Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4PhysicsVector class implementation 26 // G4PhysicsVector class implementation 27 // 27 // 28 // Authors: 28 // Authors: 29 // - 02 Dec. 1995, G.Cosmo: Structure created 29 // - 02 Dec. 1995, G.Cosmo: Structure created based on object model 30 // - 03 Mar. 1996, K.Amako: Implemented the 1s 30 // - 03 Mar. 1996, K.Amako: Implemented the 1st version 31 // Revisions: 31 // Revisions: 32 // - 11 Nov. 2000, H.Kurashige: Use STL vector 32 // - 11 Nov. 2000, H.Kurashige: Use STL vector for dataVector and binVector 33 // ------------------------------------------- 33 // -------------------------------------------------------------------- 34 34 35 #include "G4PhysicsVector.hh" 35 #include "G4PhysicsVector.hh" 36 #include <iomanip> 36 #include <iomanip> 37 37 38 // ------------------------------------------- 38 // -------------------------------------------------------------- 39 G4PhysicsVector::G4PhysicsVector(G4bool val) 39 G4PhysicsVector::G4PhysicsVector(G4bool val) 40 : useSpline(val) 40 : useSpline(val) 41 {} 41 {} 42 42 43 // ------------------------------------------- 43 // -------------------------------------------------------------------- 44 void G4PhysicsVector::Initialise() 44 void G4PhysicsVector::Initialise() 45 { 45 { 46 if (1 < numberOfNodes) << 46 idxmax = numberOfNodes - 2; >> 47 if(0 < numberOfNodes) 47 { 48 { 48 idxmax = numberOfNodes - 2; << 49 edgeMin = binVector[0]; 49 edgeMin = binVector[0]; 50 edgeMax = binVector[idxmax + 1]; << 50 edgeMax = binVector[numberOfNodes - 1]; 51 } 51 } 52 } 52 } 53 53 54 // ------------------------------------------- 54 // -------------------------------------------------------------- 55 G4bool G4PhysicsVector::Store(std::ofstream& f 55 G4bool G4PhysicsVector::Store(std::ofstream& fOut, G4bool ascii) const 56 { 56 { 57 // Ascii mode 57 // Ascii mode 58 if (ascii) << 58 if(ascii) 59 { 59 { 60 fOut << *this; 60 fOut << *this; 61 return true; 61 return true; 62 } 62 } 63 // Binary Mode 63 // Binary Mode 64 64 65 // binning 65 // binning 66 fOut.write((char*) (&edgeMin), sizeof edgeMi 66 fOut.write((char*) (&edgeMin), sizeof edgeMin); 67 fOut.write((char*) (&edgeMax), sizeof edgeMa 67 fOut.write((char*) (&edgeMax), sizeof edgeMax); 68 fOut.write((char*) (&numberOfNodes), sizeof 68 fOut.write((char*) (&numberOfNodes), sizeof numberOfNodes); 69 69 70 // contents 70 // contents 71 std::size_t size = dataVector.size(); 71 std::size_t size = dataVector.size(); 72 fOut.write((char*) (&size), sizeof size); 72 fOut.write((char*) (&size), sizeof size); 73 73 74 auto value = new G4double[2 * size]; << 74 G4double* value = new G4double[2 * size]; 75 for (std::size_t i = 0; i < size; ++i) << 75 for(std::size_t i = 0; i < size; ++i) 76 { 76 { 77 value[2 * i] = binVector[i]; 77 value[2 * i] = binVector[i]; 78 value[2 * i + 1] = dataVector[i]; 78 value[2 * i + 1] = dataVector[i]; 79 } 79 } 80 fOut.write((char*) (value), 2 * size * (size 80 fOut.write((char*) (value), 2 * size * (sizeof(G4double))); 81 delete[] value; 81 delete[] value; 82 82 83 return true; 83 return true; 84 } 84 } 85 85 86 // ------------------------------------------- 86 // -------------------------------------------------------------- 87 G4bool G4PhysicsVector::Retrieve(std::ifstream 87 G4bool G4PhysicsVector::Retrieve(std::ifstream& fIn, G4bool ascii) 88 { 88 { 89 // clear properties; 89 // clear properties; 90 dataVector.clear(); 90 dataVector.clear(); 91 binVector.clear(); 91 