Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/src/G4IonisParamMat.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /materials/src/G4IonisParamMat.cc (Version 11.3.0) and /materials/src/G4IonisParamMat.cc (Version 9.2.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
                                                   >>  25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4IonisParamMat.cc,v 1.25 2008/07/08 10:34:56 vnivanch Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-02-patch-04 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 25                                                    32 
 26 // 09-07-98, data moved from G4Material, M.Mai     33 // 09-07-98, data moved from G4Material, M.Maire
 27 // 18-07-98, bug corrected in ComputeDensityEf     34 // 18-07-98, bug corrected in ComputeDensityEffect() for gas
 28 // 16-01-01, bug corrected in ComputeDensityEf     35 // 16-01-01, bug corrected in ComputeDensityEffect() E100eV (L.Urban)
 29 // 08-02-01, fShellCorrectionVector correctly      36 // 08-02-01, fShellCorrectionVector correctly handled (mma)
 30 // 28-10-02, add setMeanExcitationEnergy (V.Iv     37 // 28-10-02, add setMeanExcitationEnergy (V.Ivanchenko)
 31 // 06-09-04, factor 2 to shell correction term <<  38 // 06-09-04, factor 2 to shell correction term (V.Ivanchenko) 
 32 // 10-05-05, add a missing coma in FindMeanExc     39 // 10-05-05, add a missing coma in FindMeanExcitationEnergy() - Bug#746 (mma)
 33 // 27-09-07, add computation of parameters for     40 // 27-09-07, add computation of parameters for ions (V.Ivanchenko)
 34 // 04-03-08, remove reference to G4NistManager     41 // 04-03-08, remove reference to G4NistManager. Add fBirks constant (mma)
 35 // 30-10-09, add G4DensityEffectData class and << 
 36                                                    42 
 37 #include "G4IonisParamMat.hh"                  <<  43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 38                                                    44 
 39 #include "G4AtomicShells.hh"                   <<  45 #include "G4IonisParamMat.hh"
 40 #include "G4AutoLock.hh"                       << 
 41 #include "G4DensityEffectData.hh"              << 
 42 #include "G4Exp.hh"                            << 
 43 #include "G4Log.hh"                            << 
 44 #include "G4Material.hh"                           46 #include "G4Material.hh"
 45 #include "G4NistManager.hh"                    << 
 46 #include "G4PhysicalConstants.hh"              << 
 47 #include "G4Pow.hh"                            << 
 48 #include "G4SystemOfUnits.hh"                  << 
 49                                                << 
 50 G4DensityEffectData* G4IonisParamMat::fDensity << 
 51                                                << 
 52 namespace                                      << 
 53 {                                              << 
 54   G4Mutex ionisMutex = G4MUTEX_INITIALIZER;    << 
 55 }                                              << 
 56                                                    47 
 57 //....oooOO0OOooo........oooOO0OOooo........oo     48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 58                                                    49 
 59 G4IonisParamMat::G4IonisParamMat(const G4Mater <<  50 G4IonisParamMat::G4IonisParamMat(G4Material* material)
                                                   >>  51   : fMaterial(material)
 60 {                                                  52 {
 61   fBirks = 0.;                                 << 
 62   fMeanEnergyPerIon = 0.0;                     << 
 63   twoln10 = 2. * G4Pow::GetInstance()->logZ(10 << 
 64                                                << 
 65   // minimal set of default parameters for den << 
 66   fCdensity = 0.0;                             << 
 67   fD0density = 0.0;                            << 
 68   fAdjustmentFactor = 1.0;                     << 
 69   if (fDensityData == nullptr) {               << 
 70     fDensityData = new G4DensityEffectData();  << 
 71   }                                            << 
 72   fDensityEffectCalc = nullptr;                << 
 73                                                << 
 74   // compute parameters                        << 
 75   ComputeMeanParameters();                         53   ComputeMeanParameters();
 76   ComputeDensityEffectParameters();            <<  54   ComputeDensityEffect();
 77   ComputeFluctModel();                             55   ComputeFluctModel();
 78   ComputeIonParameters();                          56   ComputeIonParameters();
                                                   >>  57   
                                                   >>  58   fBirks = 0.;
                                                   >>  59   fMeanEnergyPerIon = 0.;
 79 }                                                  60 }
 80                                                    61 
 81 //....oooOO0OOooo........oooOO0OOooo........oo     62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
 82                                                    63 
 83 G4IonisParamMat::~G4IonisParamMat()            <<  64 // Fake default constructor - sets only member data and allocates memory
 84 {                                              <<  65 //                            for usage restricted to object persistency
 85   delete fDensityEffectCalc;                   << 
 86   delete[] fShellCorrectionVector;             << 
 87   delete fDensityData;                         << 
 88   fDensityData = nullptr;                      << 
 89   fShellCorrectionVector = nullptr;            << 
 90   fDensityEffectCalc = nullptr;                << 
 91 }                                              << 
 92                                                    66 
 93 //....oooOO0OOooo........oooOO0OOooo........oo <<  67 G4IonisParamMat::G4IonisParamMat(__void__&)
 94                                                <<  68   : fMaterial(0), fShellCorrectionVector(0)
 95 G4double G4IonisParamMat::GetDensityCorrection << 
 96 {                                                  69 {
