Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/src/G4IonisParamMat.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /materials/src/G4IonisParamMat.cc (Version 11.3.0) and /materials/src/G4IonisParamMat.cc (Version 9.4.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
                                                   >>  25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4IonisParamMat.cc,v 1.40 2010-11-01 18:18:57 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-04-patch-02 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 25                                                    32 
 26 // 09-07-98, data moved from G4Material, M.Mai     33 // 09-07-98, data moved from G4Material, M.Maire
 27 // 18-07-98, bug corrected in ComputeDensityEf     34 // 18-07-98, bug corrected in ComputeDensityEffect() for gas
 28 // 16-01-01, bug corrected in ComputeDensityEf     35 // 16-01-01, bug corrected in ComputeDensityEffect() E100eV (L.Urban)
 29 // 08-02-01, fShellCorrectionVector correctly      36 // 08-02-01, fShellCorrectionVector correctly handled (mma)
 30 // 28-10-02, add setMeanExcitationEnergy (V.Iv     37 // 28-10-02, add setMeanExcitationEnergy (V.Ivanchenko)
 31 // 06-09-04, factor 2 to shell correction term <<  38 // 06-09-04, factor 2 to shell correction term (V.Ivanchenko) 
 32 // 10-05-05, add a missing coma in FindMeanExc     39 // 10-05-05, add a missing coma in FindMeanExcitationEnergy() - Bug#746 (mma)
 33 // 27-09-07, add computation of parameters for     40 // 27-09-07, add computation of parameters for ions (V.Ivanchenko)
 34 // 04-03-08, remove reference to G4NistManager     41 // 04-03-08, remove reference to G4NistManager. Add fBirks constant (mma)
 35 // 30-10-09, add G4DensityEffectData class and     42 // 30-10-09, add G4DensityEffectData class and density effect computation (VI)
 36                                                    43 
 37 #include "G4IonisParamMat.hh"                  <<  44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 38                                                    45 
 39 #include "G4AtomicShells.hh"                   <<  46 #include "G4IonisParamMat.hh"
 40 #include "G4AutoLock.hh"                       << 
 41 #include "G4DensityEffectData.hh"              << 
 42 #include "G4Exp.hh"                            << 
 43 #include "G4Log.hh"                            << 
 44 #include "G4Material.hh"                           47 #include "G4Material.hh"
 45 #include "G4NistManager.hh"                    <<  48 #include "G4DensityEffectData.hh"
 46 #include "G4PhysicalConstants.hh"              << 
 47 #include "G4Pow.hh"                            << 
 48 #include "G4SystemOfUnits.hh"                  << 
 49                                                << 
 50 G4DensityEffectData* G4IonisParamMat::fDensity << 
 51                                                    49 
 52 namespace                                      <<  50 G4DensityEffectData* G4IonisParamMat::fDensityData = 0;
 53 {                                              << 
 54   G4Mutex ionisMutex = G4MUTEX_INITIALIZER;    << 
 55 }                                              << 
 56                                                    51 
 57 //....oooOO0OOooo........oooOO0OOooo........oo     52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 58                                                    53 
 59 G4IonisParamMat::G4IonisParamMat(const G4Mater <<  54 G4IonisParamMat::G4IonisParamMat(G4Material* material)
                                                   >>  55   : fMaterial(material)
 60 {                                                  56 {
 61   fBirks = 0.;                                     57   fBirks = 0.;
 62   fMeanEnergyPerIon = 0.0;                         58   fMeanEnergyPerIon = 0.0;
 63   twoln10 = 2. * G4Pow::GetInstance()->logZ(10 << 
 64                                                    59 
 65   // minimal set of default parameters for den     60   // minimal set of default parameters for density effect
 66   fCdensity = 0.0;                                 61   fCdensity = 0.0;
 67   fD0density = 0.0;                                62   fD0density = 0.0;
 68   fAdjustmentFactor = 1.0;                         63   fAdjustmentFactor = 1.0;
 69   if (fDensityData == nullptr) {               <<  64   if(!fDensityData) { fDensityData = new G4DensityEffectData(); }
 70     fDensityData = new G4DensityEffectData();  << 
 71   }                                            << 
 72   fDensityEffectCalc = nullptr;                << 
 73                                                    65 
 74   // compute parameters                            66   // compute parameters
 75   ComputeMeanParameters();                         67   ComputeMeanParameters();
 76   ComputeDensityEffectParameters();            <<  68   ComputeDensityEffect();
 77   ComputeFluctModel();                             69   ComputeFluctModel();
 78   ComputeIonParameters();                          70   ComputeIonParameters();
 79 }                                                  71 }
 80                                                    72 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 82                                                    74 
 83 G4IonisParamMat::~G4IonisParamMat()            <<  75 // Fake default constructor - sets only member data and allocates memory
 84 {                                              <<  76 //                            for usage restricted to object persistency
 85   delete fDensityEffectCalc;                   << 
 86   delete[] fShellCorrectionVector;             << 
 87   delete fDensityData;                         << 
 88   fDensityData = nullptr;                      << 
 89   fShellCorrectionVector = nullptr;            << 
 90   fDensityEffectCalc = nullptr;                << 
 91 }                                              << 
 92                                                << 
 93 //....oooOO0OOooo........oooOO0OOooo........oo << 
 94                                                    77 
 95 G4double G4IonisParamMat::GetDensityCorrection <<  78 G4IonisParamMat::G4IonisParamMat(__void__&)
                                                   >>  79   : fMaterial(0), fShellCorrectionVector(0)
 96 {                                                  80 {
 97   // x = log10(beta*gamma)                     <<  81   fMeanExcitationEnergy = 0.0;
 98   G4double y = 0.0;                            <<  82   fLogMeanExcEnergy = 0.0;
 99   if (x < fX0density) {                        <<  83   fTaul = 0.0;
100     if (fD0density > 0.0) {                    <<  84   fCdensity = 0.0;
101       y = fD0density * G4Exp(twoln10 * (x - fX <<  85   fMdensity = 0.0;
102     }                                          <<  86   fAdensity = 0.0;
103   }                                            <<  87   fX0density = 0.0;
104   else if (x >= fX1density) {                  <<  88   fX1density = 0.0;
