Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussLegendreQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /global/HEPNumerics/src/G4GaussLegendreQ.cc (Version 11.3.0) and /global/HEPNumerics/src/G4GaussLegendreQ.cc (Version 6.2.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4GaussLegendreQ class implementation       << 
 27 //                                                 23 //
 28 // Author: V.Grichine, 13.05.1997              <<  24 // $Id: G4GaussLegendreQ.cc,v 1.3 2001/07/11 10:00:41 gunter Exp $
 29 // ------------------------------------------- <<  25 // GEANT4 tag $Name: geant4-05-02-patch-01 $
 30                                                <<  26 //
 31 #include "G4GaussLegendreQ.hh"                     27 #include "G4GaussLegendreQ.hh"
 32 #include "G4PhysicalConstants.hh"              << 
 33                                                    28 
 34 G4GaussLegendreQ::G4GaussLegendreQ(function pF <<  29 
 35   : G4VGaussianQuadrature(pFunction)           <<  30 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction )
 36 {}                                             <<  31    : G4VGaussianQuadrature(pFunction)
 37                                                <<  32 {
 38 // ------------------------------------------- <<  33    ;
 39 //                                             <<  34 }
 40 // Constructor for GaussLegendre quadrature me <<  35 
 41 // the accuracy required, i.e the number of po <<  36 
 42 // will be evaluated during integration. The c <<  37 
 43 // abscissas and weights that are used in Gaus <<  38 // ----------------------------------------------------------------------------
                                                   >>  39 //
                                                   >>  40 // Constructor for GaussLegendre quadrature method. The value nLegendre set the
                                                   >>  41 // accuracy required, i.e the number of points where the function pFunction will
                                                   >>  42 // be evaluated during integration. The constructor creates the arrays for 
                                                   >>  43 // abscissas and weights that used in Gauss-Legendre quadrature method. 
 44 // The values a and b are the limits of integr     44 // The values a and b are the limits of integration of the pFunction.
 45 // nLegendre MUST BE EVEN !!!                      45 // nLegendre MUST BE EVEN !!!
 46                                                    46 
 47 G4GaussLegendreQ::G4GaussLegendreQ(function pF <<  47 G4GaussLegendreQ::G4GaussLegendreQ( function pFunction,
 48   : G4VGaussianQuadrature(pFunction)           <<  48             G4int nLegendre           )
                                                   >>  49    : G4VGaussianQuadrature(pFunction)
 49 {                                                  50 {
 50   const G4double tolerance = 1.6e-10;          <<  51    const G4double tolerance = 1.6e-10 ;
 51   G4int k                  = nLegendre;        <<  52    G4int i, j,   k = nLegendre ;
 52   fNumber                  = (nLegendre + 1) / <<  53    fNumber = (nLegendre + 1)/2 ;
 53   if(2 * fNumber != k)                         <<  54    if(2*fNumber != k)
 54   {                                            <<  55    {
 55     G4Exception("G4GaussLegendreQ::G4GaussLege <<  56       G4Exception("Invalid nLegendre in G4GaussLegendreQ::G4GaussLegendreQ") ;
 56                 FatalException, "Invalid nLege <<  57    }
 57   }                                            <<  58    G4double newton, newton1, temp1, temp2, temp3, temp ;
 58   G4double newton0 = 0.0, newton1 = 0.0, temp1 <<  59 
 59            temp = 0.0;                         <<  60    fAbscissa = new G4double[fNumber] ;
 60                                                <<  61    fWeight   = new G4double[fNumber] ;
 61   fAbscissa = new G4double[fNumber];           <<  62       
 62   fWeight   = new G4double[fNumber];           <<  63    for(i=1;i<=fNumber;i++)      // Loop over the desired roots
 63                                                <<  64    {
 64   for(G4int i = 1; i <= fNumber; ++i)  // Loop <<  65       newton = cos(pi*(i - 0.25)/(k + 0.5)) ;  // Initial root approximation
 65   {                                            <<  66       do
 66     newton0 = std::cos(pi * (i - 0.25) / (k +  <<  67       {               // loop of Newton's method               
 67     do                                         <<  68    temp1 = 1.0 ;
 68     {                                          <<  69    temp2 = 0.0 ;
 69       temp1 = 1.0;                             <<  70    for(j=1;j<=k;j++)
 70       temp2 = 0.0;                             <<  71    {
 71       for(G4int j = 1; j <= k; ++j)            <<  72       temp3 = temp2 ;
 72       {                                        <<  73       temp2 = temp1 ;
 73         temp3 = temp2;                         <<  74       temp1 = ((2.0*j - 1.0)*newton*temp2 - (j - 1.0)*temp3)/j ;
 74         temp2 = temp1;                         <<  75    }
 75         temp1 = ((2.0 * j - 1.0) * newton0 * t <<  76    temp = k*(newton*temp1 - temp2)/(newton*newton - 1.0) ;
                                                   >>  77    newton1 = newton ;
                                                   >>  78    newton  = newton1 - temp1/temp ;       // Newton's method
 76       }                                            79       }
