Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4AnalyticalPolSolver 27 // 28 // Class description: 29 // 30 // G4AnalyticalPolSolver allows the user to solve analytically a polynomial 31 // equation up to the 4th order. This is used by CSG solid tracking functions 32 // like G4Torus. 33 // 34 // The algorithm has been adapted from the CACM Algorithm 326: 35 // 36 // Roots of low order polynomials 37 // Author: Terence R.F.Nonweiler 38 // CACM (Apr 1968) p269 39 // Translated into C and programmed by M.Dow 40 // ANUSF, Australian National University, Canberra, Australia 41 // m.dow@anu.edu.au 42 // 43 // Suite of procedures for finding the (complex) roots of the quadratic, 44 // cubic or quartic polynomials by explicit algebraic methods. 45 // Each Returns: 46 // 47 // x=r[1][k] + i r[2][k] k=1,...,n, where n={2,3,4} 48 // 49 // as roots of: 50 // sum_{k=0:n} p[k] x^(n-k) = 0 51 // Assumes p[0] != 0. (< or > 0) (overflows otherwise) 52 53 // Author: V.Grichine, 13.05.2005 54 // -------------------------------------------------------------------- 55 #ifndef G4AN_POL_SOLVER_HH 56 #define G4AN_POL_SOLVER_HH 1 57 58 #include "G4Types.hh" 59 60 class G4AnalyticalPolSolver 61 { 62 public: 63 G4AnalyticalPolSolver(); 64 ~G4AnalyticalPolSolver(); 65 66 G4int QuadRoots(G4double p[5], G4double r[3][5]); 67 G4int CubicRoots(G4double p[5], G4double r[3][5]); 68 G4int BiquadRoots(G4double p[5], G4double r[3][5]); 69 G4int QuarticRoots(G4double p[5], G4double r[3][5]); 70 }; 71 72 #endif 73