105     y = twoln10 * x - fCdensity;               <<  89   fD0density = 0.0;
106   }                                            <<  90   fPlasmaEnergy = 0.0;
107   else {                                       <<  91   fAdjustmentFactor = 0.0;
108     y = twoln10 * x - fCdensity + fAdensity *  <<  92   fF1fluct = 0.0;          
109   }                                            <<  93   fF2fluct = 0.0;                       
110   return y;                                    <<  94   fEnergy1fluct = 0.0;
                                                   >>  95   fLogEnergy1fluct = 0.0;
                                                   >>  96   fEnergy2fluct = 0.0;
                                                   >>  97   fLogEnergy2fluct = 0.0;
                                                   >>  98   fEnergy0fluct = 0.0;
                                                   >>  99   fRateionexcfluct = 0.0;
                                                   >> 100   fZeff = 0.0;
                                                   >> 101   fFermiEnergy = 0.0;
                                                   >> 102   fLfactor = 0.0;
                                                   >> 103   fInvA23 = 0.0;
                                                   >> 104   fBirks = 0.0;
                                                   >> 105   fMeanEnergyPerIon = 0.0;
111 }                                                 106 }
112                                                   107 
113 //....oooOO0OOooo........oooOO0OOooo........oo    108 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
114                                                   109 
115 void G4IonisParamMat::ComputeMeanParameters()     110 void G4IonisParamMat::ComputeMeanParameters()
116 {                                                 111 {
117   // compute mean excitation energy and shell     112   // compute mean excitation energy and shell correction vector
                                                   >> 113 
118   fTaul = (*(fMaterial->GetElementVector()))[0    114   fTaul = (*(fMaterial->GetElementVector()))[0]->GetIonisation()->GetTaul();
119                                                   115 
120   std::size_t nElements = fMaterial->GetNumber << 116   fMeanExcitationEnergy = 0.;
                                                   >> 117   fLogMeanExcEnergy = 0.;
                                                   >> 118 
                                                   >> 119   size_t nElements = fMaterial->GetNumberOfElements();
121   const G4ElementVector* elmVector = fMaterial    120   const G4ElementVector* elmVector = fMaterial->GetElementVector();
122   const G4double* nAtomsPerVolume = fMaterial-    121   const G4double* nAtomsPerVolume = fMaterial->GetVecNbOfAtomsPerVolume();
123                                                   122 
124   fMeanExcitationEnergy = FindMeanExcitationEn << 123   const G4String ch = fMaterial->GetChemicalFormula();
125   fLogMeanExcEnergy = 0.;                      << 124 
                                                   >> 125   if(ch != "") { fMeanExcitationEnergy = FindMeanExcitationEnergy(ch); }
126                                                   126 
127   // Chemical formula defines mean excitation     127   // Chemical formula defines mean excitation energy
128   if (fMeanExcitationEnergy > 0.0) {           << 128   if(fMeanExcitationEnergy > 0.0) {
129     fLogMeanExcEnergy = G4Log(fMeanExcitationE << 129     fLogMeanExcEnergy = std::log(fMeanExcitationEnergy);
130                                                   130 
131     // Compute average                         << 131     // Compute average 
132   }                                            << 132   } else {
133   else {                                       << 133     for (size_t i=0; i < nElements; i++) {
134     for (std::size_t i = 0; i < nElements; ++i << 
135       const G4Element* elm = (*elmVector)[i];     134       const G4Element* elm = (*elmVector)[i];
136       fLogMeanExcEnergy +=                     << 135       fLogMeanExcEnergy += nAtomsPerVolume[i]*elm->GetZ()
137         nAtomsPerVolume[i] * elm->GetZ() * G4L << 136   *std::log(elm->GetIonisation()->GetMeanExcitationEnergy());
138     }                                             137     }
139     fLogMeanExcEnergy /= fMaterial->GetTotNbOf    138     fLogMeanExcEnergy /= fMaterial->GetTotNbOfElectPerVolume();
140     fMeanExcitationEnergy = G4Exp(fLogMeanExcE << 139     fMeanExcitationEnergy = std::exp(fLogMeanExcEnergy);
141   }                                               140   }
142                                                   141 
143   fShellCorrectionVector = new G4double[3];    << 142   fShellCorrectionVector = new G4double[3]; 
144                                                   143 
145   for (G4int j = 0; j <= 2; ++j) {             << 144   for (G4int j=0; j<=2; j++)
                                                   >> 145   {
146     fShellCorrectionVector[j] = 0.;               146     fShellCorrectionVector[j] = 0.;
147                                                   147 
148     for (std::size_t k = 0; k < nElements; ++k << 148     for (size_t k=0; k<nElements; k++) {
149       fShellCorrectionVector[j] +=             << 149       fShellCorrectionVector[j] += nAtomsPerVolume[k]
150         nAtomsPerVolume[k] * (((*elmVector)[k] << 150   *(((*elmVector)[k])->GetIonisation()->GetShellCorrectionVector())[j];
151     }                                             151     }
152     fShellCorrectionVector[j] *= 2.0 / fMateri << 152     fShellCorrectionVector[j] *= 2.0/fMaterial->GetTotNbOfElectPerVolume();
153   }                                            << 153   } 
154 }                                                 154 }
155                                                   155 
156 //....oooOO0OOooo........oooOO0OOooo........oo    156 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
157                                                   157 
158 G4DensityEffectData* G4IonisParamMat::GetDensi << 158 G4DensityEffectData* G4IonisParamMat::GetDensityEffectData()
                                                   >> 159 {
159   return fDensityData;                            160   return fDensityData;
160 }                                                 161 }
161                                                   162 
162 //....oooOO0OOooo........oooOO0OOooo........oo    163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
163                                                << 164                     
164 void G4IonisParamMat::ComputeDensityEffectPara << 165 void G4IonisParamMat::ComputeDensityEffect()
165 {                                                 166 {
                                                   >> 167   static const G4double twoln10 = 2.*std::log(10.);
166   G4State State = fMaterial->GetState();          168   G4State State = fMaterial->GetState();
