Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // G4AnalyticalPolSolver class implementation 27 // 28 // Author: V.Grichine, 24.04.97 29 // ------------------------------------------- 30 31 #include "globals.hh" 32 #include <complex> 33 34 #include "G4AnalyticalPolSolver.hh" 35 36 ////////////////////////////////////////////// 37 38 G4AnalyticalPolSolver::G4AnalyticalPolSolver() 39 40 ////////////////////////////////////////////// 41 42 G4AnalyticalPolSolver::~G4AnalyticalPolSolver( 43 44 ////////////////////////////////////////////// 45 // 46 // Array r[3][5] p[5] 47 // Roots of poly p[0] x^2 + p[1] x+p[2]=0 48 // 49 // x = r[1][k] + i r[2][k]; k = 1, 2 50 51 G4int G4AnalyticalPolSolver::QuadRoots(G4doubl 52 { 53 G4double b, c, d2, d; 54 55 b = -p[1] / p[0] / 2.; 56 c = p[2] / p[0]; 57 d2 = b * b - c; 58 59 if(d2 >= 0.) 60 { 61 d = std::sqrt(d2); 62 r[1][1] = b - d; 63 r[1][2] = b + d; 64 r[2][1] = 0.; 65 r[2][2] = 0.; 66 } 67 else 68 { 69 d = std::sqrt(-d2); 70 r[2][1] = d; 71 r[2][2] = -d; 72 r[1][1] = b; 73 r[1][2] = b; 74 } 75 76 return 2; 77 } 78 79 ////////////////////////////////////////////// 80 // 81 // Array r[3][5] p[5] 82 // Roots of poly p[0] x^3 + p[1] x^2...+p[3]=0 83 // x=r[1][k] + i r[2][k] k=1,...,3 84 // Assumes 0<arctan(x)<pi/2 for x>0 85 86 G4int G4AnalyticalPolSolver::CubicRoots(G4doub 87 { 88 G4double x, t, b, c, d; 89 G4int k; 90 91 if(p[0] != 1.) 92 { 93 for(k = 1; k < 4; k++) 94 { 95 p[k] = p[k] / p[0]; 96 } 97 p[0] = 1.; 98 } 99 x = p[1] / 3.0; 100 t = x * p[1]; 101 b = 0.5 * (x * (t / 1.5 - p[2]) + p[3]); 102 t = (t - p[2]) / 3.0; 103 c = t * t * t; 104 d = b * b - c; 105 106 if(d >= 0.) 107 { 108 d = std::pow((std::sqrt(d) + std::fabs(b)) 109 110 if(d != 0.) 111 { 112 if(b > 0.) 113 { 114 b = -d; 115 } 116 else 117 { 118 b = d; 119 } 120 c = t / b; 121 } 122 d = std::sqrt(0.75) * (b - c); 123 r[2][2] = d; 124 b = b + c; 125 c = -0.5 * b - x; 126 r[1][2] = c; 127 128 if((b > 0. && x <= 0.) || (b < 0. && x > 0 129 { 130 r[1][1] = c; 131 r[2][1] = -d; 132 r[1][3] = b - x; 133 r[2][3] = 0; 134 } 135 else 136 { 137 r[1][1] = b - x; 138 r[2][1] = 0.; 139 r[1][3] = c; 140 r[2][3] = -d; 141 } 142 } // end of 2 equal or complex roots 143 else 144 { 145 if(b == 0.) 146 { 147 d = std::atan(1.0) / 1.5; 148 } 149 else 150 { 151 d = std::atan(std::sqrt(-d) / std::fabs( 152 } 153 154 if(b < 0.) 155 { 156 b = std::sqrt(t) * 2.0; 157 } 158 else 159 { 160 b = -2.0 * std::sqrt(t); 161 } 162 163 c = std::cos(d) * b; 164 t = -std::sqrt(0.75) * std::sin(d) * b - 0 165 d = -t - c - x; 166 c = c - x; 167 t = t - x; 168 169 if(std::fabs(c) > std::fabs(t)) 170 { 171 r[1][3] = c; 172 } 173 else 174 { 175 r[1][3] = t; 176 t = c; 177 } 178 if(std::fabs(d) > std::fabs(t)) 179 { 180 r[1][2] = d; 181 } 182 else 183 { 184 r[1][2] = t; 185 t = d; 186 } 187 r[1][1] = t; 188 189 for(k = 1; k < 4; k++) 190 { 191 r[2][k] = 0.; 192 } 193 } 194 return 0; 195 } 196 197 ////////////////////////////////////////////// 198 // 199 // Array r[3][5] p[5] 200 // Roots of poly p[0] x^4 + p[1] x^3...