed. \n" >> 203 << " The material " << name << " will be constructed with the" >> 204 << " default minimal density: " << universe_mean_density/(g/cm3) >> 205 << "g/cm3" << G4endl; >> 206 density = universe_mean_density; >> 207 } 182 208 183 if (density < universe_mean_density) { << 209 fDensity = density; 184 G4cout << "--- Warning from G4Material::G4 << 210 fState = state; 185 << " define a material with density << 211 fTemp = temp; 186 << " The material " << name << " wi << 187 << " default minimal density: " << << 188 << G4endl; << 189 density = universe_mean_density; << 190 } << 191 << 192 fDensity = density; << 193 fState = state; << 194 fTemp = temp; << 195 fPressure = pressure; 212 fPressure = pressure; 196 213 197 fBaseMaterial = bmat; 214 fBaseMaterial = bmat; 198 auto ptr = bmat; << 199 if (nullptr != ptr) { << 200 while (true) { << 201 ptr = ptr->GetBaseMaterial(); << 202 if (nullptr == ptr) { << 203 break; << 204 } << 205 fBaseMaterial = ptr; << 206 } << 207 } << 208 << 209 fChemicalFormula = fBaseMaterial->GetChemica 215 fChemicalFormula = fBaseMaterial->GetChemicalFormula(); 210 fMassOfMolecule = fBaseMaterial->GetMassOfMo << 216 fMassOfMolecule = fBaseMaterial->GetMassOfMolecule(); 211 217 212 fNumberOfElements = (G4int)fBaseMaterial->Ge << 218 fNumberOfElements = fBaseMaterial->GetNumberOfElements(); 213 fNbComponents = fNumberOfElements; << 219 maxNbComponents = fNumberOfElements; >> 220 fNumberOfComponents = fNumberOfElements; 214 221 215 CopyPointersOfBaseMaterial(); 222 CopyPointersOfBaseMaterial(); 216 } 223 } 217 224 218 //....oooOO0OOooo........oooOO0OOooo........oo 225 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 226 >> 227 // Fake default constructor - sets only member data and allocates memory >> 228 // for usage restricted to object persistency >> 229 >> 230 G4Material::G4Material(__void__&) >> 231 : fName("") >> 232 { >> 233 InitializePointers(); >> 234 } >> 235 >> 236 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 237 220 G4Material::~G4Material() 238 G4Material::~G4Material() 221 { 239 { 222 if (fBaseMaterial == nullptr) { << 240 // G4cout << "### Destruction of material " << fName << " started" <<G4endl; 223 delete theElementVector; << 241 if(fBaseMaterial == nullptr) { 224 delete fSandiaTable; << 242 delete theElementVector; 225 delete[] fMassFractionVector; << 243 delete fSandiaTable; 226 delete[] fAtomsVector; << 244 //delete fMaterialPropertiesTable; >> 245 delete [] fMassFractionVector; >> 246 delete [] fAtomsVector; 227 } 247 } 228 delete fIonisation; << 248 delete fIonisation; 229 delete[] fVecNbOfAtomsPerVolume; << 249 delete [] VecNbOfAtomsPerVolume; 230 250 231 // Remove this material from the MaterialTab << 251 // Remove this material from theMaterialTable. 232 // 252 // 233 (*GetMaterialTable())[fIndexInTable] = nullp << 253 theMaterialTable[fIndexInTable] = nullptr; 234 } 254 } 235 255 236 //....oooOO0OOooo........oooOO0OOooo........oo 256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 237 257 238 void G4Material::InitializePointers() 258 void G4Material::InitializePointers() 239 { 259 { 240 fBaseMaterial = nullptr; << 260 theElementVector = nullptr; >> 261 fMassFractionVector = nullptr; >> 262 fAtomsVector = nullptr; 241 fMaterialPropertiesTable = nullptr; 263 fMaterialPropertiesTable = nullptr; 242 theElementVector = nullptr; << 264 243 fAtomsVector = nullptr; << 265 VecNbOfAtomsPerVolume = nullptr; 244 fMassFractionVector = nullptr; << 266 fBaseMaterial = nullptr; 245 fVecNbOfAtomsPerVolume = nullptr; << 267 >> 268 fChemicalFormula = ""; >> 269 >> 270 // initilized data members >> 271 fDensity = 0.0; >> 272 fState = kStateUndefined; >> 273 fTemp = 0.0; >> 274 fPressure = 0.0; >> 275 maxNbComponents = 0; >> 276 fArrayLength = 0; >> 277 fNumberOfComponents = 0; >> 278 fNumberOfElements = 0; >> 279 TotNbOfAtomsPerVolume = 0.0; >> 280 TotNbOfElectPerVolume = 0.0; >> 281 fRadlen = 0.0; >> 282 fNuclInterLen = 0.0; >> 283 fMassOfMolecule = 0.0; 246 284 247 fIonisation = nullptr; 285 fIonisation = nullptr; 248 fSandiaTable = nullptr; 286 fSandiaTable = nullptr; 249 287 250 fDensity = fFreeElecDensity = fTemp = fPress << 251 fTotNbOfAtomsPerVolume = 0.0; << 252 fTotNbOfElectPerVolume = 0.0; << 253 fRadlen = fNuclInterLen = fMassOfMolecule = << 254 << 255 fState = kStateUndefined; << 256 fNumberOfElements = fNbComponents = fIdxComp << 257 fMassFraction = true; << 258 fChemicalFormula = ""; << 259 << 260 // Store in the static Table of Materials 288 // Store in the static Table of Materials 261 fIndexInTable = GetMaterialTable()->size(); << 289 fIndexInTable = theMaterialTable.size(); 262 for (std::size_t i = 0; i < fIndexInTable; + << 290 for(size_t i=0; i<fIndexInTable; ++i) { 263 if ((*GetMaterialTable())[i]->GetName() == << 291 if(theMaterialTable[i]->GetName() == fName) { 264 G4cout << "G4Material WARNING: duplicate << 292 G4cout << "G4Material WARNING: duplicate name of material " >> 293 << fName << G4endl; 265 break; 294 break; 266 } 295 } 267 } 296 } 268 GetMaterialTable()->push_back(this); << 297 theMaterialTable.push_back(this); 269 } 298 } 270 299 271 //....oooOO0OOooo........oooOO0OOooo........oo 300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 272 301 273 void G4Material::ComputeDerivedQuantities() 302 void G4Material::ComputeDerivedQuantities() 274 { 303 { 275 // Header routine to compute various propert 304 // Header routine to compute various properties of material. 276 // << 305 // >> 306 277 // Number of atoms per volume (per element), 307 // Number of atoms per volume (per element), total nb of electrons per volume 278 G4double Zi, Ai; 308 G4double Zi, Ai; 279 fTotNbOfAtomsPerVolume = 0.; << 309 TotNbOfAtomsPerVolume = 0.; 280 delete[] fVecNbOfAtomsPerVolume; << 310 if (VecNbOfAtomsPerVolume) { delete [] VecNbOfAtomsPerVolume; } 281 fVecNbOfAtomsPerVolume = new G4double[fNumbe << 311 VecNbOfAtomsPerVolume = new G4double[fNumberOfElements]; 282 fTotNbOfElectPerVolume = 0.; << 312 TotNbOfElectPerVolume = 0.; 283 fFreeElecDensity = 0.; << 313 for (G4int i=0; i<fNumberOfElements; ++i) { 284 const G4double elecTh = 15. * CLHEP::eV; // << 314 Zi = (*theElementVector)[i]->GetZ(); 285 for (G4int i = 0; i < fNumberOfElements; ++i << 315 Ai = (*theElementVector)[i]->GetA(); 286 Zi = (*theElementVector)[i]->GetZ(); << 316 VecNbOfAtomsPerVolume[i] = Avogadro*fDensity*fMassFractionVector[i]/Ai; 287 Ai = (*theElementVector)[i]->GetA(); << 317 TotNbOfAtomsPerVolume += VecNbOfAtomsPerVolume[i]; 288 fVecNbOfAtomsPerVolume[i] = Avogadro * fDe << 318 TotNbOfElectPerVolume += VecNbOfAtomsPerVolume[i]*Zi; 289 fTotNbOfAtomsPerVolume += fVecNbOfAtomsPer << 290 fTotNbOfElectPerVolume += fVecNbOfAtomsPer << 291 if (fState != kStateGas) { << 292 fFreeElecDensity += << 293 fVecNbOfAtomsPerVolume[i] * G4AtomicSh << 294 } << 295 } 319 } 296 << 320 297 ComputeRadiationLength(); 321 ComputeRadiationLength(); 298 ComputeNuclearInterLength(); 322 ComputeNuclearInterLength(); 299 323 300 if (fIonisation == nullptr) { << 324 if (fIonisation) { delete fIonisation; } 301 fIonisation = new G4IonisParamMat(this); << 325 fIonisation = new G4IonisParamMat(this); 302 } << 326 if (fSandiaTable) { delete fSandiaTable; } 303 if (fSandiaTable == nullptr) { << 327 fSandiaTable = new G4SandiaTable(this); 304 fSandiaTable = new G4SandiaTable(this); << 305 } << 306 } 328 } 307 329 308 //....oooOO0OOooo........oooOO0OOooo........oo 330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 309 331 310 void G4Material::CopyPointersOfBaseMaterial() 332 void G4Material::CopyPointersOfBaseMaterial() 311 { 333 { 312 G4double factor = fDensity / fBaseMaterial-> << 334 G4double factor = fDensity/fBaseMaterial->GetDensity(); 313 fTotNbOfAtomsPerVolume = factor * fBaseMater << 335 TotNbOfAtomsPerVolume = factor*fBaseMaterial->GetTotNbOfAtomsPerVolume(); 314 fTotNbOfElectPerVolume = factor * fBaseMater << 336 TotNbOfElectPerVolume = factor*fBaseMaterial->GetTotNbOfElectPerVolume(); 315 fFreeElecDensity = factor * fBaseMaterial->G << 337 316 << 338 if(fState == kStateUndefined) { fState = fBaseMaterial->GetState(); } 317 if (fState == kStateUndefined) { << 339 318 fState = fBaseMaterial->GetState(); << 340 theElementVector = 319 } << 341 const_cast<G4ElementVector*>(fBaseMaterial->GetElementVector()); 320 << 342 fMassFractionVector = 321 theElementVector = const_cast<G4ElementVecto << 343 const_cast<G4double*>(fBaseMaterial->GetFractionVector()); 322 fMassFractionVector = const_cast<G4double*>( << 323 fAtomsVector = const_cast<G4int*>(fBaseMater 344 fAtomsVector = const_cast<G4int*>(fBaseMaterial->GetAtomsVector()); 324 345 325 const G4double* v = fBaseMaterial->GetVecNbO 346 const G4double* v = fBaseMaterial->GetVecNbOfAtomsPerVolume(); 326 delete[] fVecNbOfAtomsPerVolume; << 347 if (VecNbOfAtomsPerVolume) { delete [] VecNbOfAtomsPerVolume; } 327 fVecNbOfAtomsPerVolume = new G4double[fNumbe << 348 VecNbOfAtomsPerVolume = new G4double[fNumberOfElements]; 328 for (G4int i = 0; i < fNumberOfElements; ++i << 349 for (G4int i=0; i<fNumberOfElements; ++i) { 329 fVecNbOfAtomsPerVolume[i] = factor * v[i]; << 350 VecNbOfAtomsPerVolume[i] = factor*v[i]; 