Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4GaussLegendreQ class implementation << 27 // 26 // 28 // Author: V.Grichine, 13.05.1997 << 27 // $Id: G4GaussLegendreQ.cc,v 1.8 2007-11-13 17:35:06 gcosmo Exp $ 29 // ------------------------------------------- << 28 // GEANT4 tag $Name: not supported by cvs2svn $ 30 << 29 // 31 #include "G4GaussLegendreQ.hh" 30 #include "G4GaussLegendreQ.hh" 32 #include "G4PhysicalConstants.hh" << 33 31 34 G4GaussLegendreQ::G4GaussLegendreQ(function pF << 32 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction ) 35 : G4VGaussianQuadrature(pFunction) << 33 : G4VGaussianQuadrature(pFunction) 36 {} << 34 { >> 35 } 37 36 38 // ------------------------------------------- 37 // -------------------------------------------------------------------------- 39 // 38 // 40 // Constructor for GaussLegendre quadrature me 39 // Constructor for GaussLegendre quadrature method. The value nLegendre sets 41 // the accuracy required, i.e the number of po 40 // the accuracy required, i.e the number of points where the function pFunction 42 // will be evaluated during integration. The c 41 // will be evaluated during integration. The constructor creates the arrays for 43 // abscissas and weights that are used in Gaus << 42 // abscissas and weights that are used in Gauss-Legendre quadrature method. 44 // The values a and b are the limits of integr 43 // The values a and b are the limits of integration of the pFunction. 45 // nLegendre MUST BE EVEN !!! 44 // nLegendre MUST BE EVEN !!! 46 45 47 G4GaussLegendreQ::G4GaussLegendreQ(function pF << 46 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction, 48 : G4VGaussianQuadrature(pFunction) << 47 G4int nLegendre ) >> 48 : G4VGaussianQuadrature(pFunction) 49 { 49 { 50 const G4double tolerance = 1.6e-10; << 50 const G4double tolerance = 1.6e-10 ; 51 G4int k = nLegendre; << 51 G4int k = nLegendre ; 52 fNumber = (nLegendre + 1) / << 52 fNumber = (nLegendre + 1)/2 ; 53 if(2 * fNumber != k) << 53 if(2*fNumber != k) 54 { << 54 { 55 G4Exception("G4GaussLegendreQ::G4GaussLege << 55 G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall", 56 FatalException, "Invalid nLege << 56 FatalException, "Invalid nLegendre argument !") ; 57 } << 57 } 58 G4double newton0 = 0.0, newton1 = 0.0, temp1 << 58 G4double newton0=0.0, newton1=0.0, 59 temp = 0.0; << 59 temp1=0.0, temp2=0.0, temp3=0.0, temp=0.0 ; 60 << 60 61 fAbscissa = new G4double[fNumber]; << 61 fAbscissa = new G4double[fNumber] ; 62 fWeight = new G4double[fNumber]; << 62 fWeight = new G4double[fNumber] ; 63 << 63 64 for(G4int i = 1; i <= fNumber; ++i) // Loop << 64 for(G4int i=1;i<=fNumber;i++) // Loop over the desired roots 65 { << 65 { 66 newton0 = std::cos(pi * (i - 0.25) / (k + << 66 newton0 = std::cos(pi*(i - 0.25)/(k + 0.5)) ; // Initial root 67 do << 67 do // approximation 68 { << 68 { // loop of Newton's method 69 temp1 = 1.0; << 69 temp1 = 1.0 ; 70 temp2 = 0.0; << 70 temp2 = 0.0 ; 71 for(G4int j = 1; j <= k; ++j) << 71 for(G4int j=1;j<=k;j++) 72 { << 72 { 73 temp3 = temp2; << 73 temp3 = temp2 ; 74 temp2 = temp1; << 74 temp2 = temp1 ; 75 temp1 = ((2.0 * j - 1.0) * newton0 * t << 75 temp1 = ((2.0*j - 1.0)*newton0*temp2 - (j - 1.0)*temp3)/j ; >> 76 } >> 77 temp = k*(newton0*temp1 - temp2)/(newton0*newton0 - 1.0) ; >> 78 newton1 = newton0 ; >> 79 newton0 = newton1 - temp1/temp ; // Newton's method 76 } 80 } 77 temp = k * (newton0 * temp1 - temp2) << 81 while(std::fabs(newton0 - newton1) > tolerance) ; 78 newton1 = newton0; << 82 79 newton0 = newton1 - temp1 / temp; // Ne << 83 fAbscissa[fNumber-i] = newton0 ; 80 } while(std::fabs(newton0 - newton1) > tol << 84 fWeight[fNumber-i] = 2.0/((1.0 - newton0*newton0)*temp*temp) ; 81 << 85 } 82 fAbscissa[fNumber - i] = newton0; << 83 fWeight[fNumber - i] = 2.0 / ((1.0 - new << 84 } << 85 } 86 } 86 87 87 // ------------------------------------------- 88 // -------------------------------------------------------------------------- 88 // 89 // 89 // Returns the integral of the function to be 90 // Returns the integral of the function to be pointed by fFunction between a 90 // and b, by 2*fNumber point Gauss-Legendre in 91 // and b, by 2*fNumber point Gauss-Legendre integration: the function is 91 // evaluated exactly 2*fNumber times at interi 92 // evaluated exactly 2*fNumber times at interior points in the range of 92 // integration. Since the weights and abscissa 93 // integration. Since the weights and abscissas are, in this case, symmetric 93 // around the midpoint of the range of integra 94 // around the midpoint of the range of integration, there are actually only 94 // fNumber distinct values of each. 95 // fNumber distinct values of each. 95 96 96 G4double G4GaussLegendreQ::Integral(G4double a << 97 G4double >> 98 G4GaussLegendreQ::Integral(G4double a, G4double b) const 97 { 99 { 98 G4double xMean = 0.5 * (a + b), xDiff = 0.5 << 100 G4double xMean = 0.5*(a + b), 99 dx = 0.0; << 101 xDiff = 0.5*(b - a), 100 for(G4int i = 0; i < fNumber; ++i) << 102 integral = 0.0, dx = 0.0 ; 101 { << 103 for(G4int i=0;i<fNumber;i++) 102 dx = xDiff * fAbscissa[i]; << 104 { 103 integral += fWeight[i] * (fFunction(xMean << 105 dx = xDiff*fAbscissa[i] ; 104 } << 106 integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ; 105 return integral *= xDiff; << 107 } >> 108 return integral *= xDiff ; 106 } 109 } 107 110 108 // ------------------------------------------- 111 // -------------------------------------------------------------------------- 109 // 112 // 110 // Returns the integral of the function to be 113 // Returns the integral of the function to be pointed by fFunction between a 111 // and b, by ten point Gauss-Legendre integrat 114 // and b, by ten point Gauss-Legendre integration: the function is evaluated 112 // exactly ten times at interior points in the 115 // exactly ten times at interior points in the range of integration. Since the 113 // weights and abscissas are, in this case, sy 116 // weights and abscissas are, in this case, symmetric around the midpoint of 114 // the range of integration, there are actuall 117 // the range of integration, there are actually only five distinct values of 115 // each. 118 // each. 116 119 117 G4double G4GaussLegendreQ::QuickIntegral(G4dou << 120 G4double >> 121 G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const 118 { 122 { 119 // From Abramowitz M., Stegan I.A. 1964 , Ha << 123 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 120 124 121 static const G4double abscissa[] = { 0.14887 << 125 static G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 122 0.67940 << 126 0.679409568299024, 0.865063366688985, 123 0.97390 << 127 0.973906528517172 } ; 124 << 128 125 static const G4double weight[] = { 0.2955242 << 129 static G4double weight[] = { 0.295524224714753, 0.269266719309996, 126 0.2190863 << 130 0.219086362515982, 0.149451349150581, 127 0.0666713 << 131 0.066671344308688 } ; 128 G4double xMean = 0.5 * (a + b), xDiff = 0.5 << 132 G4double xMean = 0.5*(a + b), 129 dx = 0.0; << 133 xDiff = 0.5*(b - a), 130 for(G4int i = 0; i < 5; ++i) << 134 integral = 0.0, dx = 0.0 ; 131 { << 135 for(G4int i=0;i<5;i++) 132 dx = xDiff * abscissa[i]; << 136 { 133 integral += weight[i] * (fFunction(xMean + << 137 dx = xDiff*abscissa[i] ; 134 } << 138 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ; 135 return integral *= xDiff; << 139 } >> 140 return integral *= xDiff ; 136 } 141 } 137 142 138 // ------------------------------------------- 143 // ------------------------------------------------------------------------- 139 // 144 // 140 // Returns the integral of the function to be 145 // Returns the integral of the function to be pointed by fFunction between a 141 // and b, by 96 point Gauss-Legendre integrati 146 // and b, by 96 point Gauss-Legendre integration: the function is evaluated 142 // exactly ten times at interior points in the 147 // exactly ten times at interior points in the range of integration. Since the 143 // weights and abscissas are, in this case, sy 148 // weights and abscissas are, in this case, symmetric around the midpoint of 144 // the range of integration, there are actuall 149 // the range of integration, there are actually only five distinct values of 145 // each. 150 // each. 146 151 147 G4double G4GaussLegendreQ::AccurateIntegral(G4 << 152 G4double 148 { << 153 G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const 149 // From Abramowitz M., Stegan I.A. 1964 , Ha << 154 { 150 << 155 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 151 static const G4double abscissa[] = { << 156 152 0.016276744849602969579, 0.048812985136049 << 157 static 153 0.081297495464425558994, 0.113695850110665 << 158 G4double abscissa[] = { 154 0.145973714654896941989, 0.178096882367618 << 159 0.016276744849602969579, 0.048812985136049731112, 155 << 160 0.081297495464425558994, 0.113695850110665920911, 156 0.210031310460567203603, 0.241743156163840 << 161 0.145973714654896941989, 0.178096882367618602759, // 6 157 0.273198812591049141487, 0.304364944354496 << 162 158 0.335208522892625422616, 0.365696861472313 << 163 0.210031310460567203603, 0.241743156163840012328, 159 << 164 0.273198812591049141487, 0.304364944354496353024, 160 0.395797649828908603285, 0.425478988407300 << 165 0.335208522892625422616, 0.365696861472313635031, // 12 161 0.454709422167743008636, 0.483457973920596 << 166 162 0.511694177154667673586, 0.539388108324357 << 167 0.395797649828908603285, 0.425478988407300545365, 163 << 168 0.454709422167743008636, 0.483457973920596359768, 164 0.566510418561397168404, 0.593032364777572 << 169 0.511694177154667673586, 0.539388108324357436227, // 18 165 0.618925840125468570386, 0.644163403784967 << 170 166 0.668718310043916153953, 0.692564536642171 << 171 0.566510418561397168404, 0.593032364777572080684, 167 << 172 0.618925840125468570386, 0.644163403784967106798, 168 0.715676812348967626225, 0.738030643744400 << 173 0.668718310043916153953, 0.692564536642171561344, // 24 169 0.759602341176647498703, 0.780369043867433 << 174 170 0.800308744139140817229, 0.819400310737931 << 175 0.715676812348967626225, 0.738030643744400132851, 171 << 176 0.759602341176647498703, 0.780369043867433217604, 172 0.837623511228187121494, 0.854959033434601 << 177 0.800308744139140817229, 0.819400310737931675539, // 30 173 0.871388505909296502874, 0.886894517402420 << 178 174 0.901460635315852341319, 0.915071423120898 << 179 0.837623511228187121494, 0.854959033434601455463, 175 << 180 0.871388505909296502874, 0.886894517402420416057, 176 0.927712456722308690965, 0.939370339752755 << 181 0.901460635315852341319, 0.915071423120898074206, // 36 177 0.950032717784437635756, 0.959688291448742 << 182 178 0.968326828463264212174, 0.975939174585136 << 183 0.927712456722308690965, 0.939370339752755216932, 179 << 184 0.950032717784437635756, 0.959688291448742539300, 180 0.982517263563014677447, 