+p[4]=0 201 // x=r[1][k] + i r[2][k] k=1,...,4 202 203 G4int G4AnalyticalPolSolver::BiquadRoots(G4dou 204 { 205 G4double a, b, c, d, e; 206 G4int i, k, j; 207 208 if(p[0] != 1.0) 209 { 210 for(k = 1; k < 5; k++) 211 { 212 p[k] = p[k] / p[0]; 213 } 214 p[0] = 1.; 215 } 216 e = 0.25 * p[1]; 217 b = 2 * e; 218 c = b * b; 219 d = 0.75 * c; 220 b = p[3] + b * (c - p[2]); 221 a = p[2] - d; 222 c = p[4] + e * (e * a - p[3]); 223 a = a - d; 224 225 p[1] = 0.5 * a; 226 p[2] = (p[1] * p[1] - c) * 0.25; 227 p[3] = b * b / (-64.0); 228 229 if(p[3] < 0.) 230 { 231 CubicRoots(p, r); 232 233 for(k = 1; k < 4; k++) 234 { 235 if(r[2][k] == 0. && r[1][k] > 0) 236 { 237 d = r[1][k] * 4; 238 a = a + d; 239 240 if(a >= 0. && b >= 0.) 241 { 242 p[1] = std::sqrt(d); 243 } 244 else if(a <= 0. && b <= 0.) 245 { 246 p[1] = std::sqrt(d); 247 } 248 else 249 { 250 p[1] = -std::sqrt(d); 251 } 252 253 b = 0.5 * (a + b / p[1]); 254 255 p[2] = c / b; 256 QuadRoots(p, r); 257 258 for(i = 1; i < 3; i++) 259 { 260 for(j = 1; j < 3; j++) 261 { 262 r[j][i + 2] = r[j][i]; 263 } 264 } 265 p[1] = -p[1]; 266 p[2] = b; 267 QuadRoots(p, r); 268 269 for(i = 1; i < 5; i++) 270 { 271 r[1][i] = r[1][i] - e; 272 } 273 274 return 4; 275 } 276 } 277 } 278 if(p[2] < 0.) 279 { 280 b = std::sqrt(c); 281 d = b + b - a; 282 p[1] = 0.; 283 284 if(d > 0.) 285 { 286 p[1] = std::sqrt(d); 287 } 288 } 289 else 290 { 291 if(p[1] > 0.) 292 { 293 b = std::sqrt(p[2]) * 2.0 + p[1]; 294 } 295 else 296 { 297 b = -std::sqrt(p[2]) * 2.0 + p[1]; 298 } 299 300 if(b != 0.) 301 { 302 p[1] = 0; 303 } 304 else 305 { 306 for(k = 1; k < 5; k++) 307 { 308 r[1][k] = -e; 309 r[2][k] = 0; 310 } 311 return 0; 312 } 313 } 314 315 p[2] = c / b; 316 QuadRoots(p, r); 317 318 for(k = 1; k < 3; k++) 319 { 320 for(j = 1; j < 3; j++) 321 { 322 r[j][k + 2] = r[j][k]; 323 } 324 } 325 p[1] = -p[1]; 326 p[2] = b; 327 QuadRoots(p, r); 328 329 for(k = 1; k < 5; k++) 330 { 331 r[1][k] = r[1][k] - e; 332 } 333 334 return 4; 335 } 336 337 ////////////////////////////////////////////// 338 339 G4int G4AnalyticalPolSolver::QuarticRoots(G4do 340 { 341 G4double a0, a1, a2, a3, y1; 342 G4double R2, D2, E2, D, E, R = 0.; 343 G4double a, b, c, d, ds; 344 345 G4double reRoot[4]; 346 G4int k; 347 348 for(k = 0; k < 4; k++) 349 { 350 reRoot[k] = DBL_MAX; 351 } 352 353 if(p[0] != 1.0) 354 { 355 for(k = 1; k < 5; k++) 356 { 357 p[k] = p[k] / p[0]; 358 } 359 p[0] = 1.; 360 } 361 a3 = p[1]; 362 a2 = p[2]; 363 a1 = p[3]; 364 a0 = p[4]; 365 366 // resolvent cubic equation cofs: 367 368 p[1] = -a2; 369 p[2] = a1 * a3 - 4 * a0; 370 p[3] = 4 * a2 * a0 - a1 * a1 - a3 * a3 * a0; 371 372 CubicRoots(p, r); 373 374 for(k = 1; k < 4; k++) 375 { 376 if(r[2][k] == 0.) // find a real root 377 { 378 reRoot[k] = r[1][k]; 379 } 380 else 381 { 382 reRoot[k] = DBL_MAX; // kInfinity; 383 } 384 } 385 y1 = DBL_MAX; // kInfinity; 386 for(k = 1; k < 4; k++) 387 { 388 if(reRoot[k] < y1) 389 { 390 y1 = reRoot[k]; 391 } 392 } 393 394 R2 = 0.25 * a3 * a3 - a2 + y1; 395 b = 0.25 * (4 * a3 * a2 - 8 * a1 - a3 * a3 396 c = 0.75 * a3 * a3 - 2 * a2; 397 a = c - R2; 398 d = 4 * y1 * y1 - 16 * a0; 399 400 if(R2 > 0.) 