binVector.clear(); 92 secDerivative.clear(); 92 secDerivative.clear(); 93 93 94 // retrieve in ascii mode 94 // retrieve in ascii mode 95 if (ascii) << 95 if(ascii) 96 { 96 { 97 // binning 97 // binning 98 fIn >> edgeMin >> edgeMax >> numberOfNodes 98 fIn >> edgeMin >> edgeMax >> numberOfNodes; 99 if (fIn.fail() || numberOfNodes < 2) << 99 if(fIn.fail() || numberOfNodes < 2) 100 { 100 { 101 return false; 101 return false; 102 } 102 } 103 // contents 103 // contents 104 G4int siz0 = 0; << 104 G4int siz = 0; 105 fIn >> siz0; << 105 fIn >> siz; 106 if (siz0 < 2) { return false; } << 106 if(fIn.fail() || siz != G4int(numberOfNodes)) 107 auto siz = static_cast<std::size_t>(siz0); << 108 if (fIn.fail() || siz != numberOfNodes) << 109 { 107 { 110 return false; 108 return false; 111 } 109 } 112 110 113 binVector.reserve(siz); 111 binVector.reserve(siz); 114 dataVector.reserve(siz); 112 dataVector.reserve(siz); 115 G4double vBin, vData; 113 G4double vBin, vData; 116 114 117 for (std::size_t i = 0; i < siz; ++i) << 115 for(G4int i = 0; i < siz; ++i) 118 { 116 { 119 vBin = 0.; 117 vBin = 0.; 120 vData = 0.; 118 vData = 0.; 121 fIn >> vBin >> vData; 119 fIn >> vBin >> vData; 122 if (fIn.fail()) << 120 if(fIn.fail()) 123 { 121 { 124 return false; 122 return false; 125 } 123 } 126 binVector.push_back(vBin); 124 binVector.push_back(vBin); 127 dataVector.push_back(vData); 125 dataVector.push_back(vData); 128 } 126 } 129 Initialise(); 127 Initialise(); 130 return true; 128 return true; 131 } 129 } 132 130 133 // retrieve in binary mode 131 // retrieve in binary mode 134 // binning 132 // binning 135 fIn.read((char*) (&edgeMin), sizeof edgeMin) 133 fIn.read((char*) (&edgeMin), sizeof edgeMin); 136 fIn.read((char*) (&edgeMax), sizeof edgeMax) 134 fIn.read((char*) (&edgeMax), sizeof edgeMax); 137 fIn.read((char*) (&numberOfNodes), sizeof nu 135 fIn.read((char*) (&numberOfNodes), sizeof numberOfNodes); 138 136 139 // contents 137 // contents 140 std::size_t size; 138 std::size_t size; 141 fIn.read((char*) (&size), sizeof size); 139 fIn.read((char*) (&size), sizeof size); 142 140 143 auto value = new G4double[2 * size]; << 141 G4double* value = new G4double[2 * size]; 144 fIn.read((char*) (value), 2 * size * (sizeof 142 fIn.read((char*) (value), 2 * size * (sizeof(G4double))); 145 if (static_cast<G4int>(fIn.gcount()) != stat << 143 if(G4int(fIn.gcount()) != G4int(2 * size * (sizeof(G4double)))) 146 { 144 { 147 delete[] value; 145 delete[] value; 148 return false; 146 return false; 149 } 147 } 150 148 151 binVector.reserve(size); 149 binVector.reserve(size); 152 dataVector.reserve(size); 150 dataVector.reserve(size); 153 for (std::size_t i = 0; i < size; ++i) << 151 for(std::size_t i = 0; i < size; ++i) 154 { 152 { 155 binVector.push_back(value[2 * i]); 153 binVector.push_back(value[2 * i]); 156 dataVector.push_back(value[2 * i + 1]); 154 dataVector.push_back(value[2 * i + 1]); 157 } 155 } 158 delete[] value; 156 delete[] value; 159 157 160 Initialise(); 158 Initialise(); 161 return true; 159 return true; 162 } 160 } 163 161 164 // ------------------------------------------- 162 // -------------------------------------------------------------- 165 void G4PhysicsVector::DumpValues(G4double unit 163 void G4PhysicsVector::DumpValues(G4double unitE, G4double unitV) const 166 { 164 { 167 for (std::size_t i = 0; i < numberOfNodes; + << 165 for(std::size_t i = 0; i < numberOfNodes; ++i) 168 { 166 { 169 G4cout << binVector[i] / unitE << " " << 167 G4cout << binVector[i] / unitE << " " << dataVector[i] / unitV 170 << G4endl; 168 << G4endl; 171 } 169 } 172 } 170 } 173 171 174 // ------------------------------------------- 172 // -------------------------------------------------------------------- 175 std::size_t G4PhysicsVector::FindBin(const G4d 173 std::size_t G4PhysicsVector::FindBin(const G4double energy, 176 std::size 174 std::size_t idx) const 177 { 175 { 178 if (idx + 1 < numberOfNodes && << 176 if(idx + 1 < numberOfNodes && 179 energy >= binVector[idx] && energy <= bi << 177 energy >= binVector[idx] && energy <= binVector[idx]) 180 { 178 { 181 return idx; 179 return idx; 182 } 180 } 183 if (energy <= binVector[1]) << 181 if(energy <= binVector[1]) 184 { 182 { 185 return 0; 183 return 0; 186 } 184 } 187 if (energy >= binVector[idxmax]) << 185 if(energy >= binVector[idxmax]) 188 { 186 { 189 return idxmax; 187 return idxmax; 190 } 188 } 191 return GetBin(energy); 189 return GetBin(energy); 192 } 190 } 193 191 194 // ------------------------------------------- 192 // -------------------------------------------------------------------- 195 void G4PhysicsVector::ScaleVector(const G4doub 193 void G4PhysicsVector::ScaleVector(const G4double factorE, 196 const G4doub 194 const G4double factorV) 197 { 195 { 198 for (std::size_t i = 0; i < numberOfNodes; + << 196 for(std::size_t i = 0; i < numberOfNodes; ++i) 199 { 197 { 200 binVector[i] *= factorE; 198 binVector[i] *= factorE; 201 dataVector[i] *= factorV; 199 dataVector[i] *= factorV; 202 } 200 } 203 Initialise(); 201 Initialise(); 204 } 202 } 205 203 206 // ------------------------------------------- 204 // -------------------------------------------------------------------- 207 void G4PhysicsVector::FillSecondDerivatives(co 205 void G4PhysicsVector::FillSecondDerivatives(const G4SplineType stype, 208 const G4double dir1, 206 const G4double dir1, 209 const G4double dir2) 207 const G4double dir2) 210 { 208 { 211 if (!useSpline) { return; } << 209 if(!useSpline) { return; } 212 // cannot compute derivatives for less than 210 // cannot compute derivatives for less than 5 points 213 const std::size_t nmin = (stype == G4SplineT 211 const std::size_t nmin = (stype == G4SplineType::Base) ? 5 : 4; 214 if (nmin > numberOfNodes) << 212 if(nmin > numberOfNodes) 215 { 213 { 216 if (0 < verboseLevel) << 214 if(0 < verboseLevel) 217 { 215 { 218 G4cout << "### G4PhysicsVector: spline c 216 G4cout << "### G4PhysicsVector: spline cannot be used for " 219 << numberOfNodes << " points - spline d 217 << numberOfNodes << " points - spline disabled" 220 << G4endl; 218 << G4endl; 221 DumpValues(); 219 DumpValues(); 222 } 220 } 223 useSpline = false; 221 useSpline = false; 224 return; 222 return; 225 } 223 } 226 // check energies of free vector 224 // check energies of free vector 227 if (type == T_G4PhysicsFreeVector) << 225 if(type == T_G4PhysicsFreeVector) 228 { 226 { 229 for (std::size_t i=0; i<=idxmax; ++i) << 227 for(std::size_t i=0; i<=idxmax; ++i) 230 { 228 { 231 if (binVector[i + 1] <= binVector[i]) << 229 if(binVector[i + 1] <= binVector[i]) 232 { 230 { 233 if (0 < verboseLevel) << 231 if(0 < verboseLevel) 234 { 232 { 235 G4cout << "### G4PhysicsVector: spline can 233 G4cout << "### G4PhysicsVector: spline cannot be used, because " 236 << " E[" << i << "]=" << binVector[i] 234 << " E[" << i << "]=" << binVector[i] 237 << " >= E[" << i+1 << "]=" << binVector[i 235 << " >= E[" << i+1 << "]=" << binVector[i + 1] 238 << G4endl; 236 << G4endl; 239 DumpValues(); 237 