330 } 351 } 331 fRadlen = fBaseMaterial->GetRadlen() / facto << 352 fRadlen = fBaseMaterial->GetRadlen()/factor; 332 fNuclInterLen = fBaseMaterial->GetNuclearInt << 353 fNuclInterLen = fBaseMaterial->GetNuclearInterLength()/factor; 333 354 334 if (fIonisation == nullptr) { << 355 if (fIonisation) { delete fIonisation; } 335 fIonisation = new G4IonisParamMat(this); << 356 fIonisation = new G4IonisParamMat(this); 336 } << 337 fIonisation->SetMeanExcitationEnergy(fBaseMa << 338 if (fBaseMaterial->GetIonisation()->GetDensi << 339 ComputeDensityEffectOnFly(true); << 340 } << 341 357 342 fSandiaTable = fBaseMaterial->GetSandiaTable 358 fSandiaTable = fBaseMaterial->GetSandiaTable(); >> 359 fIonisation->SetMeanExcitationEnergy(fBaseMaterial->GetIonisation()->GetMeanExcitationEnergy()); >> 360 343 fMaterialPropertiesTable = fBaseMaterial->Ge 361 fMaterialPropertiesTable = fBaseMaterial->GetMaterialPropertiesTable(); 344 } 362 } 345 363 346 //....oooOO0OOooo........oooOO0OOooo........oo 364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 347 365 348 void G4Material::AddElementByNumberOfAtoms(con << 366 // AddElement -- composition by atom count 349 { << 350 // perform checks consistency << 351 if (0 == fIdxComponent) { << 352 fMassFraction = false; << 353 fAtoms = new std::vector<G4int>; << 354 fElm = new std::vector<const G4Element*>; << 355 } << 356 if (fIdxComponent >= fNbComponents) { << 357 G4ExceptionDescription ed; << 358 ed << "For material " << fName << " and ad << 359 << " with Natoms=" << nAtoms << 360 << " wrong attempt to add more than the << 361 << " >= " << fNbComponents; << 362 G4Exception("G4Material::AddElementByNumbe << 363 } << 364 if (fMassFraction) { << 365 G4ExceptionDescription ed; << 366 ed << "For material " << fName << " and ad << 367 << " with Natoms=" << nAtoms << " probl << 368 << "addition of elements by mass fracti << 369 G4Exception("G4Material::AddElementByNumbe << 370 } << 371 if (0 >= nAtoms) { << 372 G4ExceptionDescription ed; << 373 ed << "For material " << fName << " and ad << 374 << " with Natoms=" << nAtoms << " probl << 375 G4Exception("G4Material::AddElementByNumbe << 376 } << 377 << 378 // filling << 379 G4bool isAdded = false; << 380 if (! fElm->empty()) { << 381 for (G4int i = 0; i < fNumberOfElements; + << 382 if (elm == (*fElm)[i]) { << 383 (*fAtoms)[i] += nAtoms; << 384 isAdded = true; << 385 break; << 386 } << 387 } << 388 } << 389 if (! isAdded) { << 390 fElm->push_back(elm); << 391 fAtoms->push_back(nAtoms); << 392 ++fNumberOfElements; << 393 } << 394 ++fIdxComponent; << 395 << 396 // is filled - complete composition of atoms << 397 if (fIdxComponent == fNbComponents) { << 398 theElementVector = new G4ElementVector(); << 399 theElementVector->reserve(fNumberOfElement << 400 fAtomsVector = new G4int[fNumberOfElements << 401 fMassFractionVector = new G4double[fNumber << 402 367 >> 368 void G4Material::AddElement(G4Element* element, G4int nAtoms) >> 369 { >> 370 // initialization >> 371 if ( fNumberOfElements == 0 ) { >> 372 fAtomsVector = new G4int [fArrayLength]; >> 373 fMassFractionVector = new G4double[fArrayLength]; >> 374 } >> 375 >> 376 // filling ... >> 377 if ( fNumberOfElements < maxNbComponents ) { >> 378 theElementVector->push_back(element); >> 379 fAtomsVector[fNumberOfElements] = nAtoms; >> 380 fNumberOfComponents = ++fNumberOfElements; >> 381 } else { >> 382 G4cout << "G4Material::AddElement ERROR for " << fName << " nElement= " >> 383 << fNumberOfElements << G4endl; >> 384 G4Exception ("G4Material::AddElement()", "mat031", FatalException, >> 385 "Attempt to add more than the declared number of elements."); >> 386 } >> 387 // filled. >> 388 if ( fNumberOfElements == maxNbComponents ) { >> 389 // compute proportion by mass >> 390 G4int i=0; 403 G4double Amol = 0.; 391 G4double Amol = 0.; 404 for (G4int i = 0; i < fNumberOfElements; + << 392 for (i=0; i<fNumberOfElements; ++i) { 405 theElementVector->push_back((*fElm)[i]); << 393 G4double w = fAtomsVector[i]*(*theElementVector)[i]->GetA(); 406 fAtomsVector[i] = (*fAtoms)[i]; << 407 G4double w = fAtomsVector[i] * (*fElm)[i << 408 Amol += w; 394 Amol += w; 409 fMassFractionVector[i] = w; 395 fMassFractionVector[i] = w; 410 } 396 } 411 for (G4int i = 0; i < fNumberOfElements; + << 397 for (i=0; i<fNumberOfElements; ++i) { 412 fMassFractionVector[i] /= Amol; 398 fMassFractionVector[i] /= Amol; 413 } 399 } 414 delete fAtoms; << 400 415 delete fElm; << 401 fMassOfMolecule = Amol/Avogadro; 416 fMassOfMolecule = Amol / CLHEP::Avogadro; << 417 ComputeDerivedQuantities(); 