 97   // x = log10(beta*gamma)                     << 
 98   G4double y = 0.0;                            << 
 99   if (x < fX0density) {                        << 
100     if (fD0density > 0.0) {                    << 
101       y = fD0density * G4Exp(twoln10 * (x - fX << 
102     }                                          << 
103   }                                            << 
104   else if (x >= fX1density) {                  << 
105     y = twoln10 * x - fCdensity;               << 
106   }                                            << 
107   else {                                       << 
108     y = twoln10 * x - fCdensity + fAdensity *  << 
109   }                                            << 
110   return y;                                    << 
111 }                                                  70 }
112                                                    71 
113 //....oooOO0OOooo........oooOO0OOooo........oo     72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
114                                                    73 
115 void G4IonisParamMat::ComputeMeanParameters()      74 void G4IonisParamMat::ComputeMeanParameters()
116 {                                                  75 {
117   // compute mean excitation energy and shell      76   // compute mean excitation energy and shell correction vector
                                                   >>  77 
118   fTaul = (*(fMaterial->GetElementVector()))[0     78   fTaul = (*(fMaterial->GetElementVector()))[0]->GetIonisation()->GetTaul();
119                                                    79 
120   std::size_t nElements = fMaterial->GetNumber <<  80   fMeanExcitationEnergy = 0.;
                                                   >>  81   fLogMeanExcEnergy = 0.;
                                                   >>  82 
                                                   >>  83   size_t nElements = fMaterial->GetNumberOfElements();
121   const G4ElementVector* elmVector = fMaterial     84   const G4ElementVector* elmVector = fMaterial->GetElementVector();
122   const G4double* nAtomsPerVolume = fMaterial-     85   const G4double* nAtomsPerVolume = fMaterial->GetVecNbOfAtomsPerVolume();
123                                                    86 
124   fMeanExcitationEnergy = FindMeanExcitationEn <<  87   const G4String ch = fMaterial->GetChemicalFormula();
125   fLogMeanExcEnergy = 0.;                      <<  88 
                                                   >>  89   if(ch != "") fMeanExcitationEnergy = FindMeanExcitationEnergy(ch);
126                                                    90 
127   // Chemical formula defines mean excitation      91   // Chemical formula defines mean excitation energy
128   if (fMeanExcitationEnergy > 0.0) {           <<  92   if(fMeanExcitationEnergy > 0.0) {
129     fLogMeanExcEnergy = G4Log(fMeanExcitationE <<  93     fLogMeanExcEnergy = std::log(fMeanExcitationEnergy);
130                                                    94 
131     // Compute average                         <<  95     // Compute average 
132   }                                            <<  96   } else {
133   else {                                       <<  97     for (size_t i=0; i < nElements; i++) {
134     for (std::size_t i = 0; i < nElements; ++i << 
135       const G4Element* elm = (*elmVector)[i];      98       const G4Element* elm = (*elmVector)[i];
136       fLogMeanExcEnergy +=                     <<  99       fLogMeanExcEnergy += nAtomsPerVolume[i]*elm->GetZ()
137         nAtomsPerVolume[i] * elm->GetZ() * G4L << 100   *std::log(elm->GetIonisation()->GetMeanExcitationEnergy());
138     }                                             101     }
139     fLogMeanExcEnergy /= fMaterial->GetTotNbOf    102     fLogMeanExcEnergy /= fMaterial->GetTotNbOfElectPerVolume();
140     fMeanExcitationEnergy = G4Exp(fLogMeanExcE << 103     fMeanExcitationEnergy = std::exp(fLogMeanExcEnergy);
141   }                                               104   }
142                                                   105 
143   fShellCorrectionVector = new G4double[3];    << 106   fShellCorrectionVector = new G4double[3]; //[3]
144                                                   107 
145   for (G4int j = 0; j <= 2; ++j) {             << 108   for (G4int j=0; j<=2; j++)
                                                   >> 109   {
146     fShellCorrectionVector[j] = 0.;               110     fShellCorrectionVector[j] = 0.;
147                                                   111 
148     for (std::size_t k = 0; k < nElements; ++k << 112     for (size_t k=0; k<nElements; k++) {
149       fShellCorrectionVector[j] +=             << 113       fShellCorrectionVector[j] += nAtomsPerVolume[k]
150         nAtomsPerVolume[k] * (((*elmVector)[k] << 114   *(((*elmVector)[k])->GetIonisation()->GetShellCorrectionVector())[j];
151     }                                             115     }
152     fShellCorrectionVector[j] *= 2.0 / fMateri << 116     fShellCorrectionVector[j] *= 2.0/fMaterial->GetTotNbOfElectPerVolume();
153   }                                            << 117   } 
154 }                                                 118 }
155                                                   119 
156 //....oooOO0OOooo........oooOO0OOooo........oo    120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
157                                                << 121                     
158 G4DensityEffectData* G4IonisParamMat::GetDensi << 122 void G4IonisParamMat::ComputeDensityEffect()
159   return fDensityData;                         << 
160 }                                              << 
161                                                << 
162 //....oooOO0OOooo........oooOO0OOooo........oo << 
163                                                << 
164 void G4IonisParamMat::ComputeDensityEffectPara << 
165 {                                                 123 {
166   G4State State = fMaterial->GetState();       << 124   // Compute parameters for the density effect correction in DE/Dx formula.
