Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4TwistTrapParallelSide implementation << 27 // 26 // 28 // Author: Oliver Link (Oliver.Link@cern.ch) << 27 // $Id: G4TwistTrapParallelSide.cc,v >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4TwistTrapParallelSide.cc >> 36 // >> 37 // Author: >> 38 // >> 39 // Oliver Link (Oliver.Link@cern.ch) >> 40 // 29 // ------------------------------------------- 41 // -------------------------------------------------------------------- 30 42 31 #include <cmath> 43 #include <cmath> 32 44 33 #include "G4TwistTrapParallelSide.hh" 45 #include "G4TwistTrapParallelSide.hh" 34 #include "G4PhysicalConstants.hh" << 35 #include "G4JTPolynomialSolver.hh" 46 #include "G4JTPolynomialSolver.hh" 36 47 37 //============================================ 48 //===================================================================== 38 //* constructors ----------------------------- 49 //* constructors ------------------------------------------------------ 39 50 40 G4TwistTrapParallelSide::G4TwistTrapParallelSi << 51 G4TwistTrapParallelSide::G4TwistTrapParallelSide(const G4String &name, 41 G4double PhiTwist, << 52 G4double PhiTwist, // twist angle 42 G4double pDz, << 53 G4double pDz, // half z lenght 43 G4double pTheta, << 54 G4double pTheta, // direction between end planes 44 G4double pPhi, << 55 G4double pPhi, // defined by polar and azimutal angles. 45 G4double pDy1, << 56 G4double pDy1, // half y length at -pDz 46 G4double pDx1, << 57 G4double pDx1, // half x length at -pDz,-pDy 47 G4double pDx2, << 58 G4double pDx2, // half x length at -pDz,+pDy 48 G4double pDy2, << 59 G4double pDy2, // half y length at +pDz 49 G4double pDx3, << 60 G4double pDx3, // half x length at +pDz,-pDy 50 G4double pDx4, << 61 G4double pDx4, // half x length at +pDz,+pDy 51 G4double pAlph, << 62 G4double pAlph, // tilt angle at +pDz 52 G4double AngleSide << 63 G4double AngleSide // parity 53 64 ) 54 : G4VTwistSurface(name) << 65 : G4VTwistSurface(name), fDy(0.) 55 { 66 { 56 67 57 fAxis[0] = kXAxis; // in local coordinate 68 fAxis[0] = kXAxis; // in local coordinate system 58 fAxis[1] = kZAxis; 69 fAxis[1] = kZAxis; 59 fAxisMin[0] = -kInfinity ; // X Axis bounda 70 fAxisMin[0] = -kInfinity ; // X Axis boundary 60 fAxisMax[0] = kInfinity ; // depends on 71 fAxisMax[0] = kInfinity ; // depends on z !! 61 fAxisMin[1] = -pDz ; // Z Axis bounda << 72 fAxisMin[1] = -pDz ; // Z Axis boundary 62 fAxisMax[1] = pDz ; 73 fAxisMax[1] = pDz ; 63 74 64 fDx1 = pDx1 ; 75 fDx1 = pDx1 ; 65 fDx2 = pDx2 ; 76 fDx2 = pDx2 ; 66 fDx3 = pDx3 ; 77 fDx3 = pDx3 ; 67 fDx4 = pDx4 ; 78 fDx4 = pDx4 ; 68 79 69 fDy1 = pDy1 ; 80 fDy1 = pDy1 ; 70 fDy2 = pDy2 ; 81 fDy2 = pDy2 ; 71 82 72 fDz = pDz ; 83 fDz = pDz ; 73 84 74 fAlph = pAlph ; 85 fAlph = pAlph ; 75 fTAlph = std::tan(fAlph) ; 86 fTAlph = std::tan(fAlph) ; 76 87 77 fTheta = pTheta ; 88 fTheta = pTheta ; 78 fPhi = pPhi ; 89 fPhi = pPhi ; 79 90 80 // precalculate frequently used parameters << 91 // precalculate frequently used parameters 81 // << 82 fDx4plus2 = fDx4 + fDx2 ; 92 fDx4plus2 = fDx4 + fDx2 ; 83 