402 ComputeDerivedQuantities(); 418 } 403 } 419 } 404 } 420 405 421 //....oooOO0OOooo........oooOO0OOooo........oo 406 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 422 407 423 void G4Material::AddElementByMassFraction(cons << 408 // AddElement -- composition by fraction of mass 424 { << 425 // perform checks consistency << 426 if (fraction < 0.0 || fraction > 1.0) { << 427 G4ExceptionDescription ed; << 428 ed << "For material " << fName << " and ad << 429 << " massFraction= " << fraction << " i << 430 G4Exception("G4Material::AddElementByMassF << 431 } << 432 if (! fMassFraction) { << 433 G4ExceptionDescription ed; << 434 ed << "For material " << fName << " and ad << 435 << ", massFraction= " << fraction << ", << 436 << " problem: cannot add by mass fracti << 437 << "addition of elements by number of a << 438 G4Exception("G4Material::AddElementByMassF << 439 } << 440 if (fIdxComponent >= fNbComponents) { << 441 G4ExceptionDescription ed; << 442 ed << "For material " << fName << " and ad << 443 << ", massFraction= " << fraction << ", << 444 << "; attempt to add more than the decl << 445 << " >= " << fNbComponents; << 446 G4Exception("G4Material::AddElementByMassF << 447 } << 448 if (0 == fIdxComponent) { << 449 fElmFrac = new std::vector<G4double>; << 450 fElm = new std::vector<const G4Element*>; << 451 } << 452 409 453 // filling << 410 void G4Material::AddElement(G4Element* element, G4double fraction) 454 G4bool isAdded = false; << 411 { 455 if (! fElm->empty()) { << 412 if(fraction < 0.0 || fraction > 1.0) { 456 for (G4int i = 0; i < fNumberOfElements; + << 413 G4cout << "G4Material::AddElement ERROR for " << fName << " and " 457 if (elm == (*fElm)[i]) { << 414 << element->GetName() << " mass fraction= " << fraction 458 (*fElmFrac)[i] += fraction; << 415 << " is wrong " << G4endl; 459 isAdded = true; << 416 G4Exception ("G4Material::AddElement()", "mat032", FatalException, 460 break; << 417 "Attempt to add element with wrong mass fraction"); 461 } << 418 } >> 419 // initialization >> 420 if (fNumberOfComponents == 0) { >> 421 fMassFractionVector = new G4double[fArrayLength]; >> 422 fAtomsVector = new G4int [fArrayLength]; >> 423 } >> 424 // filling ... >> 425 if (fNumberOfComponents < maxNbComponents) { >> 426 G4int el = 0; >> 427 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko >> 428 while ((el<fNumberOfElements)&&(element!=(*theElementVector)[el])) { ++el; } >> 429 if (el<fNumberOfElements) fMassFractionVector[el] += fraction; >> 430 else { >> 431 theElementVector->push_back(element); >> 432 fMassFractionVector[el] = fraction; >> 433 ++fNumberOfElements; 462 } 434 } 463 } << 435 ++fNumberOfComponents; 464 if (! isAdded) { << 436 } else { 465 fElm->push_back(elm); << 437 G4cout << "G4Material::AddElement ERROR for " << fName << " nElement= " 466 fElmFrac->push_back(fraction); << 438 << fNumberOfElements << G4endl; 467 ++fNumberOfElements; << 439 G4Exception ("G4Material::AddElement()", "mat033", FatalException, 468 } << 440 "Attempt to add more than the declared number of elements."); 469 ++fIdxComponent; << 441 } 470 << 442 471 // is filled << 443 // filled. 472 if (fIdxComponent == fNbComponents) { << 444 if (fNumberOfComponents == maxNbComponents) { 473 FillVectors(); << 445 >> 446 G4int i=0; >> 447 G4double Zmol(0.), Amol(0.); >> 448 // check sum of weights -- OK? >> 449 G4double wtSum(0.0); >> 450 for (i=0; i<fNumberOfElements; ++i) { >> 451 wtSum += fMassFractionVector[i]; >> 452 Zmol += fMassFractionVector[i]*(*theElementVector)[i]->GetZ(); >> 453 Amol += fMassFractionVector[i]*(*theElementVector)[i]->GetA(); >> 454 } >> 455 if (std::fabs(1.-wtSum) > perThousand) { >> 456 G4cerr << "WARNING !! for " << fName << " sum of fractional masses " >> 457 << wtSum << " is not 1 - results may be wrong" >> 458 << G4endl; >> 459 } >> 460 for (i=0; i<fNumberOfElements; ++i) { >> 461 fAtomsVector[i] = >> 462 G4lrint(fMassFractionVector[i]*Amol/(*theElementVector)[i]->GetA()); >> 463 } >> 464 >> 465 ComputeDerivedQuantities(); 474 } 466 } 475 } 467 } 476 468 477 //....oooOO0OOooo........oooOO0OOooo........oo 469 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 478 470 479 // composition by fraction of mass << 471 // AddMaterial -- composition by fraction of mass >> 472 480 void G4Material::AddMaterial(G4Material* mater 473 void G4Material::AddMaterial(G4Material* material, G4double fraction) 481 { 474 { 482 if (fraction < 0.0 || fraction > 1.0) { << 475 if(fraction < 0.0 || fraction > 1.0) { 483 G4ExceptionDescription ed; << 476 G4cout << "G4Material::AddMaterial