167   G4double density = fMaterial->GetDensity();  << 125   // The parametrization is from R.M. Sternheimer, Phys. Rev.B,3:3681 (1971)
168                                                << 
169   // Check if density effect data exist in the << 
170   // R.M. Sternheimer, Atomic Data and Nuclear << 
171   // or is assign to one of data set in this t << 
172   G4int idx = fDensityData->GetIndex(fMaterial << 
173   auto nelm = (G4int)fMaterial->GetNumberOfEle << 
174   G4int Z0 = ((*(fMaterial->GetElementVector() << 
175   const G4Material* bmat = fMaterial->GetBaseM << 
176   G4NistManager* nist = G4NistManager::Instanc << 
177                                                << 
178   // arbitrary empirical limits                << 
179   // parameterisation with very different dens << 
180   static const G4double corrmax = 1.;          << 
181   static const G4double massfracmax = 0.9;     << 
182                                                << 
183   // for simple non-NIST materials             << 
184   G4double corr = 0.0;                         << 
185                                                << 
186   if (idx < 0 && 1 == nelm) {                  << 
187     G4int z = (1 == Z0 && State == kStateLiqui << 
188     idx = fDensityData->GetElementIndex(z);    << 
189                                                << 
190     // Correction for base material or for non << 
191     // Except cases of very different density  << 
192     if (idx >= 0 && 0 < z) {                   << 
193       G4double dens = nist->GetNominalDensity( << 
194       if (dens <= 0.0) {                       << 
195         idx = -1;                              << 
196       }                                        << 
197       else {                                   << 
198         corr = G4Log(dens / density);          << 
199         if (std::abs(corr) > corrmax) {        << 
200           idx = -1;                            << 
201         }                                      << 
202       }                                        << 
203     }                                          << 
204   }                                            << 
205   // for base material case                    << 
206   if (idx < 0 && nullptr != bmat) {            << 
207     idx = fDensityData->GetIndex(bmat->GetName << 
208     if (idx >= 0) {                            << 
209       corr = G4Log(bmat->GetDensity() / densit << 
210       if (std::abs(corr) > corrmax) {          << 
211         idx = -1;                              << 
212       }                                        << 
213     }                                          << 
214   }                                            << 
215                                                << 
216   // for compound non-NIST materials with one  << 
217   if (idx < 0 && 1 < nelm) {                   << 
218     const G4double tot = fMaterial->GetTotNbOf << 
219     for (G4int i = 0; i < nelm; ++i) {         << 
220       const G4double frac = fMaterial->GetVecN << 
221       if (frac > massfracmax) {                << 
222         Z0 = ((*(fMaterial->GetElementVector() << 
223         idx = fDensityData->GetElementIndex(Z0 << 
224         G4double dens = nist->GetNominalDensit << 
225         if (idx >= 0 && dens > 0.0) {          << 
226           corr = G4Log(dens / density);        << 
227           if (std::abs(corr) > corrmax) {      << 
228             idx = -1;                          << 
229           }                                    << 
230           else {                               << 
231             break;                             << 
232           }                                    << 
233         }                                      << 
234       }                                        << 
235     }                                          << 
236   }                                            << 
237                                                << 
238   if (idx >= 0) {                              << 
239     // Take parameters for the density effect  << 
240     // R.M. Sternheimer et al. Density Effect  << 
241     // of Charged Particles in Various Substan << 
242     // Atom. Data Nucl. Data Tabl. 30 (1984) 2 << 
243                                                << 
244     fCdensity = fDensityData->GetCdensity(idx) << 
245     fMdensity = fDensityData->GetMdensity(idx) << 
246     fAdensity = fDensityData->GetAdensity(idx) << 
247     fX0density = fDensityData->GetX0density(id << 
248     fX1density = fDensityData->GetX1density(id << 
249     fD0density = fDensityData->GetDelta0densit << 
250     fPlasmaEnergy = fDensityData->GetPlasmaEne << 
251     fAdjustmentFactor = fDensityData->GetAdjus << 
252                                                << 
253     // parameter C is computed and not taken f << 
254     // fCdensity = 1. + 2*G4Log(fMeanExcitatio << 
255     // G4cout << "IonisParamMat: " << fMateria << 
256     //     << "  Cst= " << Cdensity << " C= "  << 
257                                                << 
258     // correction on nominal density           << 
259     fCdensity += corr;                         << 
260     fX0density += corr / twoln10;              << 
261     fX1density += corr / twoln10;              << 
262   }                                            << 
263   else {                                       << 
264     static const G4double Cd2 = 4 * CLHEP::pi  << 
265     fPlasmaEnergy = std::sqrt(Cd2 * fMaterial- << 
266                                                << 
267     // Compute parameters for the density effe << 
268     // The parametrization is from R.M. Sternh << 
269     G4int icase;                               << 
270                                                << 
271     fCdensity = 1. + 2 * G4Log(fMeanExcitation << 
272     //                                         << 
273     // condensed materials                     << 
274     //                                         << 
275     if ((State == kStateSolid) || (State == kS << 
276       static const G4double E100eV = 100. * CL << 
277       static const G4double ClimiS[] = {3.681, << 
278       static const G4double X0valS[] = {1.0, 1 << 
279       static const G4double X1valS[] = {2.0, 3 << 
280                                                << 
281       if (fMeanExcitationEnergy < E100eV) {    << 
282         icase = 0;                             << 
283       }                                        << 
284       else {                                   << 
285         icase = 1;                             << 
286       }                                        << 
287                                                << 
288       if (fCdensity < ClimiS[icase]) {         << 
289         fX0density = 0.2;                      << 
290       }                                        << 
291       else {                                   << 
292         fX0density = 0.326 * fCdensity - X0val << 
293       }                                        << 
294                                                << 
295       fX1density = X1valS[icase];              << 
296       fMdensity = 3.0;                         << 
297                                                << 
298       // special: Hydrogen                     << 
299       if (1 == nelm && 1 == Z0) {              << 
300         fX0density = 0.425;                    << 
301         fX1density = 2.0;                      << 
302         fMdensity = 5.949;                     << 
303       }                                        << 
304     }                                          << 
305     else {                                     << 
306       //                                       << 
307       // gases                                 << 
308       //                                       << 
309       fMdensity = 3.;                          << 
310       fX1density = 4.0;                        << 