 77       temp    = k * (newton0 * temp1 - temp2)  <<  80       while(fabs(newton - newton1) > tolerance) ;
 78       newton1 = newton0;                       <<  81    
 79       newton0 = newton1 - temp1 / temp;  // Ne <<  82       fAbscissa[fNumber-i] =  newton ;
 80     } while(std::fabs(newton0 - newton1) > tol <<  83       fWeight[fNumber-i] = 2.0/((1.0 - newton*newton)*temp*temp) ;
 81                                                <<  84    }
 82     fAbscissa[fNumber - i] = newton0;          << 
 83     fWeight[fNumber - i]   = 2.0 / ((1.0 - new << 
 84   }                                            << 
 85 }                                                  85 }
 86                                                    86 
 87 // ------------------------------------------- <<  87 
                                                   >>  88 // -------------------------------------------------------------------------------
 88 //                                                 89 //
 89 // Returns the integral of the function to be  <<  90 // Returns the integral of the function to be pointed by fFunction between a and b,
 90 // and b, by 2*fNumber point Gauss-Legendre in <<  91 // by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
 91 // evaluated exactly 2*fNumber times at interi <<  92 // 2*fNumber Times at interior points in the range of integration. Since the weights
 92 // integration. Since the weights and abscissa <<  93 // and abscissas are, in this case, symmetric around the midpoint of the range of
 93 // around the midpoint of the range of integra <<  94 // integration, there are actually only fNumber distinct values of each.
 94 // fNumber distinct values of each.            << 
 95                                                    95 
 96 G4double G4GaussLegendreQ::Integral(G4double a <<  96 G4double 
                                                   >>  97 G4GaussLegendreQ::Integral(G4double a, G4double b) const 
 97 {                                                  98 {
 98   G4double xMean = 0.5 * (a + b), xDiff = 0.5  <<  99    G4int i ;
 99            dx = 0.0;                           << 100    G4double xDiff, xMean, dx, integral ;
100   for(G4int i = 0; i < fNumber; ++i)           << 101    
101   {                                            << 102    xMean = 0.5*(a + b) ;
102     dx = xDiff * fAbscissa[i];                 << 103    xDiff = 0.5*(b - a) ;
103     integral += fWeight[i] * (fFunction(xMean  << 104    integral = 0.0 ;
104   }                                            << 105    for(i=0;i<fNumber;i++)
105   return integral *= xDiff;                    << 106    {
                                                   >> 107       dx = xDiff*fAbscissa[i] ;
                                                   >> 108       integral += fWeight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
                                                   >> 109    }
                                                   >> 110    return integral *= xDiff ;
106 }                                                 111 }
107                                                   112 
108 // ------------------------------------------- << 113 // -------------------------------------------------------------------------------
109 //                                                114 //
110 // Returns the integral of the function to be  << 115 // Returns the integral of the function to be pointed by fFunction between a and b,
111 // and b, by ten point Gauss-Legendre integrat << 116 // by ten point Gauss-Legendre integration: the function is evaluated exactly
112 // exactly ten times at interior points in the << 117 // ten Times at interior points in the range of integration. Since the weights
113 // weights and abscissas are, in this case, sy << 118 // and abscissas are, in this case, symmetric around the midpoint of the range of
114 // the range of integration, there are actuall << 119 // integration, there are actually only five distinct values of each
115 // each.                                       << 
116                                                   120 
117 G4double G4GaussLegendreQ::QuickIntegral(G4dou << 121 G4double 
                                                   >> 122    G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const 
118 {                                                 123 {
119   // From Abramowitz M., Stegan I.A. 1964 , Ha << 124    G4int i ;
120                                                << 125    G4double xDiff, xMean, dx, integral ;
121   static const G4double abscissa[] = { 0.14887 << 126    
122                                        0.67940 << 127    // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916
123                                        0.97390 << 128    
124                                                << 129    static G4double abscissa[] = { 0.148874338981631, 0.433395394129247,
125   static const G4double weight[] = { 0.2955242 << 130                                   0.679409568299024, 0.865063366688985,
126                                      0.2190863 << 131           0.973906528517172                      } ;
127                                      0.0666713 << 132    
128   G4double xMean = 0.5 * (a + b), xDiff = 0.5  << 133    static G4double weight[] =   { 0.295524224714753, 0.269266719309996, 
129            dx = 0.0;                           << 134                                   0.219086362515982, 0.149451349150581,