ERROR for " << fName << " and " 484 ed << "For material " << fName << " and ad << 477 << material->GetName() << " mass fraction= " << fraction 485 << ", massFraction= " << fraction << " << 478 << " is wrong "; 486 G4Exception("G4Material::AddMaterial()", " << 479 G4Exception ("G4Material::AddMaterial()", "mat034", FatalException, 487 } << 480 "Attempt to add material with wrong mass fraction"); 488 if (! fMassFraction) { << 481 } 489 G4ExceptionDescription ed; << 482 // initialization 490 ed << "For material " << fName << " and ad << 483 if (fNumberOfComponents == 0) { 491 << ", massFraction= " << fraction << ", << 484 fMassFractionVector = new G4double[fArrayLength]; 492 << " problem: cannot add by mass fracti << 485 fAtomsVector = new G4int [fArrayLength]; 493 << "addition of elements by number of a << 486 } 494 G4Exception("G4Material::AddMaterial()", " << 487 495 } << 488 G4int nelm = material->GetNumberOfElements(); 496 if (fIdxComponent >= fNbComponents) { << 489 497 G4ExceptionDescription ed; << 490 // arrays should be extended 498 ed << "For material " << fName << " and ad << 491 if(nelm > 1) { 499 << ", massFraction= " << fraction << 492 G4int nold = fArrayLength; 500 << "; attempt to add more than the decl << 493 fArrayLength += nelm - 1; 501 << " >= " << fNbComponents; << 494 G4double* v1 = new G4double[fArrayLength]; 502 G4Exception("G4Material::AddMaterial()", " << 495 G4int* i1 = new G4int[fArrayLength]; 503 } << 496 for(G4int i=0; i<nold; ++i) { 504 if (0 == fIdxComponent) { << 497 v1[i] = fMassFractionVector[i]; 505 fElmFrac = new std::vector<G4double>; << 498 i1[i] = fAtomsVector[i]; 506 fElm = new std::vector<const G4Element*>; << 499 } 507 } << 500 delete [] fAtomsVector; 508 << 501 delete [] fMassFractionVector; 509 // filling << 502 fMassFractionVector = v1; 510 auto nelm = (G4int)material->GetNumberOfElem << 503 fAtomsVector = i1; 511 for (G4int j = 0; j < nelm; ++j) { << 504 } 512 auto elm = material->GetElement(j); << 505 513 auto frac = material->GetFractionVector(); << 506 // filling ... 514 G4bool isAdded = false; << 507 if (fNumberOfComponents < maxNbComponents) { 515 if (! fElm->empty()) { << 508 for (G4int elm=0; elm<nelm; ++elm) 516 for (G4int i = 0; i < fNumberOfElements; << 509 { 517 if (elm == (*fElm)[i]) { << 510 G4Element* element = (*(material->GetElementVector()))[elm]; 518 (*fElmFrac)[i] += fraction * frac[j] << 511 G4int el = 0; 519 isAdded = true; << 512 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 520 break; << 513 while ((el<fNumberOfElements)&&(element!=(*theElementVector)[el])) el++; >> 514 if (el < fNumberOfElements) fMassFractionVector[el] += fraction >> 515 *(material->GetFractionVector())[elm]; >> 516 else { >> 517 theElementVector->push_back(element); >> 518 fMassFractionVector[el] = fraction >> 519 *(material->GetFractionVector())[elm]; >> 520 ++fNumberOfElements; 521 } 521 } 522 } << 522 } 523 } << 523 ++fNumberOfComponents; 524 if (! isAdded) { << 524 ///store massFraction of material component 525 fElm->push_back(elm); << 525 fMatComponents[material] = fraction; 526 fElmFrac->push_back(fraction * frac[j]); << 526 527 ++fNumberOfElements; << 527 } else { >> 528 G4cout << "G4Material::AddMaterial ERROR for " << fName << " nElement= " >> 529 << fNumberOfElements << G4endl; >> 530 G4Exception ("G4Material::AddMaterial()", "mat035", FatalException, >> 531 "Attempt to add more than the declared number of components."); >> 532 } >> 533 >> 534 // filled. >> 535 if (fNumberOfComponents == maxNbComponents) { >> 536 G4int i=0; >> 537 G4double Zmol(0.), Amol(0.); >> 538 // check sum of weights -- OK? >> 539 G4double wtSum(0.0); >> 540 for (i=0; i<fNumberOfElements; ++i) { >> 541 wtSum += fMassFractionVector[i]; >> 542 Zmol += fMassFractionVector[i]*(*theElementVector)[i]->GetZ(); >> 543 Amol += fMassFractionVector[i]*(*theElementVector)[i]->GetA(); >> 544 } >> 545 if (std::fabs(1.