311                                                << 
312       if (fCdensity <= 10.) {                  << 
313         fX0density = 1.6;                      << 
314       }                                        << 
315       else if (fCdensity <= 10.5) {            << 
316         fX0density = 1.7;                      << 
317       }                                        << 
318       else if (fCdensity <= 11.0) {            << 
319         fX0density = 1.8;                      << 
320       }                                        << 
321       else if (fCdensity <= 11.5) {            << 
322         fX0density = 1.9;                      << 
323       }                                        << 
324       else if (fCdensity <= 12.25) {           << 
325         fX0density = 2.0;                      << 
326       }                                        << 
327       else if (fCdensity <= 13.804) {          << 
328         fX0density = 2.0;                      << 
329         fX1density = 5.0;                      << 
330       }                                        << 
331       else {                                   << 
332         fX0density = 0.326 * fCdensity - 2.5;  << 
333         fX1density = 5.0;                      << 
334       }                                        << 
335                                                << 
336       // special: Hydrogen                     << 
337       if (1 == nelm && 1 == Z0) {              << 
338         fX0density = 1.837;                    << 
339         fX1density = 3.0;                      << 
340         fMdensity = 4.754;                     << 
341       }                                        << 
342                                                << 
343       // special: Helium                       << 
344       if (1 == nelm && 2 == Z0) {              << 
345         fX0density = 2.191;                    << 
346         fX1density = 3.0;                      << 
347         fMdensity = 3.297;                     << 
348       }                                        << 
349     }                                          << 
350   }                                            << 
351                                                   126 
352   // change parameters if the gas is not in ST << 127   const G4double Cd2 = 4*pi*hbarc_squared*classic_electr_radius;
353   // For the correction the density(STP) is ne << 128   const G4double twoln10 = 2.*std::log(10.);
354   // Density(STP) is calculated here :         << 
355                                                   129 
356   if (State == kStateGas) {                    << 130   G4int icase;
357     G4double Pressure = fMaterial->GetPressure << 131   
358     G4double Temp = fMaterial->GetTemperature( << 132   fCdensity = 1. + std::log(fMeanExcitationEnergy*fMeanExcitationEnergy
                                                   >> 133               /(Cd2*fMaterial->GetTotNbOfElectPerVolume()));
359                                                   134 
360     G4double DensitySTP = density * STP_Pressu << 135   //
361                                                << 136   // condensed materials
362     G4double ParCorr = G4Log(density / Density << 137   //
363                                                << 138   G4State State = fMaterial->GetState();
364     fCdensity -= ParCorr;                      << 139   
365     fX0density -= ParCorr / twoln10;           << 140   if ((State == kStateSolid)||(State == kStateLiquid)) {
366     fX1density -= ParCorr / twoln10;           << 
367   }                                            << 
368                                                   141 
369   // fAdensity parameter can be fixed for not  << 142       const G4double E100eV  = 100.*eV; 
370   if (0.0 == fD0density) {                     << 143       const G4double ClimiS[] = {3.681 , 5.215 };
371     G4double Xa = fCdensity / twoln10;         << 144       const G4double X0valS[] = {1.0   , 1.5   };
372     fAdensity = twoln10 * (Xa - fX0density) /  << 145       const G4double X1valS[] = {2.0   , 3.0   };
373   }                                            << 146                                 
                                                   >> 147       if(fMeanExcitationEnergy < E100eV) icase = 0;
                                                   >> 148          else                            icase = 1;
                                                   >> 149 
                                                   >> 150       if(fCdensity < ClimiS[icase]) fX0density = 0.2;
                                                   >> 151          else                       fX0density = 0.326*fCdensity-X0valS[icase];
                                                   >> 152 
                                                   >> 153       fX1density = X1valS[icase] ; fMdensity = 3.0;
                                                   >> 154       
                                                   >> 155       //special: Hydrogen
                                                   >> 156       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) {
                                                   >> 157          fX0density = 0.425; fX1density = 2.0; fMdensity = 5.949;
                                                   >> 158       }
                                                   >> 159   }
                                                   >> 160 
                                                   >> 161   //
                                                   >> 162   // gases
                                                   >> 163   //
                                                   >> 164   if (State == kStateGas) { 
                                                   >> 165 
                                                   >> 166       const G4double ClimiG[] = { 10. , 10.5 , 11. , 11.5 , 12.25 , 13.804};
                                                   >> 167       const G4double X0valG[] = { 1.6 , 1.7 ,  1.8 ,  1.9 , 2.0   ,  2.0 };
                                                   >> 168       const G4double X1valG[] = { 4.0 , 4.0 ,  4.0 ,  4.0 , 4.0   ,  5.0 };
                                                   >> 169 
                                                   >> 170       icase = 5;
                                                   >> 171       fX0density = 0.326*fCdensity-2.5 ; fX1density = 5.0 ; fMdensity = 3. ; 
                                                   >> 172       while((icase > 0)&&(fCdensity < ClimiG[icase])) icase-- ;
                                                   >> 173       fX0density = X0valG[icase]  ; fX1density = X1valG[icase] ;
                                                   >> 174       
                                                   >> 175       //special: Hydrogen
                                                   >> 176       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==1.)) {
                                                   >> 177          fX0density = 1.837; fX1density = 3.0; fMdensity = 4.754;
                                                   >> 178       }
                                                   >> 179       
                                                   >> 180       //special: Helium
                                                   >> 181       if ((fMaterial->GetNumberOfElements()==1)&&(fMaterial->GetZ()==2.)) {
                                                   >> 182          fX0density = 2.191; fX1density = 3.0; fMdensity = 3.297;
                                                   >> 183       }
                                                   >> 184 
                                                   >> 185       // change parameters if the gas is not in STP.
                                                   >> 186       // For the correction the density(STP) is needed. 