130   for(G4int i = 0; i < 5; ++i)                 << 135           0.066671344308688                      } ;
131   {                                            << 136    xMean = 0.5*(a + b) ;
132     dx = xDiff * abscissa[i];                  << 137    xDiff = 0.5*(b - a) ;
133     integral += weight[i] * (fFunction(xMean + << 138    integral = 0.0 ;
134   }                                            << 139    for(i=0;i<5;i++)
135   return integral *= xDiff;                    << 140    {
                                                   >> 141       dx = xDiff*abscissa[i] ;
                                                   >> 142       integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
                                                   >> 143    }
                                                   >> 144    return integral *= xDiff ;
136 }                                                 145 }
137                                                   146 
                                                   >> 147 
138 // -------------------------------------------    148 // -------------------------------------------------------------------------
139 //                                                149 //
140 // Returns the integral of the function to be  << 150 // Returns the integral of the function to be pointed by fFunction between a and b,
141 // and b, by 96 point Gauss-Legendre integrati << 151 // by 96 point Gauss-Legendre integration: the function is evaluated exactly
142 // exactly ten times at interior points in the << 152 // ten Times at interior points in the range of integration. Since the weights
143 // weights and abscissas are, in this case, sy << 153 // and abscissas are, in this case, symmetric around the midpoint of the range of
144 // the range of integration, there are actuall << 154 // integration, there are actually only five distinct values of each
145 // each.                                       << 
146                                                   155 
147 G4double G4GaussLegendreQ::AccurateIntegral(G4 << 156 G4double 
                                                   >> 157    G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const 
148 {                                                 158 {
149   // From Abramowitz M., Stegan I.A. 1964 , Ha << 159    G4int i ;
150                                                << 160    G4double xDiff, xMean, dx, integral ;
151   static const G4double abscissa[] = {         << 161    
152     0.016276744849602969579, 0.048812985136049 << 162    // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919
153     0.081297495464425558994, 0.113695850110665 << 163    
154     0.145973714654896941989, 0.178096882367618 << 164    static 
155                                                << 165    G4double abscissa[] = { 
156     0.210031310460567203603, 0.241743156163840 << 166                            0.016276744849602969579, 0.048812985136049731112,
157     0.273198812591049141487, 0.304364944354496 << 167                            0.081297495464425558994, 0.113695850110665920911,
158     0.335208522892625422616, 0.365696861472313 << 168                            0.145973714654896941989, 0.178096882367618602759,  // 6
159                                                << 169                            
160     0.395797649828908603285, 0.425478988407300 << 170          0.210031310460567203603, 0.241743156163840012328,
161     0.454709422167743008636, 0.483457973920596 << 171          0.273198812591049141487, 0.304364944354496353024,
162     0.511694177154667673586, 0.539388108324357 << 172          0.335208522892625422616, 0.365696861472313635031,  // 12
163                                                << 173          
164     0.566510418561397168404, 0.593032364777572 << 174          0.395797649828908603285, 0.425478988407300545365,
165     0.618925840125468570386, 0.644163403784967 << 175          0.454709422167743008636, 0.483457973920596359768,
166     0.668718310043916153953, 0.692564536642171 << 176          0.511694177154667673586, 0.539388108324357436227,  // 18
167                                                << 177          
168     0.715676812348967626225, 0.738030643744400 << 178          0.566510418561397168404, 0.593032364777572080684,
169     0.759602341176647498703, 0.780369043867433 << 179          0.618925840125468570386, 0.644163403784967106798,
170     0.800308744139140817229, 0.819400310737931 << 180          0.668718310043916153953, 0.692564536642171561344,  // 24
171                                                << 181          
172     0.837623511228187121494, 0.854959033434601 << 182          0.715676812348967626225, 0.738030643744400132851,
173     0.871388505909296502874, 0.886894517402420 << 183          0.759602341176647498703, 0.780369043867433217604,
174     0.901460635315852341319, 0.915071423120898 << 184          0.800308744139140817229, 0.819400310737931675539,  // 30
175                                                << 185          
176     0.927712456722308690965, 0.939370339752755 << 186          0.837623511228187121494, 0.854959033434601455463,
177     0.950032717784437635756, 0.959688291448742 << 187          0.871388505909296502874, 0.886894517402420416057,
178     0.968326828463264212174, 0.975939174585136 << 188          0.901460635315852341319, 0.915071423120898074206,  // 36
179                                                << 189          
180     0.982517263563014677447, 0.988054126329623 << 190          0.927712456722308690965, 0.939370339752755216932,