167   G4double density = fMaterial->GetDensity();  << 
168                                                   169 
169   // Check if density effect data exist in the    170   // Check if density effect data exist in the table
170   // R.M. Sternheimer, Atomic Data and Nuclear    171   // R.M. Sternheimer, Atomic Data and Nuclear Data Tables, 30: 261 (1984)
171   // or is assign to one of data set in this t << 
172   G4int idx = fDensityData->GetIndex(fMaterial    172   G4int idx = fDensityData->GetIndex(fMaterial->GetName());
173   auto nelm = (G4int)fMaterial->GetNumberOfEle << 173   if(idx < 0 && fMaterial->GetNumberOfElements() == 1) {
174   G4int Z0 = ((*(fMaterial->GetElementVector() << 174     idx = fDensityData->GetElementIndex(G4int(fMaterial->GetZ()),
175   const G4Material* bmat = fMaterial->GetBaseM << 175           fMaterial->GetState());
176   G4NistManager* nist = G4NistManager::Instanc << 
177                                                << 
178   // arbitrary empirical limits                << 
179   // parameterisation with very different dens << 
180   static const G4double corrmax = 1.;          << 
181   static const G4double massfracmax = 0.9;     << 
182                                                << 
183   // for simple non-NIST materials             << 
184   G4double corr = 0.0;                         << 
185                                                << 
186   if (idx < 0 && 1 == nelm) {                  << 
187     G4int z = (1 == Z0 && State == kStateLiqui << 
188     idx = fDensityData->GetElementIndex(z);    << 
189                                                << 
190     // Correction for base material or for non << 
191     // Except cases of very different density  << 
192     if (idx >= 0 && 0 < z) {                   << 
193       G4double dens = nist->GetNominalDensity( << 
194       if (dens <= 0.0) {                       << 
195         idx = -1;                              << 
196       }                                        << 
197       else {                                   << 
198         corr = G4Log(dens / density);          << 
199         if (std::abs(corr) > corrmax) {        << 
200           idx = -1;                            << 
201         }                                      << 
202       }                                        << 
203     }                                          << 
204   }                                            << 
205   // for base material case                    << 
206   if (idx < 0 && nullptr != bmat) {            << 
207     idx = fDensityData->GetIndex(bmat->GetName << 
208     if (idx >= 0) {                            << 
209       corr = G4Log(bmat->GetDensity() / densit << 
210       if (std::abs(corr) > corrmax) {          << 
211         idx = -1;                              << 
212       }                                        << 
213     }                                          << 
214   }                                               176   }
215                                                   177 
216   // for compound non-NIST materials with one  << 178   //G4cout<<"DensityEffect for "<<fMaterial->GetName()<<"  "<< idx << G4endl; 
217   if (idx < 0 && 1 < nelm) {                   << 179 
218     const G4double tot = fMaterial->GetTotNbOf << 180   if(idx >= 0) {
219     for (G4int i = 0; i < nelm; ++i) {         << 
220       const G4double frac = fMaterial->GetVecN << 
221       if (frac > massfracmax) {                << 
222         Z0 = ((*(fMaterial->GetElementVector() << 
223         idx = fDensityData->GetElementIndex(Z0 << 
224         G4double dens = nist->GetNominalDensit << 
225         if (idx >= 0 && dens > 0.0) {          << 
226           corr = G4Log(dens / density);        << 
227           if (std::abs(corr) > corrmax) {      << 
228             idx = -1;                          << 
229           }                                    << 
230           else {                               << 
231             break;                             << 
232           }                                    << 
233         }                                      << 
234       }                                        << 
235     }                                          << 
236   }                                            << 
237                                                   181 
238   if (idx >= 0) {                              << 
239     // Take parameters for the density effect     182     // Take parameters for the density effect correction from
240     // R.M. Sternheimer et al. Density Effect  << 183     // R.M. Sternheimer et al. Density Effect For The Ionization Loss 
241     // of Charged Particles in Various Substan << 184     // of Charged Particles in Various Substances. 
242     // Atom. Data Nucl. Data Tabl. 30 (1984) 2 << 185     // Atom. Data Nucl. Data Tabl. 30 (1984) 261-271. 
243                                                   186 
244     fCdensity = fDensityData->GetCdensity(idx) << 187     fCdensity = fDensityData->GetCdensity(idx); 
245     fMdensity = fDensityData->GetMdensity(idx)    188     fMdensity = fDensityData->GetMdensity(idx);
246     fAdensity = fDensityData->GetAdensity(idx)    189     fAdensity = fDensityData->GetAdensity(idx);
247     fX0density = fDensityData->GetX0density(id    190     fX0density = fDensityData->GetX0density(idx);
248     fX1density = fDensityData->GetX1density(id    191     fX1density = fDensityData->GetX1density(idx);
249     fD0density = fDensityData->GetDelta0densit    192     fD0density = fDensityData->GetDelta0density(idx);
250     fPlasmaEnergy = fDensityData->GetPlasmaEne    193     fPlasmaEnergy = fDensityData->GetPlasmaEnergy(idx);
251     fAdjustmentFactor = fDensityData->GetAdjus    194     fAdjustmentFactor = fDensityData->GetAdjustmentFactor(idx);
252                                                   195 
253     // parameter C is computed and not taken f << 196   } else {
254     // fCdensity = 1. + 2*G4Log(fMeanExcitatio << 197 
255     // G4cout << "IonisParamMat: " << fMateria << 198     const G4double Cd2 = 4*pi*hbarc_squared*classic_electr_radius;
256     //     << "  Cst= " << Cdensity << " C= "  << 199     fPlasmaEnergy = std::sqrt(Cd2*fMaterial->GetTotNbOfElectPerVolume());
257                                                << 
258     // correction on nominal density           << 
259     fCdensity += corr;                         << 
260     fX0density += corr / twoln10;              << 
261     fX1density += corr / twoln10;              << 
262   }                                            << 
263   else {                                       << 
264     static const G4double Cd2 = 4 * CLHEP::pi  << 
265     fPlasmaEnergy = std::sqrt(Cd2 * fMaterial- << 
266                                                   200 
267     // Compute parameters for the density effe    201     // Compute parameters for the density effect correction in DE/Dx formula.