0.988054126329623 << 185 0.968326828463264212174, 0.975939174585136466453, // 42 181 0.992543900323762624572, 0.995981842987209 << 186 182 0.998364375863181677724, 0.999689503883230 << 187 0.982517263563014677447, 0.988054126329623799481, 183 }; << 188 0.992543900323762624572, 0.995981842987209290650, 184 << 189 0.998364375863181677724, 0.999689503883230766828 // 48 185 static const G4double weight[] = { << 190 } ; 186 0.032550614492363166242, 0.032516118713868 << 191 187 0.032447163714064269364, 0.032343822568575 << 192 static 188 0.032206204794030250669, 0.032034456231992 << 193 G4double weight[] = { 189 << 194 0.032550614492363166242, 0.032516118713868835987, 190 0.031828758894411006535, 0.031589330770727 << 195 0.032447163714064269364, 0.032343822568575928429, 191 0.031316425596862355813, 0.031010332586313 << 196 0.032206204794030250669, 0.032034456231992663218, // 6 192 0.030671376123669149014, 0.030299915420827 << 197 193 << 198 0.031828758894411006535, 0.031589330770727168558, 194 0.029896344136328385984, 0.029461089958167 << 199 0.031316425596862355813, 0.031010332586313837423, 195 0.028994614150555236543, 0.028497411065085 << 200 0.030671376123669149014, 0.030299915420827593794, // 12 196 0.027970007616848334440, 0.027412962726029 << 201 197 << 202 0.029896344136328385984, 0.029461089958167905970, 198 0.026826866725591762198, 0.026212340735672 << 203 0.028994614150555236543, 0.028497411065085385646, 199 0.025570036005349361499, 0.024900633222483 << 204 0.027970007616848334440, 0.027412962726029242823, // 18 200 0.024204841792364691282, 0.023483399085926 << 205 201 << 206 0.026826866725591762198, 0.026212340735672413913, 202 0.022737069658329374001, 0.021966644438744 << 207 0.025570036005349361499, 0.024900633222483610288, 203 0.021172939892191298988, 0.020356797154333 << 208 0.024204841792364691282, 0.023483399085926219842, // 24 204 0.019519081140145022410, 0.018660679627411 << 209 205 << 210 0.022737069658329374001, 0.021966644438744349195, 206 0.017782502316045260838, 0.016885479864245 << 211 0.021172939892191298988, 0.020356797154333324595, 207 0.015970562902562291381, 0.015038721026994 << 212 0.019519081140145022410, 0.018660679627411467385, // 30 208 0.014090941772314860916, 0.013128229566961 << 213 209 << 214 0.017782502316045260838, 0.016885479864245172450, 210 0.012151604671088319635, 0.011162102099838 << 215 0.015970562902562291381, 0.015038721026994938006, 211 0.010160770535008415758, 0.009148671230783 << 216 0.014090941772314860916, 0.013128229566961572637, // 36 212 0.008126876925698759217, 0.007096470791153 << 217 213 << 218 0.012151604671088319635, 0.011162102099838498591, 214 0.006058545504235961683, 0.005014202742927 << 219 0.010160770535008415758, 0.009148671230783386633, 215 0.003964554338444686674, 0.002910731817934 << 220 0.008126876925698759217, 0.007096470791153865269, // 42 216 0.001853960788946921732, 0.000796792065552 << 221 217 }; << 222 0.006058545504235961683, 0.005014202742927517693, 218 G4double xMean = 0.5 * (a + b), xDiff = 0.5 << 223 0.003964554338444686674, 0.002910731817934946408, 219 dx = 0.0; << 224 0.001853960788946921732, 0.000796792065552012429 // 48 220 for(G4int i = 0; i < 48; ++i) << 225 } ; 221 { << 226 G4double xMean = 0.5*(a + b), 222 dx = xDiff * abscissa[i]; << 227 xDiff = 0.5*(b - a), 223 integral += weight[i] * (fFunction(xMean + << 228 integral = 0.0, dx = 0.0 ; 224 } << 229 for(G4int i=0;i<48;i++) 225 return integral *= xDiff; << 230 { >> 231 dx = xDiff*abscissa[i] ; >> 232 integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ; >> 233 } >> 234 return integral *= xDiff ; 226 } 235 } 227 236