DumpValues(); 240 } 238 } 241 useSpline = false; 239 useSpline = false; 242 return; 240 return; 243 } 241 } 244 } 242 } 245 } 243 } 246 244 247 // spline is possible 245 // spline is possible 248 Initialise(); 246 Initialise(); 249 secDerivative.resize(numberOfNodes); 247 secDerivative.resize(numberOfNodes); 250 248 251 if (1 < verboseLevel) << 249 if(1 < verboseLevel) 252 { 250 { 253 G4cout << "### G4PhysicsVector:: FillSecon 251 G4cout << "### G4PhysicsVector:: FillSecondDerivatives N=" 254 << numberOfNodes << G4endl; 252 << numberOfNodes << G4endl; 255 DumpValues(); 253 DumpValues(); 256 } 254 } 257 255 258 switch(stype) 256 switch(stype) 259 { 257 { 260 case G4SplineType::Base: 258 case G4SplineType::Base: 261 ComputeSecDerivative1(); 259 ComputeSecDerivative1(); 262 break; 260 break; 263 261 264 case G4SplineType::FixedEdges: 262 case G4SplineType::FixedEdges: 265 ComputeSecDerivative2(dir1, dir2); 263 ComputeSecDerivative2(dir1, dir2); 266 break; 264 break; 267 265 268 default: 266 default: 269 ComputeSecDerivative0(); 267 ComputeSecDerivative0(); 270 } 268 } 271 } 269 } 272 270 273 // ------------------------------------------- 271 // -------------------------------------------------------------- 274 void G4PhysicsVector::ComputeSecDerivative0() 272 void G4PhysicsVector::ComputeSecDerivative0() 275 // A simplified method of computation of seco 273 // A simplified method of computation of second derivatives 276 { 274 { 277 std::size_t n = numberOfNodes - 1; 275 std::size_t n = numberOfNodes - 1; 278 276 279 for (std::size_t i = 1; i < n; ++i) << 277 for(std::size_t i = 1; i < n; ++i) 280 { 278 { 281 secDerivative[i] = 3.0 * 279 secDerivative[i] = 3.0 * 282 ((dataVector[i + 1] - dataVector[i]) / ( 280 ((dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) - 283 (dataVector[i] - dataVector[i - 1]) / 281 (dataVector[i] - dataVector[i - 1]) / 284 (binVector[i] - binVector[i - 1])) / 282 (binVector[i] - binVector[i - 1])) / 285 (binVector[i + 1] - binVector[i - 1]); 283 (binVector[i + 1] - binVector[i - 1]); 286 } 284 } 287 secDerivative[n] = secDerivative[n - 1]; 285 secDerivative[n] = secDerivative[n - 1]; 288 secDerivative[0] = secDerivative[1]; 286 secDerivative[0] = secDerivative[1]; 289 } 287 } 290 288 291 // ------------------------------------------- 289 // -------------------------------------------------------------- 292 void G4PhysicsVector::ComputeSecDerivative1() 290 void G4PhysicsVector::ComputeSecDerivative1() 293 // Computation of second derivatives using "No 291 // Computation of second derivatives using "Not-a-knot" endpoint conditions 294 // B.I. Kvasov "Methods of shape-preserving sp 292 // B.I. Kvasov "Methods of shape-preserving spline approximation" 295 // World Scientific, 2000 293 // World Scientific, 2000 296 { 294 { 297 std::size_t n = numberOfNodes - 1; 295 std::size_t n = numberOfNodes - 1; 298 auto u = new G4double[n]; << 296 G4double* u = new G4double[n]; 299 G4double p, sig; 297 G4double p, sig; 300 298 301 u[1] = ((dataVector[2] - dataVector[1]) / (b 299 u[1] = ((dataVector[2] - dataVector[1]) / (binVector[2] - binVector[1]) - 302 (dataVector[1] - dataVector[0]) / (b 300 (dataVector[1] - dataVector[0]) / (binVector[1] - binVector[0])); 303 u[1] = 6.0 * u[1] * (binVector[2] - binVecto 301 u[1] = 6.0 * u[1] * (binVector[2] - binVector[1]) / 304 ((binVector[2] - binVector[0]) * (bin 302 ((binVector[2] - binVector[0]) * (binVector[2] - binVector[0])); 305 303 306 // Decomposition loop for tridiagonal algori 304 // Decomposition loop for tridiagonal algorithm. secDerivative[i] 307 // and u[i] are used for temporary storage o 305 // and u[i] are used for temporary storage of the decomposed factors. 