181     0.992543900323762624572, 0.995981842987209 << 191          0.950032717784437635756, 0.959688291448742539300,
182     0.998364375863181677724, 0.999689503883230 << 192          0.968326828463264212174, 0.975939174585136466453,  // 42
183   };                                           << 193          
184                                                << 194          0.982517263563014677447, 0.988054126329623799481,
185   static const G4double weight[] = {           << 195          0.992543900323762624572, 0.995981842987209290650,
186     0.032550614492363166242, 0.032516118713868 << 196          0.998364375863181677724, 0.999689503883230766828   // 48
187     0.032447163714064269364, 0.032343822568575 << 197                                                                             } ;
188     0.032206204794030250669, 0.032034456231992 << 198    
189                                                << 199    static 
190     0.031828758894411006535, 0.031589330770727 << 200    G4double weight[] =   {  
191     0.031316425596862355813, 0.031010332586313 << 201                            0.032550614492363166242, 0.032516118713868835987,
192     0.030671376123669149014, 0.030299915420827 << 202                            0.032447163714064269364, 0.032343822568575928429,
193                                                << 203          0.032206204794030250669, 0.032034456231992663218,  // 6
194     0.029896344136328385984, 0.029461089958167 << 204          
195     0.028994614150555236543, 0.028497411065085 << 205          0.031828758894411006535, 0.031589330770727168558,
196     0.027970007616848334440, 0.027412962726029 << 206          0.031316425596862355813, 0.031010332586313837423,
197                                                << 207          0.030671376123669149014, 0.030299915420827593794,  // 12
198     0.026826866725591762198, 0.026212340735672 << 208          
199     0.025570036005349361499, 0.024900633222483 << 209          0.029896344136328385984, 0.029461089958167905970,
200     0.024204841792364691282, 0.023483399085926 << 210          0.028994614150555236543, 0.028497411065085385646,
201                                                << 211          0.027970007616848334440, 0.027412962726029242823,  // 18
202     0.022737069658329374001, 0.021966644438744 << 212          
203     0.021172939892191298988, 0.020356797154333 << 213          0.026826866725591762198, 0.026212340735672413913,
204     0.019519081140145022410, 0.018660679627411 << 214          0.025570036005349361499, 0.024900633222483610288,
205                                                << 215          0.024204841792364691282, 0.023483399085926219842,  // 24
206     0.017782502316045260838, 0.016885479864245 << 216          
207     0.015970562902562291381, 0.015038721026994 << 217          0.022737069658329374001, 0.021966644438744349195,
208     0.014090941772314860916, 0.013128229566961 << 218          0.021172939892191298988, 0.020356797154333324595,
209                                                << 219          0.019519081140145022410, 0.018660679627411467385,  // 30
210     0.012151604671088319635, 0.011162102099838 << 220          
211     0.010160770535008415758, 0.009148671230783 << 221          0.017782502316045260838, 0.016885479864245172450,
212     0.008126876925698759217, 0.007096470791153 << 222          0.015970562902562291381, 0.015038721026994938006,
213                                                << 223          0.014090941772314860916, 0.013128229566961572637,  // 36
214     0.006058545504235961683, 0.005014202742927 << 224          
215     0.003964554338444686674, 0.002910731817934 << 225          0.012151604671088319635, 0.011162102099838498591,
216     0.001853960788946921732, 0.000796792065552 << 226          0.010160770535008415758, 0.009148671230783386633,
217   };                                           << 227          0.008126876925698759217, 0.007096470791153865269,  // 42
218   G4double xMean = 0.5 * (a + b), xDiff = 0.5  << 228          
219            dx = 0.0;                           << 229          0.006058545504235961683, 0.005014202742927517693,
220   for(G4int i = 0; i < 48; ++i)                << 230          0.003964554338444686674, 0.002910731817934946408,
221   {                                            << 231          0.001853960788946921732, 0.000796792065552012429   // 48
222     dx = xDiff * abscissa[i];                  << 232                                                                             } ;
223     integral += weight[i] * (fFunction(xMean + << 233    xMean = 0.5*(a + b) ;
224   }                                            << 234    xDiff = 0.5*(b - a) ;
225   return integral *= xDiff;                    << 235    integral = 0.0 ;
                                                   >> 236    for(i=0;i<48;i++)
                                                   >> 237    {
                                                   >> 238       dx = xDiff*abscissa[i] ;
                                                   >> 239       integral += weight[i]*(fFunction(xMean + dx) + fFunction(xMean - dx)) ;
                                                   >> 240    }
                                                   >> 241    return integral *= xDiff ;
226 }                                                 242 }
                                                   >> 243 
227                                                   244