                                                   >> 187       // Density(STP) is calculated here : 
                                                   >> 188       
                                                   >> 189       G4double Density  = fMaterial->GetDensity();
                                                   >> 190       G4double Pressure = fMaterial->GetPressure();
                                                   >> 191       G4double Temp     = fMaterial->GetTemperature();
                                                   >> 192       
                                                   >> 193      G4double DensitySTP = Density*STP_Pressure*Temp/(Pressure*STP_Temperature);
                                                   >> 194 
                                                   >> 195       G4double ParCorr = std::log(Density/DensitySTP);
                                                   >> 196   
                                                   >> 197       fCdensity  -= ParCorr;
                                                   >> 198       fX0density -= ParCorr/twoln10;
                                                   >> 199       fX1density -= ParCorr/twoln10;
                                                   >> 200   }
                                                   >> 201 
                                                   >> 202   G4double Xa = fCdensity/twoln10;
                                                   >> 203   fAdensity = twoln10*(Xa-fX0density)
                                                   >> 204               /std::pow((fX1density-fX0density),fMdensity);
374 }                                                 205 }
375                                                   206 
376 //....oooOO0OOooo........oooOO0OOooo........oo    207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
377                                                   208 
378 void G4IonisParamMat::ComputeFluctModel()         209 void G4IonisParamMat::ComputeFluctModel()
379 {                                                 210 {
380   // compute parameters for the energy loss fl    211   // compute parameters for the energy loss fluctuation model
381   // needs an 'effective Z'                    << 212 
                                                   >> 213   // need an 'effective Z' ?????
382   G4double Zeff = 0.;                             214   G4double Zeff = 0.;
383   for (std::size_t i = 0; i < fMaterial->GetNu << 215   for (size_t i=0;i<fMaterial->GetNumberOfElements();i++) {
384     Zeff += (fMaterial->GetFractionVector())[i << 216      Zeff += (fMaterial->GetFractionVector())[i]
385   }                                            << 217              *((*(fMaterial->GetElementVector()))[i]->GetZ());
386   if (Zeff > 2.1) {                            << 218   }
387     fF2fluct = 2.0 / Zeff;                     << 219   if (Zeff > 2.) fF2fluct = 2./Zeff ;
388     fF1fluct = 1. - fF2fluct;                  << 220     else         fF2fluct = 0.;
389     fEnergy2fluct = 10. * Zeff * Zeff * CLHEP: << 221 
390     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 222   fF1fluct         = 1. - fF2fluct;
391     fLogEnergy1fluct = (fLogMeanExcEnergy - fF << 223   fEnergy2fluct    = 10.*Zeff*Zeff*eV;
392   } else if (Zeff > 1.1) {                     << 224   fLogEnergy2fluct = std::log(fEnergy2fluct);
393     fF2fluct = 0.0;                            << 225   fLogEnergy1fluct = (fLogMeanExcEnergy - fF2fluct*fLogEnergy2fluct)
394     fF1fluct = 1.0;                            << 226                      /fF1fluct;
395     fEnergy2fluct = 40. * CLHEP::eV;           << 227   fEnergy1fluct    = std::exp(fLogEnergy1fluct);
396     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 228   fEnergy0fluct    = 10.*eV;
397     fLogEnergy1fluct = fLogMeanExcEnergy;      << 
398   } else {                                     << 
399     fF2fluct = 0.0;                            << 
400     fF1fluct = 1.0;                            << 
401     fEnergy2fluct = 10. * CLHEP::eV;           << 
402     fLogEnergy2fluct = G4Log(fEnergy2fluct);   << 
403     fLogEnergy1fluct = fLogMeanExcEnergy;      << 
404   }                                            << 
405   fEnergy1fluct = G4Exp(fLogEnergy1fluct);     << 
406   fEnergy0fluct = 10. * CLHEP::eV;             << 
407   fRateionexcfluct = 0.4;                         229   fRateionexcfluct = 0.4;
408 }                                                 230 }
409                                                   231 
410 //....oooOO0OOooo........oooOO0OOooo........oo    232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
411                                                   233 
412 void G4IonisParamMat::ComputeIonParameters()      234 void G4IonisParamMat::ComputeIonParameters()
413 {                                                 235 {
414   // get elements in the actual material,         236   // get elements in the actual material,
415   const G4ElementVector* theElementVector = fM << 237   const G4ElementVector* theElementVector = fMaterial->GetElementVector() ;
416   const G4double* theAtomicNumDensityVector =  << 238   const G4double* theAtomicNumDensityVector =
417   const auto NumberOfElements = (G4int)fMateri << 239                          fMaterial->GetAtomicNumDensityVector() ;
                                                   >> 240   const G4int NumberOfElements = fMaterial->GetNumberOfElements() ;
418                                                   241 
419   //  loop for the elements in the material       242   //  loop for the elements in the material
420   //  to find out average values Z, vF, lF        243   //  to find out average values Z, vF, lF
421   G4double z(0.0), vF(0.0), lF(0.0), a23(0.0); << 244   G4double z = 0.0, vF = 0.0, lF = 0.0, norm = 0.0 ;
422                                                   245 
423   G4Pow* g4pow = G4Pow::GetInstance();         << 246   if( 1 == NumberOfElements ) {
424   if (1 == NumberOfElements) {                 << 
425     const G4Element* element = (*theElementVec    247     const G4Element* element = (*theElementVector)[0];
426     z = element->GetZ();                          248     z = element->GetZ();
427     vF = element->GetIonisation()->GetFermiVel << 249     vF= element->GetIonisation()->GetFermiVelocity();
428     lF = element->GetIonisation()->GetLFactor( << 250     lF= element->GetIonisation()->GetLFactor();
429     a23 = 1.0 / g4pow->A23(element->GetN());   << 251 
430   }                                            << 252   } else {
431   else {                                       << 253     for (G4int iel=0; iel<NumberOfElements; iel++)
432     G4double norm(0.0);                        << 254       {
433     for (G4int iel = 0; iel < NumberOfElements << 255         const G4Element* element = (*theElementVector)[iel] ;
434       const G4Element* element = (*theElementV << 256         const G4double weight = theAtomicNumDensityVector[iel] ;
435       const G4double weight = theAtomicNumDens << 257         norm += weight ;