-wtSum) > perThousand) { >> 546 G4cout << "G4Material::AddMaterial WARNING !! for " << fName >> 547 << " sum of fractional masses " >> 548 << wtSum << " is not 1 - results may be wrong" >> 549 << G4endl; >> 550 } >> 551 for (i=0; i<fNumberOfElements; ++i) { >> 552 fAtomsVector[i] = >> 553 G4lrint(fMassFractionVector[i]*Amol/(*theElementVector)[i]->GetA()); 528 } 554 } >> 555 >> 556 ComputeDerivedQuantities(); 529 } 557 } 530 << 531 fMatComponents[material] = fraction; << 532 ++fIdxComponent; << 533 << 534 // is filled << 535 if (fIdxComponent == fNbComponents) { << 536 FillVectors(); << 537 } << 538 } << 539 << 540 //....oooOO0OOooo........oooOO0OOooo........oo << 541 << 542 void G4Material::FillVectors() << 543 { << 544 // there are material components << 545 theElementVector = new G4ElementVector(); << 546 theElementVector->reserve(fNumberOfElements) << 547 fAtomsVector = new G4int[fNumberOfElements]; << 548 fMassFractionVector = new G4double[fNumberOf << 549 << 550 G4double wtSum(0.0); << 551 for (G4int i = 0; i < fNumberOfElements; ++i << 552 theElementVector->push_back((*fElm)[i]); << 553 fMassFractionVector[i] = (*fElmFrac)[i]; << 554 wtSum += fMassFractionVector[i]; << 555 } << 556 delete fElmFrac; << 557 delete fElm; << 558 << 559 // check sum of weights -- OK? << 560 if (std::abs(1. - wtSum) > perThousand) { << 561 G4ExceptionDescription ed; << 562 ed << "For material " << fName << " sum of << 563 << " is not 1 - results may be wrong"; << 564 G4Exception("G4Material::FillVectors()", " << 565 } << 566 G4double coeff = (wtSum > 0.0) ? 1. / wtSum << 567 G4double Amol(0.); << 568 for (G4int i = 0; i < fNumberOfElements; ++i << 569 fMassFractionVector[i] *= coeff; << 570 Amol += fMassFractionVector[i] * (*theElem << 571 } << 572 for (G4int i = 0; i < fNumberOfElements; ++i << 573 fAtomsVector[i] = G4lrint(fMassFractionVec << 574 } << 575 ComputeDerivedQuantities(); << 576 } 558 } 577 559 578 //....oooOO0OOooo........oooOO0OOooo........oo 560 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 579 561 580 void G4Material::ComputeRadiationLength() 562 void G4Material::ComputeRadiationLength() 581 { 563 { 582 G4double radinv = 0.0; << 564 G4double radinv = 0.0 ; 583 for (G4int i = 0; i < fNumberOfElements; ++i << 565 for (G4int i=0;i<fNumberOfElements;++i) { 584 radinv += fVecNbOfAtomsPerVolume[i] * ((*t << 566 radinv += VecNbOfAtomsPerVolume[i]*((*theElementVector)[i]->GetfRadTsai()); 585 } 567 } 586 fRadlen = (radinv <= 0.0 ? DBL_MAX : 1. / ra << 568 fRadlen = (radinv <= 0.0 ? DBL_MAX : 1./radinv); 587 } 569 } 588 570 589 //....oooOO0OOooo........oooOO0OOooo........oo 571 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 590 572 591 void G4Material::ComputeNuclearInterLength() 573 void G4Material::ComputeNuclearInterLength() 592 { 574 { 593 const G4double lambda1 = CLHEP::amu*CLHEP::c << 575 static const G4double lambda0 = 35*CLHEP::g/CLHEP::cm2; >> 576 static const G4double twothird = 2.0/3.0; 594 G4double NILinv = 0.0; 577 G4double NILinv = 0.0; 595 for (G4int i = 0; i < fNumberOfElements; ++i << 578 for (G4int i=0; i<fNumberOfElements; ++i) { 596 G4int Z = (*theElementVector)[i]->GetZasIn << 579 G4int Z = G4lrint( (*theElementVector)[i]->GetZ()); 597 G4double A = (*theElementVector)[i]->GetN( 580 G4double A = (*theElementVector)[i]->GetN(); 598 if (1 == Z) { << 581 if(1 == Z) { 599 NILinv += fVecNbOfAtomsPerVolume[i] * A; << 582 NILinv += VecNbOfAtomsPerVolume[i]*A; 600 } << 583 } else { 601 else { << 584 NILinv += VecNbOfAtomsPerVolume[i]*G4Exp(twothird*G4Log(A)); 602 NILinv += fVecNbOfAtomsPerVolume[i] * G4 << 585 } 603 } << 604 } << 605 NILinv *= lambda1; << 606 fNuclInterLen = 1.e+20*CLHEP::m; << 607 if (fNuclInterLen * NILinv > 1.0) { << 608 fNuclInterLen = 1.0 / NILinv; << 609 } << 610 } << 611 << 612 //....oooOO0OOooo........oooOO0OOooo........oo << 613 << 614 void G4Material::SetChemicalFormula(const G4St << 615 { << 616 if (! IsLocked()) { << 617 fChemicalFormula = chF; << 618 } << 619 } << 620 << 621 //....oooOO0OOooo........oooOO0OOooo........oo << 622 << 623 void G4Material::SetFreeElectronDensity(G4doub << 624 { << 625 if (val >= 0. && ! IsLocked()) { << 626 fFreeElecDensity = val; << 627 } << 628 } << 629 << 630 //....oooOO0OOooo........oooOO0OOooo........oo << 631 << 632 void G4Material::ComputeDensityEffectOnFly(G4b << 633 { << 634 if (! IsLocked()) { << 635 if (nullptr == fIonisation) { << 636 fIonisation = new G4IonisParamMat(this); << 637 } << 638 fIonisation->ComputeDensityEffectOnFly(val << 639 } 586 } >> 587 NILinv *= amu/lambda0; >> 588 fNuclInterLen = (NILinv <= 0.0 ? DBL_MAX : 1./NILinv); 640 } 589 } 641 590 642 //....oooOO0OOooo........oooOO0OOooo........oo 591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 643 592 644 G4MaterialTable* G4Material::GetMaterialTable( 593 G4MaterialTable* G4Material::GetMaterialTable() 645 { 594 { 646 struct Holder { << 595 return &theMaterialTable; 647 G4MaterialTable instance; << 648 ~Holder() { << 649 for(auto item : instance) << 650 delete item; << 651 } << 652 }; << 653 static Holder _holder; << 654 return &_holder.instance; << 655 } 596 } 656 597 657 //....oooOO0OOooo........oooOO0OOooo........oo 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 