401 { 402 R = std::sqrt(R2); 403 D2 = a + b / R; 404 E2 = a - b / R; 405 406 if(D2 >= 0.) 407 { 408 D = std::sqrt(D2); 409 r[1][1] = -0.25 * a3 + 0.5 * R + 0.5 * D 410 r[1][2] = -0.25 * a3 + 0.5 * R - 0.5 * D 411 r[2][1] = 0.; 412 r[2][2] = 0.; 413 } 414 else 415 { 416 D = std::sqrt(-D2); 417 r[1][1] = -0.25 * a3 + 0.5 * R; 418 r[1][2] = -0.25 * a3 + 0.5 * R; 419 r[2][1] = 0.5 * D; 420 r[2][2] = -0.5 * D; 421 } 422 if(E2 >= 0.) 423 { 424 E = std::sqrt(E2); 425 r[1][3] = -0.25 * a3 - 0.5 * R + 0.5 * E 426 r[1][4] = -0.25 * a3 - 0.5 * R - 0.5 * E 427 r[2][3] = 0.; 428 r[2][4] = 0.; 429 } 430 else 431 { 432 E = std::sqrt(-E2); 433 r[1][3] = -0.25 * a3 - 0.5 * R; 434 r[1][4] = -0.25 * a3 - 0.5 * R; 435 r[2][3] = 0.5 * E; 436 r[2][4] = -0.5 * E; 437 } 438 } 439 else if(R2 < 0.) 440 { 441 R = std::sqrt(-R2); 442 G4complex CD2(a, -b / R); 443 G4complex CD = std::sqrt(CD2); 444 445 r[1][1] = -0.25 * a3 + 0.5 * real(CD); 446 r[1][2] = -0.25 * a3 - 0.5 * real(CD); 447 r[2][1] = 0.5 * R + 0.5 * imag(CD); 448 r[2][2] = 0.5 * R - 0.5 * imag(CD); 449 G4complex CE2(a, b / R); 450 G4complex CE = std::sqrt(CE2); 451 452 r[1][3] = -0.25 * a3 + 0.5 * real(CE); 453 r[1][4] = -0.25 * a3 - 0.5 * real(CE); 454 r[2][3] = -0.5 * R + 0.5 * imag(CE); 455 r[2][4] = -0.5 * R - 0.5 * imag(CE); 456 } 457 else // R2=0 case 458 { 459 if(d >= 0.) 460 { 461 D2 = c + std::sqrt(d); 462 E2 = c - std::sqrt(d); 463 464 if(D2 >= 0.) 465 { 466 D = std::sqrt(D2); 467 r[1][1] = -0.25 * a3 + 0.5 * R + 0.5 * 468 r[1][2] = -0.25 * a3 + 0.5 * R - 0.5 * 469 r[2][1] = 0.; 470 r[2][2] = 0.; 471 } 472 else 473 { 474 D = std::sqrt(-D2); 475 r[1][1] = -0.25 * a3 + 0.5 * R; 476 r[1][2] = -0.25 * a3 + 0.5 * R; 477 r[2][1] = 0.5 * D; 478 r[2][2] = -0.5 * D; 479 } 480 if(E2 >= 0.) 481 { 482 E = std::sqrt(E2); 483 r[1][3] = -0.25 * a3 - 0.5 * R + 0.5 * 484 r[1][4] = -0.25 * a3 - 0.5 * R - 0.5 * 485 r[2][3] = 0.; 486 r[2][4] = 0.; 487 } 488 else 489 { 490 E = std::sqrt(-E2); 491 r[1][3] = -0.25 * a3 - 0.5 * R; 492 r[1][4] = -0.25 * a3 - 0.5 * R; 493 r[2][3] = 0.5 * E; 494 r[2][4] = -0.5 * E; 495 } 496 } 497 else 498 { 499 ds = std::sqrt(-d); 500 G4complex CD2(c, ds); 501 G4complex CD = std::sqrt(CD2); 502 503 r[1][1] = -0.25 * a3 + 0.5 * real(CD); 504 r[1][2] = -0.25 * a3 - 0.5 * real(CD); 505 r[2][1] = 0.5 * R + 0.5 * imag(CD); 506 r[2][2] = 0.5 * R - 0.5 * imag(CD); 507 508 G4complex CE2(c, -ds); 509 G4complex CE = std::sqrt(CE2); 510 511 r[1][3] = -0.25 * a3 + 0.5 * real(CE); 512 r[1][4] = -0.25 * a3 - 0.5 * real(CE); 513 r[2][3] = -0.5 * R + 0.5 * imag(CE); 514 r[2][4] = -0.5 * R - 0.5 * imag(CE); 515 } 516 } 517 return 4; 518 } 519 520 // 521 // 522 ////////////////////////////////////////////// 523