Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** >> 22 // >> 23 // >> 24 // $Id: G4IonisParamMat.hh,v 1.6 2001/07/11 10:01:25 gunter Exp $ >> 25 // GEANT4 tag $Name: geant4-04-00 $ >> 26 // 25 27 26 // class description 28 // class description 27 // 29 // 28 // The class contains few (physical) quantitie 30 // The class contains few (physical) quantities related to the Ionisation 29 // process, for a material defined by its poin 31 // process, for a material defined by its pointer G4Material* 30 // 32 // >> 33 >> 34 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 35 >> 36 // 09.03.01: copy constructor and assignement operator in public (mma) 31 // 09-07-98: data moved from G4Material (mma) 37 // 09-07-98: data moved from G4Material (mma) 32 // 09-03-01: copy constructor and assignement << 38 33 // 28-10-02: add setMeanExcitationEnergy (V.Iv << 39 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... 34 // 27-09-07: add computation of parameters for << 35 // 04-03-08: add fBirks constant (mma) << 36 // 16-01-19, add exact computation of the dens << 37 40 38 #ifndef G4IonisParamMat_HH 41 #ifndef G4IonisParamMat_HH 39 #define G4IonisParamMat_HH 42 #define G4IonisParamMat_HH 40 43 41 #include "G4DensityEffectCalculator.hh" << 42 #include "G4ios.hh" 44 #include "G4ios.hh" 43 #include "globals.hh" 45 #include "globals.hh" 44 46 45 class G4Material; << 47 class G4Material; // forward declaration 46 class G4DensityEffectData; << 47 48 48 class G4IonisParamMat << 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... ....oooOO0OOooo.... >> 50 >> 51 class G4IonisParamMat // with description 49 { 52 { 50 public: << 53 public: 51 G4IonisParamMat(const G4Material*); << 54 52 ~G4IonisParamMat(); << 55 G4IonisParamMat(G4Material*); 53 G4IonisParamMat& operator=(const G4IonisPara << 56 virtual ~G4IonisParamMat(); 54 G4IonisParamMat(const G4IonisParamMat&) = de << 57 55 << 58 // 56 // parameters for mean energy loss calculati << 59 // retrieval methods 57 inline G4double GetMeanExcitationEnergy() co << 60 // 58 << 61 59 void SetMeanExcitationEnergy(G4double value) << 62 // parameters for mean energy loss calculation: 60 G4double FindMeanExcitationEnergy(const G4Ma << 63 G4double GetMeanExcitationEnergy() const {return fMeanExcitationEnergy;}; 61 << 64 G4double GetLogMeanExcEnergy() const {return fLogMeanExcEnergy;}; 62 inline G4double GetLogMeanExcEnergy() const << 65 G4double* GetShellCorrectionVector() const {return fShellCorrectionVector;}; 63 inline G4double* GetShellCorrectionVector() << 66 G4double GetTaul() const {return fTaul;}; 64 inline G4double GetTaul() const { return fTa << 67 65 << 68 // parameters of the density correction: 66 // parameters of the density correction: << 69 G4double GetCdensity() const {return fCdensity;}; 67 inline G4double GetPlasmaEnergy() const { re << 70 G4double GetMdensity() const {return fMdensity;}; 68 inline G4double GetAdjustmentFactor() const << 71 G4double GetAdensity() const {return fAdensity;}; 69 inline G4double GetCdensity() const { return << 72 G4double GetX0density() const {return fX0density;}; 70 inline G4double GetMdensity() const { return << 73 G4double GetX1density() const {return fX1density;}; 71 inline G4double GetAdensity() const { return << 74 72 inline G4double GetX0density() const { retur << 75 // parameters of the energy loss fluctuation model: 73 inline G4double GetX1density() const { retur << 76 G4double GetF1fluct() const {return fF1fluct;}; 74 inline G4double GetD0density() const { retur << 77 G4double GetF2fluct() const {return fF2fluct;}; 75 << 78 G4double GetEnergy1fluct() const {return fEnergy1fluct;}; 76 // user defined density correction parameter << 79 G4double GetLogEnergy1fluct() const {return fLogEnergy1fluct;}; 77 void SetDensityEffectParameters( << 80 G4double GetEnergy2fluct() const {return fEnergy2fluct;}; 78 G4double cd, G4double md, G4double ad, G4d << 81 G4double GetLogEnergy2fluct() const {return fLogEnergy2fluct;}; 79 << 82 G4double GetEnergy0fluct() const {return fEnergy0fluct;}; 80 // defined density correction parameterisati << 83 G4double GetRateionexcfluct() const {return fRateionexcfluct;}; 81 void SetDensityEffectParameters(const G4Mate << 84 82 << 85 public: // without description 83 void ComputeDensityEffectOnFly(G4bool); << 86 84 << 87 G4IonisParamMat(const G4IonisParamMat&); 85 inline G4DensityEffectCalculator* GetDensity << 88 const G4IonisParamMat& operator=(const G4IonisParamMat&); 86 { << 89 G4int operator==(const G4IonisParamMat&) const; 87 return fDensityEffectCalc; << 90 G4int operator!=(const G4IonisParamMat&) const; 88 } << 91 89 << 92 private: 90 // compute density correction as a function << 93 91 // x = log10(beta*gamma) using parameterisat << 94 // Compute mean parameters : ExcitationEnergy,Shell corretion vector ... 