308 306 309 secDerivative[1] = (2.0 * binVector[1] - bin 307 secDerivative[1] = (2.0 * binVector[1] - binVector[0] - binVector[2]) / 310 (2.0 * binVector[2] - bin 308 (2.0 * binVector[2] - binVector[0] - binVector[1]); 311 309 312 for(std::size_t i = 2; i < n - 1; ++i) 310 for(std::size_t i = 2; i < n - 1; ++i) 313 { 311 { 314 sig = 312 sig = 315 (binVector[i] - binVector[i - 1]) / (bin 313 (binVector[i] - binVector[i - 1]) / (binVector[i + 1] - binVector[i - 1]); 316 p = sig * secDerivative[i - 314 p = sig * secDerivative[i - 1] + 2.0; 317 secDerivative[i] = (sig - 1.0) / p; 315 secDerivative[i] = (sig - 1.0) / p; 318 u[i] = 316 u[i] = 319 (dataVector[i + 1] - dataVector[i]) / (b 317 (dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) - 320 (dataVector[i] - dataVector[i - 1]) / (b 318 (dataVector[i] - dataVector[i - 1]) / (binVector[i] - binVector[i - 1]); 321 u[i] = 319 u[i] = 322 (6.0 * u[i] / (binVector[i + 1] - binVec 320 (6.0 * u[i] / (binVector[i + 1] - binVector[i - 1])) - sig * u[i - 1] / p; 323 } 321 } 324 322 325 sig = 323 sig = 326 (binVector[n - 1] - binVector[n - 2]) / (b 324 (binVector[n - 1] - binVector[n - 2]) / (binVector[n] - binVector[n - 2]); 327 p = sig * secDerivative[n - 3] + 2.0; 325 p = sig * secDerivative[n - 3] + 2.0; 328 u[n - 1] = 326 u[n - 1] = 329 (dataVector[n] - dataVector[n - 1]) / (bin 327 (dataVector[n] - dataVector[n - 1]) / (binVector[n] - binVector[n - 1]) - 330 (dataVector[n - 1] - dataVector[n - 2]) / 328 (dataVector[n - 1] - dataVector[n - 2]) / 331 (binVector[n - 1] - binVector[n - 2]); 329 (binVector[n - 1] - binVector[n - 2]); 332 u[n - 1] = 6.0 * sig * u[n - 1] / (binVector 330 u[n - 1] = 6.0 * sig * u[n - 1] / (binVector[n] - binVector[n - 2]) - 333 (2.0 * sig - 1.0) * u[n - 2] / p; 331 (2.0 * sig - 1.0) * u[n - 2] / p; 334 332 335 p = (1.0 + sig) + (2.0 * sig - 1.0) * secDer 333 p = (1.0 + sig) + (2.0 * sig - 1.0) * secDerivative[n - 2]; 336 secDerivative[n - 1] = u[n - 1] / p; 334 secDerivative[n - 1] = u[n - 1] / p; 337 335 338 // The back-substitution loop for the triago 336 // The back-substitution loop for the triagonal algorithm of solving 339 // a linear system of equations. 337 // a linear system of equations. 340 338 341 for (std::size_t k = n - 2; k > 1; --k) << 339 for(std::size_t k = n - 2; k > 1; --k) 342 { 340 { 343 secDerivative[k] *= 341 secDerivative[k] *= 344 (secDerivative[k + 1] - u[k] * (binVecto 342 (secDerivative[k + 1] - u[k] * (binVector[k + 1] - binVector[k - 1]) / 345 (binVector[k + 343 (binVector[k + 1] - binVector[k])); 346 } 344 } 347 secDerivative[n] = 345 secDerivative[n] = 348 (secDerivative[n - 1] - (1.0 - sig) * secD 346 (secDerivative[n - 1] - (1.0 - sig) * secDerivative[n - 2]) / sig; 349 sig = 1.0 - ((binVector[2] - binVector[1]) / 347 sig = 1.0 - ((binVector[2] - binVector[1]) / (binVector[2] - binVector[0])); 350 secDerivative[1] *= (secDerivative[2] - u[1] 348 secDerivative[1] *= (secDerivative[2] - u[1] / (1.0 - sig)); 351 secDerivative[0] = (secDerivative[1] - sig * 349 secDerivative[0] = (secDerivative[1] - sig * secDerivative[2]) / (1.0 - sig); 352 350 353 delete[] u; 351 delete[] u; 354 } 352 } 355 353 356 // ------------------------------------------- 354 // -------------------------------------------------------------- 357 void