268     // The parametrization is from R.M. Sternh    202     // The parametrization is from R.M. Sternheimer, Phys. Rev.B,3:3681 (1971)
269     G4int icase;                                  203     G4int icase;
                                                   >> 204     
                                                   >> 205     fCdensity = 1. + 2*std::log(fMeanExcitationEnergy/fPlasmaEnergy);
                                                   >> 206 
                                                   >> 207     //fCdensity = 1. + std::log(fMeanExcitationEnergy*fMeanExcitationEnergy
                                                   >> 208     //            /(Cd2*fMaterial->GetTotNbOfElectPerVolume()));
270                                                   209 
271     fCdensity = 1. + 2 * G4Log(fMeanExcitation << 
272     //                                            210     //
273     // condensed materials                        211     // condensed materials
274     //                                            212     //
275     if ((State == kStateSolid) || (State == kS << 213   
276       static const G4double E100eV = 100. * CL << 214     if ((State == kStateSolid)||(State == kStateLiquid)) {
277       static const G4double ClimiS[] = {3.681, << 
278       static const G4double X0valS[] = {1.0, 1 << 
279       static const G4double X1valS[] = {2.0, 3 << 
280                                                   215 
281       if (fMeanExcitationEnergy < E100eV) {    << 216       const G4double E100eV  = 100.*eV; 
282         icase = 0;                             << 217       const G4double ClimiS[] = {3.681 , 5.215 };
283       }                                        << 218       const G4double X0valS[] = {1.0   , 1.5   };
284       else {                                   << 219       const G4double X1valS[] = {2.0   , 3.0   };
285         icase = 1;                             << 220                                 
286       }                                        << 221       if(fMeanExcitationEnergy < E100eV) icase = 0;
287                                                << 222          else                            icase = 1;
288       if (fCdensity < ClimiS[icase]) {         << 223 
289         fX0density = 0.2;                      << 224       if(fCdensity < ClimiS[icase]) fX0density = 0.2;
290       }                                        << 225          else                       fX0density = 0.326*fCdensity-X0valS[icase];
291       else {                                   << 226 
292         fX0density = 0.326 * fCdensity - X0val << 227       fX1density = X1valS[icase] ; fMdensity = 3.0;
293       }                                        << 228       
294                                                << 229       //special: Hydrogen
295       fX1density = X1valS[icase];              << 230       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) {
296       fMdensity = 3.0;                         << 231          fX0density = 0.425; fX1density = 2.0; fMdensity = 5.949;
297                                                << 
298       // special: Hydrogen                     << 
299       if (1 == nelm && 1 == Z0) {              << 
300         fX0density = 0.425;                    << 
301         fX1density = 2.0;                      << 
302         fMdensity = 5.949;                     << 
303       }                                           232       }
304     }                                             233     }
305     else {                                     << 
306       //                                       << 
307       // gases                                 << 
308       //                                       << 
309       fMdensity = 3.;                          << 
310       fX1density = 4.0;                        << 
311                                                << 
312       if (fCdensity <= 10.) {                  << 
313         fX0density = 1.6;                      << 
314       }                                        << 
315       else if (fCdensity <= 10.5) {            << 
316         fX0density = 1.7;                      << 
317       }                                        << 
318       else if (fCdensity <= 11.0) {            << 
319         fX0density = 1.8;                      << 
320       }                                        << 
321       else if (fCdensity <= 11.5) {            << 
322         fX0density = 1.9;                      << 
323       }                                        << 
324       else if (fCdensity <= 12.25) {           << 
325         fX0density = 2.0;                      << 
326       }                                        << 
327       else if (fCdensity <= 13.804) {          << 
328         fX0density = 2.0;                      << 
329         fX1density = 5.0;                      << 
330       }                                        << 
331       else {                                   << 
332         fX0density = 0.326 * fCdensity - 2.5;  << 
333         fX1density = 5.0;                      << 
334       }                                        << 
335                                                   234 
336       // special: Hydrogen                     << 235     //
337       if (1 == nelm && 1 == Z0) {              << 236     // gases
338         fX0density = 1.837;                    << 237     //
339         fX1density = 3.0;                      << 238     if (State == kStateGas) { 
340         fMdensity = 4.754;                     << 
341       }                                        << 
342                                                   239 
343       // special: Helium                       << 240       const G4double ClimiG[] = { 10. , 10.5 , 11. , 11.5 , 12.25 , 13.804};
344       if (1 == nelm && 2 == Z0) {              << 241       const G4double X0valG[] = { 1.6 , 1.7 ,  1.8 ,  1.9 , 2.0   ,  2.0 };
345         fX0density = 2.191;                    << 242       const G4double X1valG[] = { 4.0 , 4.0 ,  4.0 ,  4.0 , 4.0   ,  5.0 };
346         fX1density = 3.0;                      << 243 
347         fMdensity = 3.297;                     << 244       icase = 5;
                                                   >> 245       fX0density = 0.326*fCdensity-2.5 ; fX1density = 5.0 ; fMdensity = 3. ; 
                                                   >> 246       while((icase > 0)&&(fCdensity < ClimiG[icase])) icase-- ;
                                                   >> 247       fX0density = X0valG[icase]  ; fX1density = X1valG[icase] ;
                                                   >> 248       
                                                   >> 249       //special: Hydrogen
                                                   >> 250       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) {
                                                   >> 251          fX0density = 1.837; fX1density = 3.0; fMdensity = 4.754;
                                                   >> 252       }
                                                   >> 253       
                                                   >> 254       //special: Helium
                                                   >> 255       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==2.)) {
                                                   >> 256          fX0density = 2.191; fX1density = 3.0; fMdensity = 3.297;
348       }                                           257       }
349     }                                             258     }
350   }                                               259   }
351                                                   260 
352   // change parameters if the gas is not in ST    261   // change parameters if the gas is not in STP.
353   // For the correction the density(STP) is ne << 262   // For the correction the density(STP) is needed. 