436       norm += weight;                          << 258         z    += element->GetZ() * weight ;
437       z += element->GetZ() * weight;           << 259         vF   += element->GetIonisation()->GetFermiVelocity() * weight ;
438       vF += element->GetIonisation()->GetFermi << 260         lF   += element->GetIonisation()->GetLFactor() * weight ;
439       lF += element->GetIonisation()->GetLFact << 261       }
440       a23 += weight / g4pow->A23(element->GetN << 262     z  /= norm ;
441     }                                          << 263     vF /= norm ;
442     if (norm > 0.0) { norm = 1.0/norm; }       << 264     lF /= norm ;
443     z *= norm;                                 << 265   }  
444     vF *= norm;                                << 266   fZeff        = z;
445     lF *= norm;                                << 267   fLfactor     = lF;
446     a23 *= norm;                               << 268   fFermiEnergy = 25.*keV*vF*vF;
447   }                                            << 
448   fZeff = z;                                   << 
449   fLfactor = lF;                               << 
450   fFermiEnergy = 25. * CLHEP::keV * vF * vF;   << 
451   fInvA23 = a23;                               << 
452 }                                                 269 }
453                                                   270 
454 //....oooOO0OOooo........oooOO0OOooo........oo    271 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
455                                                   272 
456 void G4IonisParamMat::SetMeanExcitationEnergy(    273 void G4IonisParamMat::SetMeanExcitationEnergy(G4double value)
457 {                                                 274 {
458   if (value == fMeanExcitationEnergy || value  << 275   if(value == fMeanExcitationEnergy || value <= 0.0) return;
459     return;                                    << 
460   }                                            << 
461   if (G4NistManager::Instance()->GetVerbose()  << 
462     G4cout << "G4Material: Mean excitation ene << 
463            << " Iold= " << fMeanExcitationEner << 
464            << G4endl;                          << 
465   }                                            << 
466                                                   276 
                                                   >> 277   /*
                                                   >> 278   if (G4NistManager::Instance()->GetVerbose() > 0) 
                                                   >> 279     G4cout << "G4Material: Mean excitation energy is changed for "
                                                   >> 280            << fMaterial->GetName()
                                                   >> 281            << " Iold= " << fMeanExcitationEnergy/eV
                                                   >> 282            << "eV; Inew= " << value/eV << " eV;"
                                                   >> 283            << G4endl;
                                                   >> 284   */
                                                   >> 285   
467   fMeanExcitationEnergy = value;                  286   fMeanExcitationEnergy = value;
                                                   >> 287   fLogMeanExcEnergy = std::log(value);
                                                   >> 288   ComputeDensityEffect();
                                                   >> 289   ComputeFluctModel();
                                                   >> 290 }
468                                                   291 
469   // add corrections to density effect         << 292 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
470   G4double newlog = G4Log(value);              << 
471   G4double corr = 2 * (newlog - fLogMeanExcEne << 
472   fCdensity += corr;                           << 
473   fX0density += corr / twoln10;                << 
474   fX1density += corr / twoln10;                << 
475                                                   293 
476   // recompute parameters of fluctuation model << 294 G4double G4IonisParamMat::FindMeanExcitationEnergy(const G4String& chFormula)
477   fLogMeanExcEnergy = newlog;                  << 295 {
478   ComputeFluctModel();                         << 296 
                                                   >> 297   // The data on mean excitation energy for compaunds
                                                   >> 298   // from "Stopping Powers for Electrons and Positrons"
                                                   >> 299   // ICRU Report N#37, 1984  (energy in eV)
                                                   >> 300 
                                                   >> 301   const size_t numberOfMolecula = 79 ;
                                                   >> 302   
                                                   >> 303   static G4String name[numberOfMolecula] = {
                                                   >> 304 
                                                   >> 305     // gas
                                                   >> 306     "NH_3",       "C_4H_10",    "CO_2",       "C_2H_6",      "C_7H_16",
                                                   >> 307     "C_6H_14",    "CH_4",       "NO",         "N_2O",        "C_8H_18",
                                                   >> 308     "C_5H_12",    "C_3H_8",     "H_2O-Gas", 
                                                   >> 309 
                                                   >> 310     // liquid
                                                   >> 311     "C_3H_6O",    "C_6H_5NH_2",  "C_6H_6",    "C_4H_9OH",    "CCl_4",    
                                                   >> 312     "C_6H_5Cl",   "CHCl_3",      "C_6H_12",   "C_6H_4Cl_2",  "C_4Cl_2H_8O", 
                                                   >> 313     "C_2Cl_2H_4", "(C_2H_5)_2O", "C_2H_5OH",  "C_3H_5(OH)_3","C_7H_16",     
                                                   >> 314     "C_6H_14",    "CH_3OH",      "C_6H_5NO_2","C_5H_12",     "C_3H_7OH",    
                                                   >> 315     "C_5H_5N",    "C_8H_8",      "C_2Cl_4",   "C_7H_8",      "C_2Cl_3H",    
                                                   >> 316     "H_2O",       "C_8H_10",
                                                   >> 317 
                                                   >> 318     //solid
                                                   >> 319     "C_5H_5N_5",  "C_5H_5N_5O",  "(C_6H_11NO)-nylon",  "C_25H_52", 
                                                   >> 320     "(C_2H_4)-Polyethylene",     "(C_5H_8O-2)-Polymethil_Methacrylate",   
                                                   >> 321     "(C_8H_8)-Polystyrene",      "A-150-tissue",       "Al_2O_3",  "CaF_2", 
                                                   >> 322     "LiF",        "Photo_Emulsion",  "(C_2F_4)-Teflon",  "SiO_2"     
                                                   >> 323 
                                                   >> 324   } ;
                                                   >> 325     