92 inline G4double DensityCorrection(G4double x << 95 void ComputeMeanParameters(); 93 { << 96 94 return (nullptr == fDensityEffectCalc) ? G << 97 // Compute parameters for the density effect 95 : f << 98 void ComputeDensityEffect(); 96 } << 99 97 << 100 // Compute parameters for the energy fluctuation model 98 // use parameterisation << 101 void ComputeFluctModel(); 99 G4double GetDensityCorrection(G4double x) co << 102 100 << 103 private: 101 static G4DensityEffectData* GetDensityEffect << 104 102 << 105 // 103 // parameters of the energy loss fluctuation << 106 // data members 104 inline G4double GetF1fluct() const { return << 107 // 105 inline G4double GetF2fluct() const { return << 108 G4Material* fMaterial; // this material 106 inline G4double GetEnergy1fluct() const { re << 107 inline G4double GetLogEnergy1fluct() const { << 108 inline G4double GetEnergy2fluct() const { re << 109 inline G4double GetLogEnergy2fluct() const { << 110 inline G4double GetEnergy0fluct() const { re << 111 inline G4double GetRateionexcfluct() const { << 112 << 113 // parameters for ion corrections computatio << 114 inline G4double GetZeffective() const { retu << 115 inline G4double GetFermiEnergy() const { ret << 116 inline G4double GetLFactor() const { return << 117 inline G4double GetInvA23() const { return f << 118 << 119 // parameters for Birks attenuation: << 120 inline void SetBirksConstant(G4double value) << 121 inline G4double GetBirksConstant() const { r << 122 << 123 // parameters for average energy per ion << 124 inline void SetMeanEnergyPerIonPair(G4double << 125 inline G4double GetMeanEnergyPerIonPair() co << 126 << 127 // parameter for sampling of positron annihi << 128 inline void SetOrtoPositroniumFraction(G4dou << 129 inline G4double GetOrtoPositroniumFraction() << 130 << 131 << 132 // operators << 133 G4bool operator==(const G4IonisParamMat&) co << 134 G4bool operator!=(const G4IonisParamMat&) co << 135 << 136 private: << 137 // Compute mean parameters : ExcitationEnerg << 138 void ComputeMeanParameters(); << 139 << 140 // Compute parameters for the density effect << 141 void ComputeDensityEffectParameters(); << 142 << 143 // Compute parameters for the energy fluctua << 144 void ComputeFluctModel(); << 145 << 146 // Compute parameters for ion parameterizati << 147 void ComputeIonParameters(); << 148 << 149 // << 150 // data members << 151 // << 152 const G4Material* fMaterial; // this materi << 153 << 154 G4DensityEffectCalculator* fDensityEffectCal << 155 G4double* fShellCorrectionVector; // shell << 156 << 157 // parameters for mean energy loss calculati << 158 G4double fMeanExcitationEnergy; // << 159 G4double fLogMeanExcEnergy; // << 160 G4double fTaul; // lower limit of Bethe-Blo << 161 << 162 // parameters of the density correction << 163 G4double fCdensity; // mat.constant << 164 G4double fMdensity; // exponent << 165 G4double fAdensity; // << 166 G4double fX0density; // << 167 G4double fX1density; // << 168 G4double fD0density; << 169 << 170 G4double fPlasmaEnergy; << 171 G4double fAdjustmentFactor; << 172 << 173 // parameters of the energy loss fluctuation << 174 G4double fF1fluct; << 175 G4double fF2fluct; << 176 G4double fEnergy1fluct; << 177 G4double fLogEnergy1fluct; << 178 G4double fEnergy2fluct; << 179 G4double fLogEnergy2fluct; << 180 G4double fEnergy0fluct; << 181 G4double fRateionexcfluct; << 182 << 183 // parameters for ion corrections computatio << 184 G4double fZeff; << 185 G4double fFermiEnergy; << 186 G4double fLfactor; << 187 G4double fInvA23; << 188 << 189 // parameter for Birks attenuation << 190 G4double fBirks; << 191 // average energy per ion pair << 192 G4double fMeanEnergyPerIon; << 193 G4double twoln10; << 194 // parameter for sampling of positron annihi << 195 G4double fOrtoPositroniumFraction{0.035}; << 196 109 197 // static data created only once << 110 // parameters for mean energy loss calculation 198 static G4DensityEffectData* fDensityData; << 111 G4double fMeanExcitationEnergy; // >> 112 G4double fLogMeanExcEnergy; // >> 113 G4double* fShellCorrectionVector; // shell correction coefficients >> 114 G4double fTaul; // lower limit of Bethe-Bloch formula >> 115 >> 116 // parameters of the density correction.... >> 117 G4double fCdensity; // mat.constant >> 118 G4double fMdensity; // exponent >> 119 G4double fAdensity; // >> 120 G4double fX0density; // >> 121 G4double fX1density; // >> 122 >> 123 // parameters of the energy loss fluctuation model >> 124 G4double fF1fluct; >> 125 G4double fF2fluct; >> 126 G4double fEnergy1fluct; >> 127 G4double fLogEnergy1fluct; >> 128 G4double fEnergy2fluct; >> 129 G4double fLogEnergy2fluct; >> 130 G4double fEnergy0fluct; >> 131 G4double fRateionexcfluct; 199 }; 132 }; 200 133 201 #endif 134 #endif 202 135