fDx4minus2 = fDx4 - fDx2 ; 93 fDx4minus2 = fDx4 - fDx2 ; 84 fDx3plus1 = fDx3 + fDx1 ; 94 fDx3plus1 = fDx3 + fDx1 ; 85 fDx3minus1 = fDx3 - fDx1 ; 95 fDx3minus1 = fDx3 - fDx1 ; 86 fDy2plus1 = fDy2 + fDy1 ; 96 fDy2plus1 = fDy2 + fDy1 ; 87 fDy2minus1 = fDy2 - fDy1 ; 97 fDy2minus1 = fDy2 - fDy1 ; 88 98 89 fa1md1 = 2*fDx2 - 2*fDx1 ; 99 fa1md1 = 2*fDx2 - 2*fDx1 ; 90 fa2md2 = 2*fDx4 - 2*fDx3 ; 100 fa2md2 = 2*fDx4 - 2*fDx3 ; 91 101 92 fPhiTwist = PhiTwist ; // dphi << 102 fPhiTwist = PhiTwist ; // dphi 93 fAngleSide = AngleSide ; // 0,90,180,270 de 103 fAngleSide = AngleSide ; // 0,90,180,270 deg 94 104 95 fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fP << 105 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi) ; // dx in surface equation 96 fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fP << 106 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi) ; // dy in surface equation 97 107 98 fRot.rotateZ( AngleSide ) ; 108 fRot.rotateZ( AngleSide ) ; 99 109 100 fTrans.set(0, 0, 0); // No Translation 110 fTrans.set(0, 0, 0); // No Translation 101 fIsValidNorm = false; 111 fIsValidNorm = false; 102 112 103 SetCorners() ; 113 SetCorners() ; 104 SetBoundaries() ; 114 SetBoundaries() ; >> 115 105 } 116 } 106 117 >> 118 107 //============================================ 119 //===================================================================== 108 //* Fake default constructor ----------------- 120 //* Fake default constructor ------------------------------------------ 109 121 110 G4TwistTrapParallelSide::G4TwistTrapParallelSi 122 G4TwistTrapParallelSide::G4TwistTrapParallelSide( __void__& a ) 111 : G4VTwistSurface(a) << 123 : G4VTwistSurface(a), fTheta(0.), fPhi(0.), fDy1(0.), fDx1(0.), fDx2(0.), >> 124 fDy2(0.), fDx3(0.), fDx4(0.), fDz(0.), fAlph(0.), fTAlph(0.), fPhiTwist(0.), >> 125 fAngleSide(0.), fdeltaX(0.), fdeltaY(0.), fDx4plus2(0.), fDx4minus2(0.), >> 126 fDx3plus1(0.), fDx3minus1(0.), fDy2plus1(0.), fDy2minus1(0.), fa1md1(0.), >> 127 fa2md2(0.), fDy(0.) 112 { 128 { 113 } 129 } 114 130 >> 131 115 //============================================ 132 //===================================================================== 116 //* destructor ------------------------------- 133 //* destructor -------------------------------------------------------- 117 134 118 G4TwistTrapParallelSide::~G4TwistTrapParallelS << 135 G4TwistTrapParallelSide::~G4TwistTrapParallelSide() >> 136 { >> 137 } 119 138 120 //============================================ 139 //===================================================================== 121 //* GetNormal -------------------------------- 140 //* GetNormal --------------------------------------------------------- 122 141 123 G4ThreeVector G4TwistTrapParallelSide::GetNorm << 142 G4ThreeVector G4TwistTrapParallelSide::GetNormal(const G4ThreeVector &tmpxx, 124 << 143 G4bool isGlobal) 125 { 144 { 126 // GetNormal returns a normal vector at a s 145 // GetNormal returns a normal vector at a surface (or very close 127 // to surface) point at tmpxx. 146 // to surface) point at tmpxx. 