G4PhysicsVector::ComputeSecDerivative2(G4 355 void G4PhysicsVector::ComputeSecDerivative2(G4double firstPointDerivative, 358 G4 356 G4double endPointDerivative) 359 // A standard method of computation of second 357 // A standard method of computation of second derivatives 360 // First derivatives at the first and the last 358 // First derivatives at the first and the last point should be provided 361 // See for example W.H. Press et al. "Numerica 359 // See for example W.H. Press et al. "Numerical recipes in C" 362 // Cambridge University Press, 1997. 360 // Cambridge University Press, 1997. 363 { 361 { 364 std::size_t n = numberOfNodes - 1; 362 std::size_t n = numberOfNodes - 1; 365 auto u = new G4double[n]; << 363 G4double* u = new G4double[n]; 366 G4double p, sig, un; 364 G4double p, sig, un; 367 365 368 u[0] = (6.0 / (binVector[1] - binVector[0])) 366 u[0] = (6.0 / (binVector[1] - binVector[0])) * 369 ((dataVector[1] - dataVector[0]) / (b 367 ((dataVector[1] - dataVector[0]) / (binVector[1] - binVector[0]) - 370 firstPointDerivative); 368 firstPointDerivative); 371 369 372 secDerivative[0] = -0.5; 370 secDerivative[0] = -0.5; 373 371 374 // Decomposition loop for tridiagonal algori 372 // Decomposition loop for tridiagonal algorithm. secDerivative[i] 375 // and u[i] are used for temporary storage o 373 // and u[i] are used for temporary storage of the decomposed factors. 376 374 377 for (std::size_t i = 1; i < n; ++i) << 375 for(std::size_t i = 1; i < n; ++i) 378 { 376 { 379 sig = 377 sig = 380 (binVector[i] - binVector[i - 1]) / (bin 378 (binVector[i] - binVector[i - 1]) / (binVector[i + 1] - binVector[i - 1]); 381 p = sig * (secDerivative[i 379 p = sig * (secDerivative[i - 1]) + 2.0; 382 secDerivative[i] = (sig - 1.0) / p; 380 secDerivative[i] = (sig - 1.0) / p; 383 u[i] = 381 u[i] = 384 (dataVector[i + 1] - dataVector[i]) / (b 382 (dataVector[i + 1] - dataVector[i]) / (binVector[i + 1] - binVector[i]) - 385 (dataVector[i] - dataVector[i - 1]) / (b 383 (dataVector[i] - dataVector[i - 1]) / (binVector[i] - binVector[i - 1]); 386 u[i] = 384 u[i] = 387 6.0 * u[i] / (binVector[i + 1] - binVect 385 6.0 * u[i] / (binVector[i + 1] - binVector[i - 1]) - sig * u[i - 1] / p; 388 } 386 } 389 387 390 sig = 388 sig = 391 (binVector[n - 1] - binVector[n - 2]) / (b 389 (binVector[n - 1] - binVector[n - 2]) / (binVector[n] - binVector[n - 2]); 392 p = sig * secDerivative[n - 2] + 2.0; 390 p = sig * secDerivative[n - 2] + 2.0; 393 un = (6.0 / (binVector[n] - binVector[n - 1] 391 un = (6.0 / (binVector[n] - binVector[n - 1])) * 394 (endPointDerivative - (dataVector[n] 392 (endPointDerivative - (dataVector[n] - dataVector[n - 1]) / 395 (binVector[n] 393 (binVector[n] - binVector[n - 1])) - 396 u[n - 1] / p; 394 u[n - 1] / p; 397 secDerivative[n] = un / (secDerivative[n - 1 395 secDerivative[n] = un / (secDerivative[n - 1] + 2.0); 398 396 399 // The back-substitution loop for the triago 397 // The back-substitution loop for the triagonal algorithm of solving 400 // a linear system of equations. 398 // a linear system of equations. 