                                                   >> 326   static G4double meanExcitation[numberOfMolecula] = {
                                                   >> 327 
                                                   >> 328     53.7,   48.3,  85.0,  45.4,  49.2,
                                                   >> 329     49.1,   41.7,  87.8,  84.9,  49.5,
                                                   >> 330     48.2,   47.1,  71.6,
                                                   >> 331 
                                                   >> 332     64.2,   66.2,  63.4,  59.9,  166.3,
                                                   >> 333     89.1,  156.0,  56.4, 106.5,  103.3, 
                                                   >> 334    111.9,   60.0,  62.9,  72.6,   54.4,  
                                                   >> 335     54.0,  67.6,   75.8,  53.6,   61.1,  
                                                   >> 336     66.2,  64.0,  159.2,  62.5,  148.1,  
                                                   >> 337     75.0,  61.8,
                                                   >> 338 
                                                   >> 339     71.4,  75.0,   63.9,  48.3,   57.4,
                                                   >> 340     74.0,  68.7,   65.1, 145.2,  166.,
                                                   >> 341     94.0, 331.0,   99.1, 139.2 
                                                   >> 342 
                                                   >> 343   } ;
                                                   >> 344 
                                                   >> 345   G4double x = fMeanExcitationEnergy;
                                                   >> 346 
                                                   >> 347   for(size_t i=0; i<numberOfMolecula; i++) {
                                                   >> 348     if(chFormula == name[i]) {
                                                   >> 349       x = meanExcitation[i]*eV;
                                                   >> 350       break;
                                                   >> 351     }
                                                   >> 352   }
                                                   >> 353   return x;
479 }                                                 354 }
480                                                   355 
481 //....oooOO0OOooo........oooOO0OOooo........oo    356 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
482                                                   357 
483 void G4IonisParamMat::SetDensityEffectParamete << 358 G4IonisParamMat::~G4IonisParamMat()
484   G4double cd, G4double md, G4double ad, G4dou << 
485 {                                                 359 {
486   // no check on consistence of user parameter << 360   if (fShellCorrectionVector) delete [] fShellCorrectionVector;
487   G4AutoLock l(&ionisMutex);                   << 
488   fCdensity = cd;                              << 
489   fMdensity = md;                              << 
490   fAdensity = ad;                              << 
491   fX0density = x0;                             << 
492   fX1density = x1;                             << 
493   fD0density = d0;                             << 
494   l.unlock();                                  << 
495 }                                                 361 }
496                                                   362 
497 //....oooOO0OOooo........oooOO0OOooo........oo    363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
498                                                   364 
499 void G4IonisParamMat::SetDensityEffectParamete << 365 G4IonisParamMat::G4IonisParamMat(const G4IonisParamMat& right)
500 {                                              << 366 {
501   G4AutoLock l(&ionisMutex);                   << 367   *this = right;
502   const G4IonisParamMat* ipm = bmat->GetIonisa << 
503   fCdensity = ipm->GetCdensity();              << 
504   fMdensity = ipm->GetMdensity();              << 
505   fAdensity = ipm->GetAdensity();              << 
506   fX0density = ipm->GetX0density();            << 
507   fX1density = ipm->GetX1density();            << 
508   fD0density = ipm->GetD0density();            << 
509                                                << 
510   G4double corr = G4Log(bmat->GetDensity() / f << 
511   fCdensity += corr;                           << 
512   fX0density += corr / twoln10;                << 
513   fX1density += corr / twoln10;                << 
514   l.unlock();                                  << 
515 }                                              << 
516                                                << 
517 //....oooOO0OOooo........oooOO0OOooo........oo << 
518                                                << 
519 void G4IonisParamMat::ComputeDensityEffectOnFl << 
520 {                                              << 
521   if (val) {                                   << 
522     if (nullptr == fDensityEffectCalc) {       << 
523       G4int n = 0;                             << 
524       for (std::size_t i = 0; i < fMaterial->G << 
525         const G4int Z = fMaterial->GetElement( << 
526         n += G4AtomicShells::GetNumberOfShells << 
527       }                                        << 
528       // The last level is the conduction leve << 
529       // make a dummy conductor level with zer << 
530       fDensityEffectCalc = new G4DensityEffect << 
531     }                                          << 
532   }                                            << 
533   else {                                       << 
534     delete fDensityEffectCalc;                 << 
535     fDensityEffectCalc = nullptr;              << 
536   }                                            << 
537 }                                                 368 }
538                                                   369 
539 //....oooOO0OOooo........oooOO0OOooo........oo    370 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
540                                                   371 
541 G4double G4IonisParamMat::FindMeanExcitationEn << 372 const G4IonisParamMat& G4IonisParamMat::operator=(const G4IonisParamMat& right)
542 {                                                 373 {
543   G4double res = 0.0;                          << 374   if (this != &right)
544   // data from density effect data             << 375     {
545   if (fDensityData != nullptr) {               << 376       fMaterial                 = right.fMaterial;
546     G4int idx = fDensityData->GetIndex(mat->Ge << 377       fMeanExcitationEnergy     = right.fMeanExcitationEnergy;
547     if (idx >= 0) {                            << 378       fLogMeanExcEnergy         = right.fLogMeanExcEnergy;
548       res = fDensityData->GetMeanIonisationPot << 379       if (fShellCorrectionVector) delete [] fShellCorrectionVector;      
549     }                                          << 380       fShellCorrectionVector    = new G4double[3];             