128 // If isGlobal=true, it returns the normal 147 // If isGlobal=true, it returns the normal in global coordinate. 129 // 148 // 130 149 131 G4ThreeVector xx; 150 G4ThreeVector xx; 132 if (isGlobal) << 151 if (isGlobal) { 133 { << 134 xx = ComputeLocalPoint(tmpxx); 152 xx = ComputeLocalPoint(tmpxx); 135 if ((xx - fCurrentNormal.p).mag() < 0.5 << 153 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance) { 136 { << 137 return ComputeGlobalDirection(fCurren 154 return ComputeGlobalDirection(fCurrentNormal.normal); 138 } 155 } 139 } << 156 } else { 140 else << 141 { << 142 xx = tmpxx; 157 xx = tmpxx; 143 if (xx == fCurrentNormal.p) << 158 if (xx == fCurrentNormal.p) { 144 { << 145 return fCurrentNormal.normal; 159 return fCurrentNormal.normal; 146 } 160 } 147 } 161 } 148 162 149 G4double phi ; 163 G4double phi ; 150 G4double u ; 164 G4double u ; 151 165 152 GetPhiUAtX(xx,phi,u) ; // phi,u for point 166 GetPhiUAtX(xx,phi,u) ; // phi,u for point xx close to surface 153 167 154 G4ThreeVector normal = NormAng(phi,u) ; / 168 G4ThreeVector normal = NormAng(phi,u) ; // the normal vector at phi,u 155 169 156 #ifdef G4TWISTDEBUG 170 #ifdef G4TWISTDEBUG 157 G4cout << "normal vector = " << normal << 171 G4cout << "normal vector = " << normal << G4endl ; 158 G4cout << "phi = " << phi << " , u = " << u 172 G4cout << "phi = " << phi << " , u = " << u << G4endl ; 159 #endif 173 #endif 160 174 161 // normal = normal/normal.mag() ; 175 // normal = normal/normal.mag() ; 162 176 163 if (isGlobal) << 177 if (isGlobal) { 164 { << 165 fCurrentNormal.normal = ComputeGlobalDir 178 fCurrentNormal.normal = ComputeGlobalDirection(normal.unit()); 166 } << 179 } else { 167 else << 168 { << 169 fCurrentNormal.normal = normal.unit(); 180 fCurrentNormal.normal = normal.unit(); 170 } 181 } 171 return fCurrentNormal.normal; 182 return fCurrentNormal.normal; 172 } 183 } 173 184 174 //============================================ 185 //===================================================================== 175 //* DistanceToSurface ------------------------ 186 //* DistanceToSurface ------------------------------------------------- 176 187 177 G4int G4TwistTrapParallelSide::DistanceToSurfa << 188 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector &gp, 178 << 189 const G4ThreeVector &gv, 179 << 190 G4ThreeVector gxx[], 180 << 191 G4double distance[], 181 << 192 G4int areacode[], 182 << 193 G4bool isvalid[], 183 << 194 EValidate validate) 184 { 195 { >> 196 >> 197 static const G4double ctol = 0.5 * kCarTolerance; 185 static const G4double pihalf = pi/2 ; 198 static const G4double pihalf = pi/2 ; 186 const G4double ctol = 0.5 * kCarTolerance; << 187 199 188 G4bool IsParallel = false ; 200 G4bool IsParallel = false ; 189 G4bool IsConverged = false ; 201 G4bool IsConverged = false ; 190 202 191 G4int nxx = 0 ; // number of physical solut 203 G4int nxx = 0 ; // number of physical solutions 192 204 193 fCurStatWithV.ResetfDone(validate, &gp, &gv) 205 fCurStatWithV.ResetfDone(validate, &gp, &gv); 194 206 195 if (fCurStatWithV.IsDone()) << 207 if (fCurStatWithV.IsDone()) { 196 { << 