Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 26 /* 27 * Interface to calculation of the Fermi density effect as per the method 28 * described in: 29 * 30 * R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density 31 * effect for the ionization loss of charged particles in various sub- 32 * stances. Atom. Data Nucl. Data Tabl., 30:261, 1984. 33 * 34 * Which (among other Sternheimer references) builds on: 35 * 36 * R. M. Sternheimer. The density effect for ionization loss in 37 * materials. Phys. Rev., 88:851859, 1952. 38 * 39 * The returned values of delta are directly from the Sternheimer calculation, 40 * and not Sternheimer's popular three-part approximate parameterization 41 * introduced in the same paper. 42 * 43 * Author: Matthew Strait <straitm@umn.edu> 2019 44 */ 45 46 #ifndef G4DensityEffectCalculator_HH 47 #define G4DensityEffectCalculator_HH 48 49 #include "globals.hh" 50 51 class G4Material; 52 53 class G4DensityEffectCalculator 54 { 55 public: 56 G4DensityEffectCalculator(const G4Material*, G4int); 57 ~G4DensityEffectCalculator(); 58 59 // The Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma). 60 G4double ComputeDensityCorrection(G4double x); 61 62 private: 63 /* 64 * Given a material defined in 'par' with a plasma energy, mean excitation 65 * energy, and set of atomic energy levels ("oscillator frequencies") with 66 * occupation fractions ("oscillation strengths"), solve for the Sternheimer 67 * adjustment factor (Sternheimer 1984 eq 8) and record (into 'par') the values 68 * of the adjusted oscillator frequencies and Sternheimer constants l_i. 69 * After doing this, 'par' is ready for a calculation of delta for an 70 * arbitrary particle energy. Returns true on success, false on failure. 71 */ 72 G4double FermiDeltaCalculation(G4double x); 73 74 G4double Newton(G4double x0, G4bool first); 75 76 G4double DFRho(G4double); 77 78 G4double FRho(G4double); 79 80 G4double DEll(G4double); 81 82 G4double Ell(G4double); 83 84 G4double DeltaOnceSolved(G4double); 85 86 const G4Material* fMaterial; 87 G4int fVerbose{0}; 88 G4int fWarnings{0}; 89 90 // Number of energy levels. If a single element, this is the number 91 // of subshells. If several elements, this is the sum of the number 92 // of subshells. In principle, could include levels for molecular 93 // orbitals or other non-atomic states. The last level is always 94 // the conduction band. If the material is an insulator, set the 95 // oscillator strength for that level to zero and the energy to 96 // any value. 97 const G4int nlev; 98 99 G4double fConductivity; 100 101 // Current Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma). 102 G4double sternx; 103 104 // The plasma energy of the material in eV, which is simply 105 // 28.816 sqrt(density Z/A), with density in g/cc. 106 G4double plasmaE; 107 108 // The mean excitation energy of the material in eV, i.e. the 'I' in the 109 // Bethe energy loss formula. 110 G4double meanexcite; 111 112 // Sternheimer's "oscillator strengths", which are simply the fraction 113 // of electrons in a given energy level. For a single element, this is 114 // the fraction of electrons in a subshell. For a compound or mixture, 115 // it is weighted by the number fraction of electrons contributed by 116 // each element, e.g. for water, oxygen's electrons are given 8/10 of the 117 // weight. 118 G4double* sternf; 119 120 // Energy levels. Can be found for free atoms in, e.g., T. A. Carlson. 121 // Photoelectron and Auger Spectroscopy. Plenum Press, New York and London, 122 // 1985. Available in a convenient form in G4AtomicShells.cc. 123 // 124 // Sternheimer 1984 implies that the energy level for conduction electrons 125 // (the final element of this array) should be set to zero, although the 126 // computation could be run with other values. 127 G4double* levE; 128 129 /***** Results of intermediate calculations *****/ 130 131 // The Sternheimer parameters l_i which appear in Sternheimer 1984 eq(1). 132 G4double* sternl; 133 134 // The adjusted energy levels, as found using Sternheimer 1984 eq(8). 135 G4double* sternEbar; 136 }; 137 138 #endif 139