354   // Density(STP) is calculated here :         << 263   // Density(STP) is calculated here : 
355                                                << 264   
356   if (State == kStateGas) {                    << 265     
                                                   >> 266   if (State == kStateGas) { 
                                                   >> 267     G4double Density  = fMaterial->GetDensity();
357     G4double Pressure = fMaterial->GetPressure    268     G4double Pressure = fMaterial->GetPressure();
358     G4double Temp = fMaterial->GetTemperature( << 269     G4double Temp     = fMaterial->GetTemperature();
359                                                << 270       
360     G4double DensitySTP = density * STP_Pressu << 271     G4double DensitySTP = Density*STP_Pressure*Temp/(Pressure*STP_Temperature);
361                                                << 272 
362     G4double ParCorr = G4Log(density / Density << 273     G4double ParCorr = std::log(Density/DensitySTP);
363                                                << 274   
364     fCdensity -= ParCorr;                      << 275     fCdensity  -= ParCorr;
365     fX0density -= ParCorr / twoln10;           << 276     fX0density -= ParCorr/twoln10;
366     fX1density -= ParCorr / twoln10;           << 277     fX1density -= ParCorr/twoln10;
367   }                                            << 278   }
368                                                << 279 
369   // fAdensity parameter can be fixed for not  << 280   // fAdensity parameter can be fixed for not conductive materials 
370   if (0.0 == fD0density) {                     << 281   if(0.0 == fD0density) {
371     G4double Xa = fCdensity / twoln10;         << 282     G4double Xa = fCdensity/twoln10;
372     fAdensity = twoln10 * (Xa - fX0density) /  << 283     fAdensity = twoln10*(Xa-fX0density)
373   }                                            << 284       /std::pow((fX1density-fX0density),fMdensity);
                                                   >> 285   }
                                                   >> 286   /*  
                                                   >> 287   G4cout << "G4IonisParamMat: density effect data for <" << fMaterial->GetName() 
                                                   >> 288    << "> " << G4endl;
                                                   >> 289   G4cout << "Eplasma(eV)= " << fPlasmaEnergy/eV
                                                   >> 290    << " rho= " << fAdjustmentFactor
                                                   >> 291    << " -C= " << fCdensity 
                                                   >> 292    << " x0= " << fX0density
                                                   >> 293    << " x1= " << fX1density
                                                   >> 294    << " a= " << fAdensity
                                                   >> 295    << " m= " << fMdensity
                                                   >> 296    << G4endl;
                                                   >> 297   */
374 }                                                 298 }
375                                                   299 
376 //....oooOO0OOooo........oooOO0OOooo........oo    300 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
377                                                   301 
378 void G4IonisParamMat::ComputeFluctModel()         302 void G4IonisParamMat::ComputeFluctModel()
379 {                                                 303 {
380   // compute parameters for the energy loss fl    304   // compute parameters for the energy loss fluctuation model
381   // needs an 'effective Z'                    << 305   // needs an 'effective Z' 
382   G4double Zeff = 0.;                             306   G4double Zeff = 0.;
383   for (std::size_t i = 0; i < fMaterial->GetNu << 307   for (size_t i=0;i<fMaterial->GetNumberOfElements();i++) {
384     Zeff += (fMaterial->GetFractionVector())[i << 308      Zeff += (fMaterial->GetFractionVector())[i]
385   }                                            << 309              *((*(fMaterial->GetElementVector()))[i]->GetZ());
386   if (Zeff > 2.1) {                            << 310   }
387     fF2fluct = 2.0 / Zeff;                     << 311   if (Zeff > 2.) fF2fluct = 2./Zeff ;
388     fF1fluct = 1. - fF2fluct;                  << 312     else         fF2fluct = 0.;
389     fEnergy2fluct = 10. * Zeff * Zeff * CLHEP: << 313 
390     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 314   fF1fluct         = 1. - fF2fluct;
391     fLogEnergy1fluct = (fLogMeanExcEnergy - fF << 315   fEnergy2fluct    = 10.*Zeff*Zeff*eV;
392   } else if (Zeff > 1.1) {                     << 316   fLogEnergy2fluct = std::log(fEnergy2fluct);
393     fF2fluct = 0.0;                            << 317   fLogEnergy1fluct = (fLogMeanExcEnergy - fF2fluct*fLogEnergy2fluct)
394     fF1fluct = 1.0;                            << 318                      /fF1fluct;
395     fEnergy2fluct = 40. * CLHEP::eV;           << 319   fEnergy1fluct    = std::exp(fLogEnergy1fluct);
396     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 320   fEnergy0fluct    = 10.*eV;
397     fLogEnergy1fluct = fLogMeanExcEnergy;      << 
398   } else {                                     << 
399     fF2fluct = 0.0;                            << 
400     fF1fluct = 1.0;                            << 
401     fEnergy2fluct = 10. * CLHEP::eV;           << 
402     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 
403     fLogEnergy1fluct = fLogMeanExcEnergy;      << 
404   }                                            << 
405   fEnergy1fluct = G4Exp(fLogEnergy1fluct);     << 
406   fEnergy0fluct = 10. * CLHEP::eV;             << 
407   fRateionexcfluct = 0.4;                         321   fRateionexcfluct = 0.4;
408 }                                                 322 }
409                                                   323 
410 //....oooOO0OOooo........oooOO0OOooo........oo    324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
411                                                   325 
412 void G4IonisParamMat::ComputeIonParameters()      326 void G4IonisParamMat::ComputeIonParameters()
413 {                                                 327 {
414   // get elements in the actual material,         328   // get elements in the actual material,
415   const G4ElementVector* theElementVector = fM << 329   const G4ElementVector* theElementVector = fMaterial->GetElementVector() ;
416   const G4double* theAtomicNumDensityVector =  << 330   const G4double* theAtomicNumDensityVector =
417   const auto NumberOfElements = (G4int)fMateri << 331                          fMaterial->GetAtomicNumDensityVector() ;
                                                   >> 332   const G4int NumberOfElements = fMaterial->GetNumberOfElements() ;
418                                                   333 
419   //  loop for the elements in the material       334   //  loop for the elements in the material
420   //  to find out average values Z, vF, lF        335   //  to find out average values Z, vF, lF
421   G4double z(0.0), vF(0.0), lF(0.0), a23(0.0); << 336   G4double z(0.0), vF(0.0), lF(0.0), norm(0.0), a23(0.0);
422                                                   337 
423   G4Pow* g4pow = G4Pow::GetInstance();         << 338   if( 1 == NumberOfElements ) {
424   if (1 == NumberOfElements) {                 << 
425     const G4Element* element = (*theElementVec    339     const G4Element* element = (*theElementVector)[0];
426     z = element->GetZ();                          340     z = element->GetZ();
427     vF = element->GetIonisation()->GetFermiVel << 341     vF= element->GetIonisation()->GetFermiVelocity();
428     lF = element->GetIonisation()->GetLFactor( << 342     lF= element->GetIonisation()->GetLFactor();
