Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4GaussLegendreQ class implementation 26 // G4GaussLegendreQ class implementation 27 // 27 // 28 // Author: V.Grichine, 13.05.1997 28 // Author: V.Grichine, 13.05.1997 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include "G4GaussLegendreQ.hh" 31 #include "G4GaussLegendreQ.hh" 32 #include "G4PhysicalConstants.hh" 32 #include "G4PhysicalConstants.hh" 33 33 34 G4GaussLegendreQ::G4GaussLegendreQ(function pF 34 G4GaussLegendreQ::G4GaussLegendreQ(function pFunction) 35 : G4VGaussianQuadrature(pFunction) 35 : G4VGaussianQuadrature(pFunction) 36 {} 36 {} 37 37 38 // ------------------------------------------- 38 // -------------------------------------------------------------------------- 39 // 39 // 40 // Constructor for GaussLegendre quadrature me 40 // Constructor for GaussLegendre quadrature method. The value nLegendre sets 41 // the accuracy required, i.e the number of po 41 // the accuracy required, i.e the number of points where the function pFunction 42 // will be evaluated during integration. The c 42 // will be evaluated during integration. The constructor creates the arrays for 43 // abscissas and weights that are used in Gaus 43 // abscissas and weights that are used in Gauss-Legendre quadrature method. 44 // The values a and b are the limits of integr 44 // The values a and b are the limits of integration of the pFunction. 45 // nLegendre MUST BE EVEN !!! 45 // nLegendre MUST BE EVEN !!! 46 46 47 G4GaussLegendreQ::G4GaussLegendreQ(function pF 47 G4GaussLegendreQ::G4GaussLegendreQ(function pFunction, G4int nLegendre) 48 : G4VGaussianQuadrature(pFunction) 48 : G4VGaussianQuadrature(pFunction) 49 { 49 { 50 const G4double tolerance = 1.6e-10; 50 const G4double tolerance = 1.6e-10; 51 G4int k = nLegendre; 51 G4int k = nLegendre; 52 fNumber = (nLegendre + 1) / 52 fNumber = (nLegendre + 1) / 2; 53 if(2 * fNumber != k) 53 if(2 * fNumber != k) 54 { 54 { 55 G4Exception("G4GaussLegendreQ::G4GaussLege 55 G4Exception("G4GaussLegendreQ::G4GaussLegendreQ()", "InvalidCall", 56 FatalException, "Invalid nLege 56 FatalException, "Invalid nLegendre argument !"); 57 } 57 } 58 G4double newton0 = 0.0, newton1 = 0.0, temp1 58 G4double newton0 = 0.0, newton1 = 0.0, temp1 = 0.0, temp2 = 0.0, temp3 = 0.0, 59 temp = 0.0; 59 temp = 0.0; 60 60 61 fAbscissa = new G4double[fNumber]; 61 fAbscissa = new G4double[fNumber]; 62 fWeight = new G4double[fNumber]; 62 fWeight = new G4double[fNumber]; 63 63 64 for(G4int i = 1; i <= fNumber; ++i) // Loop 64 for(G4int i = 1; i <= fNumber; ++i) // Loop over the desired roots 65 { 65 { 66 newton0 = std::cos(pi * (i - 0.25) / (k + 66 newton0 = std::cos(pi * (i - 0.25) / (k + 0.5)); // Initial root 67 do 67 do // approximation 68 { 68 { // loop of Newton's method 69 temp1 = 1.0; 69 temp1 = 1.0; 70 temp2 = 0.0; 70 temp2 = 0.0; 71 for(G4int j = 1; j <= k; ++j) 71 for(G4int j = 1; j <= k; ++j) 72 { 72 { 73 temp3 = temp2; 73 temp3 = temp2; 74 temp2 = temp1; 74 temp2 = temp1; 75 temp1 = ((2.0 * j - 1.0) * newton0 * t 75 temp1 = ((2.0 * j - 1.0) * newton0 * temp2 - (j - 1.0) * temp3) / j; 76 } 76 } 77 temp = k * (newton0 * temp1 - temp2) 77 temp = k * (newton0 * temp1 - temp2) / (newton0 * newton0 - 1.0); 78 newton1 = newton0; 78 newton1 = newton0; 79 newton0 = newton1 - temp1 / temp; // Ne 79 newton0 = newton1 - temp1 / temp; // Newton's method 80 } while(std::fabs(newton0 - newton1) > tol 80 } while(std::fabs(newton0 - newton1) > tolerance); 81 81 82 fAbscissa[fNumber - i] = newton0; 82 fAbscissa[fNumber - i] = newton0; 83 fWeight[fNumber - i] = 2.0 / ((1.0 - new 83 fWeight[fNumber - i] = 2.0 / ((1.0 - newton0 * newton0) * temp * temp); 84 } 84 } 85 } 85 } 86 86 87 // ------------------------------------------- 87 // -------------------------------------------------------------------------- 88 // 88 // 89 // Returns the integral of the function to be 89 // Returns the integral of the function to be pointed by fFunction between a 90 // and b, by 2*fNumber point Gauss-Legendre in 90 // and b, by 2*fNumber point Gauss-Legendre integration: the function is 91 // evaluated exactly 2*fNumber times at interi 91 // evaluated exactly 2*fNumber times at interior points in the range of 92 // integration. Since the weights and abscissa 92 // integration. Since the weights and abscissas are, in this case, symmetric 93 // around the midpoint of the range of integra 93 // around the midpoint of the range of integration, there are actually only 94 // fNumber distinct values of each. 94 // fNumber distinct values of each. 95 95 96 G4double G4GaussLegendreQ::Integral(G4double a 96 G4double G4GaussLegendreQ::Integral(G4double a, G4double b) const 97 { 97 { 98 G4double xMean = 0.5 * (a + b), xDiff = 0.5 98 G4double xMean = 0.5 * (a + b), xDiff = 0.5 * (b - a), integral = 0.0, 99 dx = 0.0; 99 dx = 0.0; 100 for(G4int i = 0; i < fNumber; ++i) 100 for(G4int i = 0; i < fNumber; ++i) 101 { 101 { 102 dx = xDiff * fAbscissa[i]; 102 dx = xDiff * fAbscissa[i]; 103 integral += fWeight[i] * (fFunction(xMean 103 integral += fWeight[i] * (fFunction(xMean + dx) + fFunction(xMean - dx)); 104 } 104 } 105 return integral *= xDiff; 105 return integral *= xDiff; 106 } 106 } 107 107 108 // ------------------------------------------- 108 // -------------------------------------------------------------------------- 109 // 109 // 110 // Returns the integral of the function to be 110 // Returns the integral of the function to be pointed by fFunction between a 111 // and b, by ten point Gauss-Legendre integrat 111 // and b, by ten point Gauss-Legendre integration: the function is evaluated 112 // exactly ten times at interior points in the 112 // exactly ten times at interior points in the range of integration. Since the 113 // weights and abscissas are, in this case, sy 113 // weights and abscissas are, in this case, symmetric around the midpoint of 114 // the range of integration, there are actuall 114 // the range of integration, there are actually only five distinct values of 115 // each. 115 // each. 116 116 117 G4double G4GaussLegendreQ::QuickIntegral(G4dou 117 G4double G4GaussLegendreQ::QuickIntegral(G4double a, G4double b) const 118 { 118 { 119 // From Abramowitz M., Stegan I.A. 1964 , Ha 119 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 916 120 120 121 static const G4double abscissa[] = { 0.14887 121 static const G4double abscissa[] = { 0.148874338981631, 0.433395394129247, 122 0.67940 122 0.679409568299024, 0.865063366688985, 123 0.97390 123 0.973906528517172 }; 124 124 125 static const G4double weight[] = { 0.2955242 125 static const G4double weight[] = { 0.295524224714753, 0.269266719309996, 126 0.2190863 126 0.219086362515982, 0.149451349150581, 127 0.0666713 127 0.066671344308688 }; 128 G4double xMean = 0.5 * (a + b), xDiff = 0.5 128 G4double xMean = 0.5 * (a + b), xDiff = 0.5 * (b - a), integral = 0.0, 129 dx = 0.0; 129 dx = 0.0; 130 for(G4int i = 0; i < 5; ++i) 130 for(G4int i = 0; i < 5; ++i) 131 { 131 { 132 dx = xDiff * abscissa[i]; 132 dx = xDiff * abscissa[i]; 133 integral += weight[i] * (fFunction(xMean + 133 integral += weight[i] * (fFunction(xMean + dx) + fFunction(xMean - dx)); 134 } 134 } 135 return integral *= xDiff; 135 return integral *= xDiff; 136 } 136 } 137 137 138 // ------------------------------------------- 138 // ------------------------------------------------------------------------- 139 // 139 // 140 // Returns the integral of the function to be 140 // Returns the integral of the function to be pointed by fFunction between a 141 // and b, by 96 point Gauss-Legendre integrati 141 // and b, by 96 point Gauss-Legendre integration: the function is evaluated 142 // exactly ten times at interior points in the 142 // exactly ten times at interior points in the range of integration. Since the 143 // weights and abscissas are, in this case, sy 143 // weights and abscissas are, in this case, symmetric around the midpoint of 144 // the range of integration, there are actuall 144 // the range of integration, there are actually only five distinct values of 145 // each. 145 // each. 146 146 147 G4double G4GaussLegendreQ::AccurateIntegral(G4 147 G4double G4GaussLegendreQ::AccurateIntegral(G4double a, G4double b) const 148 { 148 { 149 // From Abramowitz M., Stegan I.A. 1964 , Ha 149 // From Abramowitz M., Stegan I.A. 1964 , Handbook of Math... , p. 919 150 150 151 static const G4double abscissa[] = { 151 static const G4double abscissa[] = { 152 0.016276744849602969579, 0.048812985136049 152 0.016276744849602969579, 0.048812985136049731112, 153 0.081297495464425558994, 0.113695850110665 153 0.081297495464425558994, 0.113695850110665920911, 154 0.145973714654896941989, 0.178096882367618 154 0.145973714654896941989, 0.178096882367618602759, // 6 155 155 156 0.210031310460567203603, 0.241743156163840 156 0.210031310460567203603, 0.241743156163840012328, 157 0.273198812591049141487, 0.304364944354496 157 0.273198812591049141487, 0.304364944354496353024, 158 0.335208522892625422616, 0.365696861472313 158 0.335208522892625422616, 0.365696861472313635031, // 12 159 159 160 0.395797649828908603285, 0.425478988407300 160 0.395797649828908603285, 0.425478988407300545365, 161 0.454709422167743008636, 0.483457973920596 161 0.454709422167743008636, 0.483457973920596359768, 162 0.511694177154667673586, 0.539388108324357 162 0.511694177154667673586, 0.539388108324357436227, // 18 163 163 164 0.566510418561397168404, 0.593032364777572 164 0.566510418561397168404, 0.593032364777572080684, 165 0.618925840125468570386, 0.644163403784967 165 0.618925840125468570386, 0.644163403784967106798, 166 0.668718310043916153953, 0.692564536642171 166 0.668718310043916153953, 0.692564536642171561344, // 24 167 167 168 0.715676812348967626225, 0.738030643744400 168 0.715676812348967626225, 0.738030643744400132851, 169 0.759602341176647498703, 0.780369043867433 169 0.759602341176647498703, 0.780369043867433217604, 170 0.800308744139140817229, 0.819400310737931 170 0.800308744139140817229, 0.819400310737931675539, // 30 171 171 172 0.837623511228187121494, 0.854959033434601 172 0.837623511228187121494, 0.854959033434601455463, 173 0.871388505909296502874, 0.886894517402420 173 0.871388505909296502874, 0.886894517402420416057, 174 0.901460635315852341319, 0.915071423120898 174 0.901460635315852341319, 0.915071423120898074206, // 36 175 175 176 0.927712456722308690965, 0.939370339752755 176 0.927712456722308690965, 0.939370339752755216932, 177 0.950032717784437635756, 0.959688291448742 177 0.950032717784437635756, 0.959688291448742539300, 178 0.968326828463264212174, 0.975939174585136 