658 599 659 std::size_t G4Material::GetNumberOfMaterials() << 600 size_t G4Material::GetNumberOfMaterials() 660 << 661 //....oooOO0OOooo........oooOO0OOooo........oo << 662 << 663 G4Material* G4Material::GetMaterial(const G4St << 664 { 601 { 665 // search the material by its name << 602 return theMaterialTable.size(); 666 for (auto const & j : *GetMaterialTable()) { << 667 if (j->GetName() == materialName) { << 668 return j; << 669 } << 670 } << 671 << 672 // the material does not exist in the table << 673 if (warn) { << 674 G4cout << "G4Material::GetMaterial() WARNI << 675 << " does not exist in the table. R << 676 } << 677 return nullptr; << 678 } 603 } 679 604 680 //....oooOO0OOooo........oooOO0OOooo........oo 605 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 681 606 682 G4Material* G4Material::GetMaterial(G4double z << 607 G4Material* 683 { << 608 G4Material::GetMaterial(const G4String& materialName, G4bool warning) 684 // search the material by its name << 609 { 685 for (auto const & mat : *GetMaterialTable()) << 610 // search the material by its name 686 if (1 == mat->GetNumberOfElements() && z = << 611 for (size_t J=0 ; J<theMaterialTable.size() ; ++J) 687 dens == mat->GetDensity()) << 688 { 612 { 689 return mat; << 613 if (theMaterialTable[J]->GetName() == materialName) >> 614 { return theMaterialTable[J]; } 690 } 615 } 691 } << 616 692 return nullptr; << 617 // the material does not exist in the table 693 } << 618 if (warning) { 694 << 619 G4cout << "G4Material::GetMaterial() WARNING: The material: " 695 //....oooOO0OOooo........oooOO0OOooo........oo << 620 << materialName 696 << 621 << " does not exist in the table. Return NULL pointer." 697 G4Material* G4Material::GetMaterial(std::size_ << 622 << G4endl; 698 { << 623 } 699 // search the material by its name << 700 for (auto const & mat : *GetMaterialTable()) << 701 if (nComp == mat->GetNumberOfElements() && << 702 return mat; << 703 } << 704 } << 705 return nullptr; 624 return nullptr; 706 } 625 } 707 626 708 //....oooOO0OOooo........oooOO0OOooo........oo 627 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 709 628 710 G4double G4Material::GetZ() const 629 G4double G4Material::GetZ() const 711 { << 630 { 712 if (fNumberOfElements > 1) { 631 if (fNumberOfElements > 1) { 713 G4ExceptionDescription ed; << 632 G4cout << "G4Material ERROR in GetZ. The material: " << fName 714 ed << "For material " << fName << " ERROR << 633 << " is a mixture."; 715 << " > 1, which is not allowed"; << 634 G4Exception ("G4Material::GetZ()", "mat036", FatalException, 716 G4Exception("G4Material::GetZ()", "mat036" << 635 "the Atomic number is not well defined." ); 717 } << 636 } 718 return (*theElementVector)[0]->GetZ(); << 637 return (*theElementVector)[0]->GetZ(); 719 } 638 } 720 639 721 //....oooOO0OOooo........oooOO0OOooo........oo 640 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 722 641 723 G4double G4Material::GetA() const 642 G4double G4Material::GetA() const 724 { << 643 { 725 if (fNumberOfElements > 1) { << 644 if (fNumberOfElements > 1) { 726 G4ExceptionDescription ed; << 645 G4cout << "G4Material ERROR in GetA. The material: " << fName 727 ed << "For material " << fName << " ERROR << 646 << " is a mixture."; 728 << " > 1, which is not allowed"; << 647 G4Exception ("G4Material::GetA()", "mat037", FatalException, 729 G4Exception("G4Material::GetA()", "mat036" << 648 "the Atomic mass is not well defined." ); 730 } << 649 } 731 return (*theElementVector)[0]->GetA(); << 650 return (*theElementVector)[0]->GetA(); 732 } 651 } 733 652 734 //....oooOO0OOooo........oooOO0OOooo........oo 653 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 654 #include "G4ExtendedMaterial.hh" 735 655 736 std::ostream& operator<<(std::ostream& flux, c 656 std::ostream& operator<<(std::ostream& flux, const G4Material* material) 737 { 657 { 738 std::ios::fmtflags mode = flux.flags(); 658 std::ios::fmtflags mode = flux.flags(); 739 flux.setf(std::ios::fixed, std::ios::floatfi << 659 flux.setf(std::ios::fixed,std::ios::floatfield); 740 G4long prec = flux.precision(3); 660 G4long prec = flux.precision(3); 741 << 661 742 flux << " Material: " << std::setw(8) << mat << 662 flux 743 << " " << 663 << " Material: " << std::setw(8) << material->fName 744 << " density: " << std::setw(6) << std << 664 << " " << material->fChemicalFormula << " " 745 << G4BestUnit(material->fDensity, "Volu << 665 << " density: " << std::setw(6) << std::setprecision(3) 746 << std::setprecision(3) << G4BestUnit(m << 666 << G4BestUnit(material->fDensity,"Volumic