208 G4int i; 197 for (G4int i=0; i<fCurStatWithV.GetNXX(); << 209 for (i=0; i<fCurStatWithV.GetNXX(); i++) { 198 { << 199 gxx[i] = fCurStatWithV.GetXX(i); 210 gxx[i] = fCurStatWithV.GetXX(i); 200 distance[i] = fCurStatWithV.GetDistance( 211 distance[i] = fCurStatWithV.GetDistance(i); 201 areacode[i] = fCurStatWithV.GetAreacode( 212 areacode[i] = fCurStatWithV.GetAreacode(i); 202 isvalid[i] = fCurStatWithV.IsValid(i); 213 isvalid[i] = fCurStatWithV.IsValid(i); 203 } 214 } 204 return fCurStatWithV.GetNXX(); 215 return fCurStatWithV.GetNXX(); 205 } << 216 } else { 206 else // initialize << 217 207 { << 218 // initialize 208 for (G4int i=0; i<G4VSURFACENXX ; ++i) << 219 G4int i; 209 { << 220 for (i=0; i<G4VSURFACENXX ; i++) { 210 distance[i] = kInfinity; 221 distance[i] = kInfinity; 211 areacode[i] = sOutside; 222 areacode[i] = sOutside; 212 isvalid[i] = false; 223 isvalid[i] = false; 213 gxx[i].set(kInfinity, kInfinity, kInfini 224 gxx[i].set(kInfinity, kInfinity, kInfinity); 214 } 225 } 215 } 226 } 216 227 217 G4ThreeVector p = ComputeLocalPoint(gp); 228 G4ThreeVector p = ComputeLocalPoint(gp); 218 G4ThreeVector v = ComputeLocalDirection(gv); 229 G4ThreeVector v = ComputeLocalDirection(gv); 219 230 220 #ifdef G4TWISTDEBUG 231 #ifdef G4TWISTDEBUG 221 G4cout << "Local point p = " << p << G4endl 232 G4cout << "Local point p = " << p << G4endl ; 222 G4cout << "Local direction v = " << v << G4e 233 G4cout << "Local direction v = " << v << G4endl ; 223 #endif 234 #endif 224 235 225 G4double phi,u ; // parameters 236 G4double phi,u ; // parameters 226 237 227 // temporary variables 238 // temporary variables 228 239 229 G4double tmpdist = kInfinity ; 240 G4double tmpdist = kInfinity ; 230 G4ThreeVector tmpxx; 241 G4ThreeVector tmpxx; 231 G4int tmpareacode = sOutside ; 242 G4int tmpareacode = sOutside ; 232 G4bool tmpisvalid = false ; 243 G4bool tmpisvalid = false ; 233 244 234 std::vector<Intersection> xbuf ; 245 std::vector<Intersection> xbuf ; 235 Intersection xbuftmp ; 246 Intersection xbuftmp ; 236 247 237 // prepare some variables for the intersecti 248 // prepare some variables for the intersection finder 238 249 239 G4double L = 2*fDz ; 250 G4double L = 2*fDz ; 240 251 241 G4double phixz = fPhiTwist * ( p.x() * v.z() 252 G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ; 242 G4double phiyz = fPhiTwist * ( p.y() * v.z() 253 G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ; 243 254 244 // special case vz = 0 255 // special case vz = 0 245 256 246 if ( v.z() == 0. ) << 257 if ( v.z() == 0. ) { 247 { << 258 248 if ( std::fabs(p.z()) <= L ) // inte << 259 if ( std::fabs(p.z()) <= L ) { // intersection possible in z 249 { << 260 250 phi = p.z() * fPhiTwist / L ; // phi is 261 phi = p.z() * fPhiTwist / L ; // phi is determined by the z-position 251 262 252 u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p. << 263 u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p.y()*v.x() - fdeltaX*phi*v.y() + fPhiTwist*p.x()*v.y()) + (fDy2plus1*fPhiTwist + 2*fDy2minus1*phi)*(v.x()*std::cos(phi) + v.y()*std::sin(phi)))/(2.