178 0.968326828463264212174, 0.975939174585136466453, // 42 179 179 180 0.982517263563014677447, 0.988054126329623 180 0.982517263563014677447, 0.988054126329623799481, 181 0.992543900323762624572, 0.995981842987209 181 0.992543900323762624572, 0.995981842987209290650, 182 0.998364375863181677724, 0.999689503883230 182 0.998364375863181677724, 0.999689503883230766828 // 48 183 }; 183 }; 184 184 185 static const G4double weight[] = { 185 static const G4double weight[] = { 186 0.032550614492363166242, 0.032516118713868 186 0.032550614492363166242, 0.032516118713868835987, 187 0.032447163714064269364, 0.032343822568575 187 0.032447163714064269364, 0.032343822568575928429, 188 0.032206204794030250669, 0.032034456231992 188 0.032206204794030250669, 0.032034456231992663218, // 6 189 189 190 0.031828758894411006535, 0.031589330770727 190 0.031828758894411006535, 0.031589330770727168558, 191 0.031316425596862355813, 0.031010332586313 191 0.031316425596862355813, 0.031010332586313837423, 192 0.030671376123669149014, 0.030299915420827 192 0.030671376123669149014, 0.030299915420827593794, // 12 193 193 194 0.029896344136328385984, 0.029461089958167 194 0.029896344136328385984, 0.029461089958167905970, 195 0.028994614150555236543, 0.028497411065085 195 0.028994614150555236543, 0.028497411065085385646, 196 0.027970007616848334440, 0.027412962726029 196 0.027970007616848334440, 0.027412962726029242823, // 18 197 197 198 0.026826866725591762198, 0.026212340735672 198 0.026826866725591762198, 0.026212340735672413913, 199 0.025570036005349361499, 0.024900633222483 199 0.025570036005349361499, 0.024900633222483610288, 200 0.024204841792364691282, 0.023483399085926 200 0.024204841792364691282, 0.023483399085926219842, // 24 201 201 202 0.022737069658329374001, 0.021966644438744 202 0.022737069658329374001, 0.021966644438744349195, 203 0.021172939892191298988, 0.020356797154333 203 0.021172939892191298988, 0.020356797154333324595, 204 0.019519081140145022410, 0.018660679627411 204 0.019519081140145022410, 0.018660679627411467385, // 30 205 205 206 0.017782502316045260838, 0.016885479864245 206 0.017782502316045260838, 0.016885479864245172450, 207 0.015970562902562291381, 0.015038721026994 207 0.015970562902562291381, 0.015038721026994938006, 208 0.014090941772314860916, 0.013128229566961 208 0.014090941772314860916, 0.013128229566961572637, // 36 209 209 210 0.012151604671088319635, 0.011162102099838 210 0.012151604671088319635, 0.011162102099838498591, 211 0.010160770535008415758, 0.009148671230783 211 0.010160770535008415758, 0.009148671230783386633, 212 0.008126876925698759217, 0.007096470791153 212 0.008126876925698759217, 0.007096470791153865269, // 42 213 213 214 0.006058545504235961683, 0.005014202742927 214 0.006058545504235961683, 0.005014202742927517693, 215 0.003964554338444686674, 0.002910731817934 215 0.003964554338444686674, 0.002910731817934946408, 216 0.001853960788946921732, 0.000796792065552 216 0.001853960788946921732, 0.000796792065552012429 // 48 217 }; 217 }; 218 G4double xMean = 0.5 * (a + b), xDiff = 0.5 218 G4double xMean = 0.5 * (a + b), xDiff = 0.5 * (b - a), integral = 0.0, 219 dx = 0.0; 219 dx = 0.0; 220 for(G4int i = 0; i < 48; ++i) 220 for(G4int i = 0; i < 48; ++i) 221 { 221 { 222 dx = xDiff * abscissa[i]; 222 dx = xDiff * abscissa[i]; 223 integral += weight[i] * (fFunction(xMean + 223 integral += weight[i] * (fFunction(xMean + dx) + fFunction(xMean - dx)); 224 } 224 } 225 return integral *= xDiff; 225 return integral *= xDiff; 226 } 226 } 227 227