Mass") 747 << " Nucl.Int.Length: " << std::setw(7 << 667 << " RadL: " << std::setw(7) << std::setprecision(3) 748 << G4BestUnit(material->fNuclInterLen, << 668 << G4BestUnit(material->fRadlen,"Length") 749 << std::setw(30) << " Imean: " << std: << 669 << " Nucl.Int.Length: " << std::setw(7) << std::setprecision(3) 750 << G4BestUnit(material->GetIonisation() << 670 << G4BestUnit(material->fNuclInterLen,"Length") 751 << " temperature: " << std::setw(6) << << 671 << "\n" << std::setw(30) 752 << (material->fTemp) / CLHEP::kelvin << << 672 << " Imean: " << std::setw(7) << std::setprecision(3) 753 << " pressure: " << std::setw(6) << st << 673 << G4BestUnit(material->GetIonisation()->GetMeanExcitationEnergy(), 754 << (material->fPressure) / CLHEP::atmos << 674 "Energy") 755 << "\n"; << 675 << " temperature: " << std::setw(6) << std::setprecision(2) 756 << 676 << (material->fTemp)/kelvin << " K" 757 for (G4int i = 0; i < material->fNumberOfEle << 677 << " pressure: " << std::setw(6) << std::setprecision(2) 758 flux << "\n ---> " << (*(material->theEl << 678 << (material->fPressure)/atmosphere << " atm" << "\n"; 759 << "\n ElmMassFraction: " << << 679 760 << (material->fMassFractionVector[i]) << 680 for (G4int i=0; i<material->fNumberOfElements; i++) { 761 << " ElmAbundance " << std::setw(6) << 681 flux 762 << 100 * (material->fVecNbOfAtomsPerV << 682 << "\n ---> " << (*(material->theElementVector))[i] 763 << " % \n"; << 683 << "\n ElmMassFraction: " >> 684 << std::setw(6)<< std::setprecision(2) >> 685 << (material->fMassFractionVector[i])/perCent << " %" >> 686 << " ElmAbundance " << std::setw(6)<< std::setprecision(2) >> 687 << 100*(material->VecNbOfAtomsPerVolume[i]) >> 688 /(material->TotNbOfAtomsPerVolume) >> 689 << " % \n"; 764 } 690 } 765 flux.precision(prec); << 691 flux.precision(prec); 766 flux.setf(mode, std::ios::floatfield); << 692 flux.setf(mode,std::ios::floatfield); 767 693 768 if (material->IsExtended()) { << 694 if(material->IsExtended()) 769 static_cast<const G4ExtendedMaterial*>(mat << 695 { static_cast<const G4ExtendedMaterial*>(material)->Print(flux); } 770 } << 771 696 772 return flux; 697 return flux; 773 } 698 } 774 699 775 //....oooOO0OOooo........oooOO0OOooo........oo 700 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 776 701 777 std::ostream& operator<<(std::ostream& flux, c 702 std::ostream& operator<<(std::ostream& flux, const G4Material& material) 778 { 703 { 779 flux << &material; << 704 flux << &material; 780 return flux; 705 return flux; 781 } 706 } 782 707 783 //....oooOO0OOooo........oooOO0OOooo........oo 708 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 784 << 709 785 std::ostream& operator<<(std::ostream& flux, c << 710 std::ostream& operator<<(std::ostream& flux, G4MaterialTable MaterialTable) 786 { 711 { 787 // Dump info for all known materials << 712 //Dump info for all known materials 788 flux << "\n***** Table : Nb of materials = " << 713 flux << "\n***** Table : Nb of materials = " << MaterialTable.size() 789 << 714 << " *****\n" << G4endl; 790 for (auto i : MaterialTable) { << 715 791 flux << i << G4endl << G4endl; << 716 for (size_t i=0; i<MaterialTable.size(); ++i) { >> 717 flux << MaterialTable[i] << G4endl << G4endl; 792 } 718 } 793 719 794 return flux; 720 return flux; 795 } << 721 } 796 722 797 //....oooOO0OOooo........oooOO0OOooo........oo 723 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 798 724 799 G4bool G4Material::IsExtended() const { return << 725 G4bool G4Material::IsExtended() const >> 726 { return false; } 800 727 801 //....oooOO0OOooo........oooOO0OOooo........oo 728 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 802 729 803 void G4Material::SetMaterialPropertiesTable(G4 730 void G4Material::SetMaterialPropertiesTable(G4MaterialPropertiesTable* anMPT) 804 { 731 { 805 if (fMaterialPropertiesTable != anMPT && ! I << 732 if(anMPT && fMaterialPropertiesTable != anMPT) { >> 733 #ifdef G4MULTITHREADED >> 734 G4MUTEXLOCK(&materialMutex); >> 735 #endif 806 delete fMaterialPropertiesTable; 736 delete fMaterialPropertiesTable; 807 fMaterialPropertiesTable = anMPT; 737 fMaterialPropertiesTable = anMPT; >> 738 #ifdef G4MULTITHREADED >> 739 G4MUTEXUNLOCK(&materialMutex); >> 740 #endif 808 } 741 } 809 } 742 } 810 743 811 //....oooOO0OOooo........oooOO0OOooo........oo 744 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 812 << 813 G4bool G4Material::IsLocked() << 814 { << 815 auto state = G4StateManager::GetStateManager << 816 return state != G4State_PreInit && state != << 817 } << 818 745