429     a23 = 1.0 / g4pow->A23(element->GetN());   << 343     a23 = std::pow(element->GetN(),-2./3.);
430   }                                            << 344 
431   else {                                       << 345   } else {
432     G4double norm(0.0);                        << 346     for (G4int iel=0; iel<NumberOfElements; iel++)
433     for (G4int iel = 0; iel < NumberOfElements << 347       {
434       const G4Element* element = (*theElementV << 348         const G4Element* element = (*theElementVector)[iel] ;
435       const G4double weight = theAtomicNumDens << 349         const G4double weight = theAtomicNumDensityVector[iel] ;
436       norm += weight;                          << 350         norm += weight ;
437       z += element->GetZ() * weight;           << 351         z    += element->GetZ() * weight ;
438       vF += element->GetIonisation()->GetFermi << 352         vF   += element->GetIonisation()->GetFermiVelocity() * weight ;
439       lF += element->GetIonisation()->GetLFact << 353         lF   += element->GetIonisation()->GetLFactor() * weight ;
440       a23 += weight / g4pow->A23(element->GetN << 354   a23  += std::pow(element->GetN(),-2./3.) * weight ;
441     }                                          << 355       }
442     if (norm > 0.0) { norm = 1.0/norm; }       << 356     z  /= norm;
443     z *= norm;                                 << 357     vF /= norm;
444     vF *= norm;                                << 358     lF /= norm;
445     lF *= norm;                                << 359     a23 /= norm;
446     a23 *= norm;                               << 360   }  
447   }                                            << 361   fZeff        = z;
448   fZeff = z;                                   << 362   fLfactor     = lF;
449   fLfactor = lF;                               << 363   fFermiEnergy = 25.*keV*vF*vF;
450   fFermiEnergy = 25. * CLHEP::keV * vF * vF;   << 364   fInvA23      = a23;
451   fInvA23 = a23;                               << 
452 }                                                 365 }
453                                                   366 
454 //....oooOO0OOooo........oooOO0OOooo........oo    367 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
455                                                   368 
456 void G4IonisParamMat::SetMeanExcitationEnergy(    369 void G4IonisParamMat::SetMeanExcitationEnergy(G4double value)
457 {                                                 370 {
458   if (value == fMeanExcitationEnergy || value  << 371   if(value == fMeanExcitationEnergy || value <= 0.0) { return; }
459     return;                                    << 
460   }                                            << 
461   if (G4NistManager::Instance()->GetVerbose()  << 
462     G4cout << "G4Material: Mean excitation ene << 
463            << " Iold= " << fMeanExcitationEner << 
464            << G4endl;                          << 
465   }                                            << 
466                                                   372 
                                                   >> 373   /*
                                                   >> 374   if (G4NistManager::Instance()->GetVerbose() > 0) 
                                                   >> 375     G4cout << "G4Material: Mean excitation energy is changed for "
                                                   >> 376            << fMaterial->GetName()
                                                   >> 377            << " Iold= " << fMeanExcitationEnergy/eV
                                                   >> 378            << "eV; Inew= " << value/eV << " eV;"
                                                   >> 379            << G4endl;
                                                   >> 380   */
                                                   >> 381   
467   fMeanExcitationEnergy = value;                  382   fMeanExcitationEnergy = value;
                                                   >> 383   fLogMeanExcEnergy = std::log(value);
                                                   >> 384   ComputeDensityEffect();
                                                   >> 385   ComputeFluctModel();
                                                   >> 386 }
468                                                   387 
469   // add corrections to density effect         << 388 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
470   G4double newlog = G4Log(value);              << 
471   G4double corr = 2 * (newlog - fLogMeanExcEne << 
472   fCdensity += corr;                           << 
473   fX0density += corr / twoln10;                << 
474   fX1density += corr / twoln10;                << 
475                                                   389 
476   // recompute parameters of fluctuation model << 390 G4double G4IonisParamMat::FindMeanExcitationEnergy(const G4String& chFormula)
477   fLogMeanExcEnergy = newlog;                  << 391 {
478   ComputeFluctModel();                         << 392 
                                                   >> 393   // The data on mean excitation energy for compaunds
                                                   >> 394   // from "Stopping Powers for Electrons and Positrons"
                                                   >> 395   // ICRU Report N#37, 1984  (energy in eV)
                                                   >> 396 
                                                   >> 397   const size_t numberOfMolecula = 79 ;
                                                   >> 398   
                                                   >> 399   static G4String name[numberOfMolecula] = {
                                                   >> 400 
                                                   >> 401     // gas
                                                   >> 402     "NH_3",       "C_4H_10",    "CO_2",       "C_2H_6",      "C_7H_16",
                                                   >> 403     "C_6H_14",    "CH_4",       "NO",         "N_2O",        "C_8H_18",
                                                   >> 404     "C_5H_12",    "C_3H_8",     "H_2O-Gas", 
                                                   >> 405 
                                                   >> 406     // liquid
                                                   >> 407     "C_3H_6O",    "C_6H_5NH_2",  "C_6H_6",    "C_4H_9OH",    "CCl_4",    
                                                   >> 408     "C_6H_5Cl",   "CHCl_3",      "C_6H_12",   "C_6H_4Cl_2",  "C_4Cl_2H_8O", 
                                                   >> 409     "C_2Cl_2H_4", "(C_2H_5)_2O", "C_2H_5OH",  "C_3H_5(OH)_3","C_7H_16",     
                                                   >> 410     "C_6H_14",    "CH_3OH",      "C_6H_5NO_2","C_5H_12",     "C_3H_7OH",    
                                                   >> 411     "C_5H_5N",    "C_8H_8",      "C_2Cl_4",   "C_7H_8",      "C_2Cl_3H",    
                                                   >> 412     "H_2O",       "C_8H_10",
                                                   >> 413 
                                                   >> 414     //solid
                                                   >> 415     "C_5H_5N_5",  "C_5H_5N_5O",  "(C_6H_11NO)-nylon",  "C_25H_52", 
                                                   >> 416     "(C_2H_4)-Polyethylene",     "(C_5H_8O-2)-Polymethil_Methacrylate",   
                                                   >> 417     "(C_8H_8)-Polystyrene",      "A-150-tissue",       "Al_2O_3",  "CaF_2", 
                                                   >> 418     "LiF",        "Photo_Emulsion",  "(C_2F_4)-Teflon",  "SiO_2"     
                                                   >> 419 