401 399 402 for (std::size_t k = n - 1; k > 0; --k) << 400 for(std::size_t k = n - 1; k > 0; --k) 403 { 401 { 404 secDerivative[k] *= 402 secDerivative[k] *= 405 (secDerivative[k + 1] - u[k] * (binVecto 403 (secDerivative[k + 1] - u[k] * (binVector[k + 1] - binVector[k - 1]) / 406 (binVector[k + 404 (binVector[k + 1] - binVector[k])); 407 } 405 } 408 secDerivative[0] = 0.5 * (u[0] - secDerivati 406 secDerivative[0] = 0.5 * (u[0] - secDerivative[1]); 409 407 410 delete[] u; 408 delete[] u; 411 } 409 } 412 410 413 // ------------------------------------------- 411 // -------------------------------------------------------------- 414 std::ostream& operator<<(std::ostream& out, co 412 std::ostream& operator<<(std::ostream& out, const G4PhysicsVector& pv) 415 { 413 { 416 // binning 414 // binning 417 G4long prec = out.precision(); 415 G4long prec = out.precision(); 418 out << std::setprecision(12) << pv.edgeMin < 416 out << std::setprecision(12) << pv.edgeMin << " " << pv.edgeMax << " " 419 << pv.numberOfNodes << G4endl; 417 << pv.numberOfNodes << G4endl; 420 418 421 // contents 419 // contents 422 out << pv.dataVector.size() << G4endl; 420 out << pv.dataVector.size() << G4endl; 423 for (std::size_t i = 0; i < pv.dataVector.si << 421 for(std::size_t i = 0; i < pv.dataVector.size(); ++i) 424 { 422 { 425 out << pv.binVector[i] << " " << pv.dataV 423 out << pv.binVector[i] << " " << pv.dataVector[i] << G4endl; 426 } 424 } 427 out.precision(prec); 425 out.precision(prec); 428 426 429 return out; 427 return out; 430 } 428 } 431 429 432 //-------------------------------------------- 430 //--------------------------------------------------------------- 433 G4double G4PhysicsVector::GetEnergy(const G4do 431 G4double G4PhysicsVector::GetEnergy(const G4double val) const 434 { 432 { 435 if (0 == numberOfNodes) << 433 if(0 == numberOfNodes) 436 { 434 { 437 return 0.0; 435 return 0.0; 438 } 436 } 439 if (1 == numberOfNodes || val <= dataVector[ << 437 if(1 == numberOfNodes || val <= dataVector[0]) 440 { 438 { 441 return edgeMin; 439 return edgeMin; 442 } 440 } 443 if (val >= dataVector[numberOfNodes - 1]) << 441 if(val >= dataVector[numberOfNodes - 1]) 444 { 442 { 445 return edgeMax; 443 return edgeMax; 446 } 444 } 447 std::size_t bin = std::lower_bound(dataVecto 445 std::size_t bin = std::lower_bound(dataVector.cbegin(), dataVector.cend(), val) 448 - dataVector.cbegin() - 1; 446 - dataVector.cbegin() - 1; 449 if (bin > idxmax) { bin = idxmax; } << 447 if(bin > idxmax) { bin = idxmax; } 450 G4double res = binVector[bin]; 448 G4double res = binVector[bin]; 451 G4double del = dataVector[bin + 1] - dataVec 449 G4double del = dataVector[bin + 1] - dataVector[bin]; 452 if (del > 0.0) << 450 if(del > 0.0) 453 { 451 { 454 res += (val - dataVector[bin]) * (binVecto 452 res += (val - dataVector[bin]) * (binVector[bin + 1] - res) / del; 455 } 453 } 456 return res; 454 return res; 457 } 455 } 458 456 459 //-------------------------------------------- 457 //--------------------------------------------------------------- 460 void G4PhysicsVector::PrintPutValueError(std:: 458 void G4PhysicsVector::PrintPutValueError(std::size_t index, 461 G4dou 459 G4double val, 462 const 460 const G4String& text) 463 { 461 { 464 G4ExceptionDescription ed; 462 G4ExceptionDescription ed; 465 ed << "Vector type: " << type << " length= " 463 ed << "Vector type: " << type << " length= " << numberOfNodes 466 << "; an attempt to put data at index= " 464 << "; an attempt to put data at index= " << index 467 << " value= " << val << " in " << text; 465 << " value= " << val << " in " << text; 468 G4Exception("G4PhysicsVector:", "gl0005", 466 G4Exception("G4PhysicsVector:", "gl0005", 469 FatalException, ed, "Wrong opera 467 FatalException, ed, "Wrong operation"); 470 } 468 } 471 469 472 //-------------------------------------------- 470 //--------------------------------------------------------------- 473 471