550   }                                            << 381       fShellCorrectionVector[0] = right.fShellCorrectionVector[0];
                                                   >> 382       fShellCorrectionVector[1] = right.fShellCorrectionVector[1];
                                                   >> 383       fShellCorrectionVector[2] = right.fShellCorrectionVector[2];
                                                   >> 384       fTaul                     = right.fTaul;
                                                   >> 385       fCdensity                 = right.fCdensity;
                                                   >> 386       fMdensity                 = right.fMdensity;
                                                   >> 387       fAdensity                 = right.fAdensity;
                                                   >> 388       fX0density                = right.fX0density;
                                                   >> 389       fX1density                = right.fX1density;
                                                   >> 390       fF1fluct                  = right.fF1fluct;
                                                   >> 391       fF2fluct                  = right.fF2fluct;
                                                   >> 392       fEnergy1fluct             = right.fEnergy1fluct;
                                                   >> 393       fLogEnergy1fluct          = right.fLogEnergy1fluct;      
                                                   >> 394       fEnergy2fluct             = right.fEnergy2fluct;
                                                   >> 395       fLogEnergy2fluct          = right.fLogEnergy2fluct;      
                                                   >> 396       fEnergy0fluct             = right.fEnergy0fluct;
                                                   >> 397       fRateionexcfluct          = right.fRateionexcfluct;
                                                   >> 398      } 
                                                   >> 399   return *this;
                                                   >> 400 }
551                                                   401 
552   // The data on mean excitation energy for co << 402 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
553   // from "Stopping Powers for Electrons and P << 403 
554   // ICRU Report N#37, 1984  (energy in eV)    << 404 G4int G4IonisParamMat::operator==(const G4IonisParamMat& right) const
555   // this value overwrites Density effect data << 405 {
556   G4String chFormula = mat->GetChemicalFormula << 406   return (this == (G4IonisParamMat*) &right);
557   if (! chFormula.empty()) {                   << 
558     static const size_t numberOfMolecula = 54; << 
559     // clang-format off                        << 
560     static const G4String name[numberOfMolecul << 
561       // gas 0 - 12                            << 
562       "NH_3",       "C_4H_10",     "CO_2",     << 
563       // "G4_AMMONIA", "G4_BUTANE","G4_CARBON_ << 
564       "C_6H_14-Gas",   "CH_4",     "NO",       << 
565       // "G4_N-HEXANE" , "G4_METHANE", "x", "G << 
566       "C_5H_12-Gas",   "C_3H_8",   "H_2O-Gas", << 
567       // "G4_N-PENTANE", "G4_PROPANE", "G4_WAT << 
568                                                << 
569       // liquid 13 - 39                        << 
570       "C_3H_6O",    "C_6H_5NH_2",  "C_6H_6",   << 
571       //"G4_ACETONE","G4_ANILINE","G4_BENZENE" << 
572       "C_6H_5Cl",   "CHCl_3",      "C_6H_12",  << 
573       //"G4_CHLOROBENZENE","G4_CHLOROFORM","G4 << 
574       //"G4_DICHLORODIETHYL_ETHER"             << 
575       "C_2Cl_2H_4", "(C_2H_5)_2O", "C_2H_5OH", << 
576       //"G4_1,2-DICHLOROETHANE","G4_DIETHYL_ET << 
577       "C_6H_14",    "CH_3OH",      "C_6H_5NO_2 << 
578       //"G4_N-HEXANE","G4_METHANOL","G4_NITROB << 
579       "C_5H_5N",    "C_8H_8",      "C_2Cl_4",  << 
580       //"G4_PYRIDINE","G4_POLYSTYRENE","G4_TET << 
581       "H_2O",       "C_8H_10",                 << 
582       // "G4_WATER", "G4_XYLENE"               << 
583                                                << 
584       // solid 40 - 53                         << 
585       "C_5H_5N_5",  "C_5H_5N_5O",  "(C_6H_11NO << 
586       // "G4_ADENINE", "G4_GUANINE", "G4_NYLON << 
587       "(C_2H_4)-Polyethylene",     "(C_5H_8O_2 << 
588       // "G4_ETHYLENE", "G4_PLEXIGLASS"        << 
589       "(C_8H_8)-Polystyrene",      "A-150-tiss << 
590       // "G4_POLYSTYRENE", "G4_A-150_TISSUE",  << 
591       "LiF",        "Photo_Emulsion",  "(C_2F_ << 
592       // "G4_LITHIUM_FLUORIDE", "G4_PHOTO_EMUL << 
593     } ;                                        << 
594                                                << 
595     static const G4double meanExcitation[numbe << 
596                                                << 
597       53.7,   48.3,  85.0,  45.4,  49.2,       << 
598       49.1,   41.7,  87.8,  84.9,  49.5,       << 
599       48.2,   47.1,  71.6,                     << 
600                                                << 
601       64.2,   66.2,  63.4,  59.9,  166.3,      << 
602       89.1,  156.0,  56.4, 106.5,  103.3,      << 
603       111.9,   60.0,  62.9,  72.6,   54.4,     << 
604       54.0,  67.6,   75.8,  53.6,   61.1,      << 
605       66.2,  64.0,  159.2,  62.5,  148.1,      << 
606       75.0,  61.8,                             << 
607                                                << 
608       71.4,  75.0,   63.9,  48.3,   57.4,      << 
609       74.0,  68.7,   65.1, 145.2,  166.,       << 
610       94.0, 331.0,   99.1, 139.2               << 
611     };                                         << 
612     // clang-format on                         << 
613                                                << 
614     for (std::size_t i = 0; i < numberOfMolecu << 
615       if (chFormula == name[i]) {              << 
616         res = meanExcitation[i] * CLHEP::eV;   << 
617         break;                                 << 
618       }                                        << 
619     }                                          << 
620   }                                            << 
621   return res;                                  << 
622 }                                                 407 }
                                                   >> 408 
                                                   >> 409 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
                                                   >> 410 
                                                   >> 411 G4int G4IonisParamMat::operator!=(const G4IonisParamMat& right) const
                                                   >> 412 {
                                                   >> 413   return (this != (G4IonisParamMat*) &right);
                                                   >> 414 }
                                                   >> 415 
                                                   >> 416 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo....
                                                   >> 417 
623                                                   418