                                                   >> 420   } ;
                                                   >> 421     
                                                   >> 422   static G4double meanExcitation[numberOfMolecula] = {
                                                   >> 423 
                                                   >> 424     53.7,   48.3,  85.0,  45.4,  49.2,
                                                   >> 425     49.1,   41.7,  87.8,  84.9,  49.5,
                                                   >> 426     48.2,   47.1,  71.6,
                                                   >> 427 
                                                   >> 428     64.2,   66.2,  63.4,  59.9,  166.3,
                                                   >> 429     89.1,  156.0,  56.4, 106.5,  103.3, 
                                                   >> 430    111.9,   60.0,  62.9,  72.6,   54.4,  
                                                   >> 431     54.0,  67.6,   75.8,  53.6,   61.1,  
                                                   >> 432     66.2,  64.0,  159.2,  62.5,  148.1,  
                                                   >> 433     75.0,  61.8,
                                                   >> 434 
                                                   >> 435     71.4,  75.0,   63.9,  48.3,   57.4,
                                                   >> 436     74.0,  68.7,   65.1, 145.2,  166.,
                                                   >> 437     94.0, 331.0,   99.1, 139.2 
                                                   >> 438 
                                                   >> 439   } ;
                                                   >> 440 
                                                   >> 441   G4double x = fMeanExcitationEnergy;
                                                   >> 442 
                                                   >> 443   for(size_t i=0; i<numberOfMolecula; i++) {
                                                   >> 444     if(chFormula == name[i]) {
                                                   >> 445       x = meanExcitation[i]*eV;
                                                   >> 446       break;
                                                   >> 447     }
                                                   >> 448   }
                                                   >> 449   return x;
479 }                                                 450 }
480                                                   451 
481 //....oooOO0OOooo........oooOO0OOooo........oo    452 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
482                                                   453 
483 void G4IonisParamMat::SetDensityEffectParamete << 454 G4IonisParamMat::~G4IonisParamMat()
484   G4double cd, G4double md, G4double ad, G4dou << 
485 {                                                 455 {
486   // no check on consistence of user parameter << 456   if (fShellCorrectionVector) { delete [] fShellCorrectionVector; }
487   G4AutoLock l(&ionisMutex);                   << 457   if (fDensityData) { delete fDensityData; }
488   fCdensity = cd;                              << 458   fDensityData = 0;
489   fMdensity = md;                              << 459   fShellCorrectionVector = 0;
490   fAdensity = ad;                              << 
491   fX0density = x0;                             << 
492   fX1density = x1;                             << 
493   fD0density = d0;                             << 
494   l.unlock();                                  << 
495 }                                                 460 }
496                                                   461 
497 //....oooOO0OOooo........oooOO0OOooo........oo    462 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
498                                                   463 
499 void G4IonisParamMat::SetDensityEffectParamete << 464 G4IonisParamMat::G4IonisParamMat(const G4IonisParamMat& right)
500 {                                              << 465 {
501   G4AutoLock l(&ionisMutex);                   << 466   fShellCorrectionVector = 0;
502   const G4IonisParamMat* ipm = bmat->GetIonisa << 467   fMaterial = 0;
503   fCdensity = ipm->GetCdensity();              << 468   *this = right;
504   fMdensity = ipm->GetMdensity();              << 
505   fAdensity = ipm->GetAdensity();              << 
506   fX0density = ipm->GetX0density();            << 
507   fX1density = ipm->GetX1density();            << 
508   fD0density = ipm->GetD0density();            << 
509                                                << 
510   G4double corr = G4Log(bmat->GetDensity() / f << 
511   fCdensity += corr;                           << 
512   fX0density += corr / twoln10;                << 
513   fX1density += corr / twoln10;                << 
514   l.unlock();                                  << 
515 }                                              << 
516                                                << 
517 //....oooOO0OOooo........oooOO0OOooo........oo << 
518                                                << 
519 void G4IonisParamMat::ComputeDensityEffectOnFl << 
520 {                                              << 
521   if (val) {                                   << 
522     if (nullptr == fDensityEffectCalc) {       << 
523       G4int n = 0;                             << 
524       for (std::size_t i = 0; i < fMaterial->G << 
525         const G4int Z = fMaterial->GetElement( << 
526         n += G4AtomicShells::GetNumberOfShells << 
527       }                                        << 
528       // The last level is the conduction leve << 
529       // make a dummy conductor level with zer << 
530       fDensityEffectCalc = new G4DensityEffect << 
531     }                                          << 
532   }                                            << 
533   else {                                       << 
534     delete fDensityEffectCalc;                 << 
535     fDensityEffectCalc = nullptr;              << 
536   }                                            << 
537 }                                                 469 }
538                                                   470 
539 //....oooOO0OOooo........oooOO0OOooo........oo    471 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
540                                                   472 
541 G4double G4IonisParamMat::FindMeanExcitationEn << 473 const G4IonisParamMat& G4IonisParamMat::operator=(const G4IonisParamMat& right)
542 {                                                 474 {
543   G4double res = 0.0;                          << 475   if (this != &right)
544   // data from density effect data             << 476     {
545   if (fDensityData != nullptr) {               << 477       fMaterial                 = right.fMaterial;
546     G4int idx = fDensityData->GetIndex(mat->Ge << 478       fMeanExcitationEnergy     = right.fMeanExcitationEnergy;
547     if (idx >= 0) {                            << 479       fLogMeanExcEnergy         = right.fLogMeanExcEnergy;
548       res = fDensityData->GetMeanIonisationPot << 480       if(fShellCorrectionVector){ delete [] fShellCorrectionVector; }      
549     }                                          << 481       fShellCorrectionVector    = new G4double[3];             
550   }                                            << 482       fShellCorrectionVector[0] = right.fShellCorrectionVector[0];
                                                   >> 483       fShellCorrectionVector[1] = right.fShellCorrectionVector[1];
                                                   >> 484       fShellCorrectionVector[2] = right.fShellCorrectionVector[2];
                                                   >> 485       fTaul                     = right.fTaul;
