Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/materials/include/G4DensityEffectCalculator.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 
 26 /*
 27  * Interface to calculation of the Fermi density effect as per the method
 28  * described in:
 29  *
 30  *   R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density
 31  *   effect for the ionization loss of charged particles in various sub-
 32  *   stances. Atom. Data Nucl. Data Tabl., 30:261, 1984.
 33  *
 34  * Which (among other Sternheimer references) builds on:
 35  *
 36  *   R. M. Sternheimer. The density effect for ionization loss in
 37  *   materials. Phys. Rev., 88:851­859, 1952.
 38  *
 39  * The returned values of delta are directly from the Sternheimer calculation,
 40  * and not Sternheimer's popular three-part approximate parameterization
 41  * introduced in the same paper.
 42  *
 43  * Author: Matthew Strait <straitm@umn.edu> 2019
 44  */
 45 
 46 #ifndef G4DensityEffectCalculator_HH
 47 #define G4DensityEffectCalculator_HH
 48 
 49 #include "globals.hh"
 50 
 51 class G4Material;
 52 
 53 class G4DensityEffectCalculator
 54 {
 55  public:
 56   G4DensityEffectCalculator(const G4Material*, G4int);
 57   ~G4DensityEffectCalculator();
 58 
 59   // The Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma).
 60   G4double ComputeDensityCorrection(G4double x);
 61 
 62  private:
 63   /*
 64    * Given a material defined in 'par' with a plasma energy, mean excitation
 65    * energy, and set of atomic energy levels ("oscillator frequencies") with
 66    * occupation fractions ("oscillation strengths"), solve for the Sternheimer
 67    * adjustment factor (Sternheimer 1984 eq 8) and record (into 'par') the values
 68    * of the adjusted oscillator frequencies and Sternheimer constants l_i.
 69    * After doing this, 'par' is ready for a calculation of delta for an
 70    * arbitrary particle energy.  Returns true on success, false on failure.
 71    */
 72   G4double FermiDeltaCalculation(G4double x);
 73 
 74   G4double Newton(G4double x0, G4bool first);
 75 
 76   G4double DFRho(G4double);
 77 
 78   G4double FRho(G4double);
 79 
 80   G4double DEll(G4double);
 81 
 82   G4double Ell(G4double);
 83 
 84   G4double DeltaOnceSolved(G4double);
 85 
 86   const G4Material* fMaterial;
 87   G4int fVerbose{0};
 88   G4int fWarnings{0};
 89 
 90   // Number of energy levels.  If a single element, this is the number
 91   // of subshells.  If several elements, this is the sum of the number
 92   // of subshells.  In principle, could include levels for molecular
 93   // orbitals or other non-atomic states.  The last level is always
 94   // the conduction band.  If the material is an insulator, set the
 95   // oscillator strength for that level to zero and the energy to
 96   // any value.
 97   const G4int nlev;
 98 
 99   G4double fConductivity;
100 
101   // Current Sternheimer 'x' defined as log10(p/m) == log10(beta*gamma).
102   G4double sternx;
103 
104   // The plasma energy of the material in eV, which is simply
105   // 28.816 sqrt(density Z/A), with density in g/cc.
106   G4double plasmaE;
107 
108   // The mean excitation energy of the material in eV, i.e. the 'I' in the
109   // Bethe energy loss formula.
110   G4double meanexcite;
111 
112   // Sternheimer's "oscillator strengths", which are simply the fraction
113   // of electrons in a given energy level.  For a single element, this is
114   // the fraction of electrons in a subshell.  For a compound or mixture,
115   // it is weighted by the number fraction of electrons contributed by
116   // each element, e.g. for water, oxygen's electrons are given 8/10 of the
117   // weight.
118   G4double* sternf;
119 
120   // Energy levels.  Can be found for free atoms in, e.g., T. A. Carlson.
121   // Photoelectron and Auger Spectroscopy. Plenum Press, New York and London,
122   // 1985. Available in a convenient form in G4AtomicShells.cc.
123   //
124   // Sternheimer 1984 implies that the energy level for conduction electrons
125   // (the final element of this array) should be set to zero, although the
126   // computation could be run with other values.
127   G4double* levE;
128 
129   /***** Results of intermediate calculations *****/
130 
131   // The Sternheimer parameters l_i which appear in Sternheimer 1984 eq(1).
132   G4double* sternl;
133 
134   // The adjusted energy levels, as found using Sternheimer 1984 eq(8).
135   G4double* sternEbar;
136 };
137 
138 #endif
139