                                                   >> 486       fCdensity                 = right.fCdensity;
                                                   >> 487       fMdensity                 = right.fMdensity;
                                                   >> 488       fAdensity                 = right.fAdensity;
                                                   >> 489       fX0density                = right.fX0density;
                                                   >> 490       fX1density                = right.fX1density;
                                                   >> 491       fD0density                = right.fD0density;
                                                   >> 492       fPlasmaEnergy             = right.fPlasmaEnergy;
                                                   >> 493       fAdjustmentFactor         = right.fAdjustmentFactor;
                                                   >> 494       fF1fluct                  = right.fF1fluct;
                                                   >> 495       fF2fluct                  = right.fF2fluct;
                                                   >> 496       fEnergy1fluct             = right.fEnergy1fluct;
                                                   >> 497       fLogEnergy1fluct          = right.fLogEnergy1fluct;      
                                                   >> 498       fEnergy2fluct             = right.fEnergy2fluct;
                                                   >> 499       fLogEnergy2fluct          = right.fLogEnergy2fluct;      
                                                   >> 500       fEnergy0fluct             = right.fEnergy0fluct;
                                                   >> 501       fRateionexcfluct          = right.fRateionexcfluct;
                                                   >> 502       fZeff                     = right.fZeff;
                                                   >> 503       fFermiEnergy              = right.fFermiEnergy;
                                                   >> 504       fLfactor                  = right.fLfactor;
                                                   >> 505       fInvA23                   = right.fInvA23;
                                                   >> 506       fBirks                    = right.fBirks;
                                                   >> 507       fMeanEnergyPerIon         = right.fMeanEnergyPerIon;
                                                   >> 508       fDensityData              = right.fDensityData;
                                                   >> 509     } 
                                                   >> 510   return *this;
                                                   >> 511 }
551                                                   512 
552   // The data on mean excitation energy for co << 513 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
553   // from "Stopping Powers for Electrons and P << 514 
554   // ICRU Report N#37, 1984  (energy in eV)    << 515 G4int G4IonisParamMat::operator==(const G4IonisParamMat& right) const
555   // this value overwrites Density effect data << 516 {
556   G4String chFormula = mat->GetChemicalFormula << 517   return (this == (G4IonisParamMat*) &right);
557   if (! chFormula.empty()) {                   << 
558     static const size_t numberOfMolecula = 54; << 
559     // clang-format off                        << 
560     static const G4String name[numberOfMolecul << 
561       // gas 0 - 12                            << 
562       "NH_3",       "C_4H_10",     "CO_2",     << 
563       // "G4_AMMONIA", "G4_BUTANE","G4_CARBON_ << 
564       "C_6H_14-Gas",   "CH_4",     "NO",       << 
565       // "G4_N-HEXANE" , "G4_METHANE", "x", "G << 
566       "C_5H_12-Gas",   "C_3H_8",   "H_2O-Gas", << 
567       // "G4_N-PENTANE", "G4_PROPANE", "G4_WAT << 
568                                                << 
569       // liquid 13 - 39                        << 
570       "C_3H_6O",    "C_6H_5NH_2",  "C_6H_6",   << 
571       //"G4_ACETONE","G4_ANILINE","G4_BENZENE" << 
572       "C_6H_5Cl",   "CHCl_3",      "C_6H_12",  << 
573       //"G4_CHLOROBENZENE","G4_CHLOROFORM","G4 << 
574       //"G4_DICHLORODIETHYL_ETHER"             << 
575       "C_2Cl_2H_4", "(C_2H_5)_2O", "C_2H_5OH", << 
576       //"G4_1,2-DICHLOROETHANE","G4_DIETHYL_ET << 
577       "C_6H_14",    "CH_3OH",      "C_6H_5NO_2 << 
578       //"G4_N-HEXANE","G4_METHANOL","G4_NITROB << 
579       "C_5H_5N",    "C_8H_8",      "C_2Cl_4",  << 
580       //"G4_PYRIDINE","G4_POLYSTYRENE","G4_TET << 
581       "H_2O",       "C_8H_10",                 << 
582       // "G4_WATER", "G4_XYLENE"               << 
583                                                << 
584       // solid 40 - 53                         << 
585       "C_5H_5N_5",  "C_5H_5N_5O",  "(C_6H_11NO << 
586       // "G4_ADENINE", "G4_GUANINE", "G4_NYLON << 
587       "(C_2H_4)-Polyethylene",     "(C_5H_8O_2 << 
588       // "G4_ETHYLENE", "G4_PLEXIGLASS"        << 
589       "(C_8H_8)-Polystyrene",      "A-150-tiss << 
590       // "G4_POLYSTYRENE", "G4_A-150_TISSUE",  << 
591       "LiF",        "Photo_Emulsion",  "(C_2F_ << 
592       // "G4_LITHIUM_FLUORIDE", "G4_PHOTO_EMUL << 
593     } ;                                        << 
594                                                << 
595     static const G4double meanExcitation[numbe << 
596                                                << 
597       53.7,   48.3,  85.0,  45.4,  49.2,       << 
598       49.1,   41.7,  87.8,  84.9,  49.5,       << 
599       48.2,   47.1,  71.6,                     << 
600                                                << 
601       64.2,   66.2,  63.4,  59.9,  166.3,      << 
602       89.1,  156.0,  56.4, 106.5,  103.3,      << 
603       111.9,   60.0,  62.9,  72.6,   54.4,     << 
604       54.0,  67.6,   75.8,  53.6,   61.1,      << 
605       66.2,  64.0,  159.2,  62.5,  148.1,      << 
606       75.0,  61.8,                             << 
607                                                << 
608       71.4,  75.0,   63.9,  48.3,   57.4,      << 
609       74.0,  68.7,   65.1, 145.2,  166.,       << 
610       94.0, 331.0,   99.1, 139.2               << 
611     };                                         << 
612     // clang-format on                         << 
613                                                << 
614     for (std::size_t i = 0; i < numberOfMolecu << 
615       if (chFormula == name[i]) {              << 
616         res = meanExcitation[i] * CLHEP::eV;   << 
617         break;                                 << 
618       }                                        << 
619     }                                          << 
620   }                                            << 
621   return res;                                  << 
622 }                                                 518 }
                                                   >> 519 
                                                   >> 520 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
                                                   >> 521 
                                                   >> 522 G4int G4IonisParamMat::operator!=(const G4IonisParamMat& right) const
                                                   >> 523 {
                                                   >> 524   return (this != (G4IonisParamMat*) &right);
                                                   >> 525 }
                                                   >> 526 
                                                   >> 527 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
                                                   >> 528 
623                                                   529