* fPhiTwist*(v.y()*std::cos(phi) - v.x()*std::sin(phi))) ; 253 + fPhiTwist*p.x()*v.y()) + (fDy2 << 254 + 2*fDy2minus1*phi)*(v.x()*std:: << 255 / (2.* fPhiTwist*(v.y()*std::cos(phi) << 256 264 257 xbuftmp.phi = phi ; 265 xbuftmp.phi = phi ; 258 xbuftmp.u = u ; 266 xbuftmp.u = u ; 259 xbuftmp.areacode = sOutside ; 267 xbuftmp.areacode = sOutside ; 260 xbuftmp.distance = kInfinity ; 268 xbuftmp.distance = kInfinity ; 261 xbuftmp.isvalid = false ; 269 xbuftmp.isvalid = false ; 262 270 263 xbuf.push_back(xbuftmp) ; // store it to << 271 xbuf.push_back(xbuftmp) ; // store it to xbuf >> 272 264 } 273 } 265 else // no in << 274 266 { << 275 else { // no intersection possible >> 276 267 distance[0] = kInfinity; 277 distance[0] = kInfinity; 268 gxx[0].set(kInfinity,kInfinity,kInfinity 278 gxx[0].set(kInfinity,kInfinity,kInfinity); 269 isvalid[0] = false ; 279 isvalid[0] = false ; 270 areacode[0] = sOutside ; 280 areacode[0] = sOutside ; 271 fCurStatWithV.SetCurrentStatus(0, gxx[0] 281 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], 272 areacode[ 282 areacode[0], isvalid[0], 273 0, valida 283 0, validate, &gp, &gv); 274 284 275 return 0; 285 return 0; >> 286 >> 287 276 } // end std::fabs(p.z() <= L 288 } // end std::fabs(p.z() <= L >> 289 277 } // end v.z() == 0 290 } // end v.z() == 0 278 else // general solution for non-zero vz << 291 279 { << 292 280 G4double c[9],srd[8],si[8] ; << 293 // general solution for non-zero vz >> 294 >> 295 else { >> 296 >> 297 G4double c[9],sr[8],si[8] ; 281 298 282 c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwi 299 c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwist*v.z()) ; 283 c[7] = -7200*(phixz - 2*fDz*v.y() + (fdelt 300 c[7] = -7200*(phixz - 2*fDz*v.y() + (fdeltaY + fDy2minus1)*v.z()) ; 284 c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60 << 301 c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60*fdeltaX*v.z() + 11*fDy2plus1*fPhiTwist*v.z()) ; 285 + 11*fDy2plus1*fPhiTwist*v.z()) ; << 302 c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*fdeltaY*v.z() + 11*fDy2minus1*v.z()) ; 286 c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*f << 303 c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320*fdeltaX*v.z() + 4*fDy2plus1*fPhiTwist*v.z()) ; 287 + 11*fDy2minus1*v.z()) ; << 304 c[3] = -404*phixz + 3048*fDz*v.y() - 1524*fdeltaY*v.z() + 96*fDy2minus1*v.z() ; 288 c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320 << 289 + 4*fDy2plus1*fPhiTwist*v.z()) ; << 290 c[3] = -404*phixz + 3048*fDz*v.y() - 1524* << 291 + 96*fDy2minus1*v.z() ; << 292 c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fde 305 c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fdeltaX*v.z()) ; 293 c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdelta 306 c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdeltaY*v.z()) ; 294 c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ; 307 c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ; 295 308 296 309 297 #ifdef G4TWISTDEBUG 310 #ifdef G4TWISTDEBUG 298 G4cout << "coef = " << c[0] << " " 311 G4cout << "coef = " << c[0] << " " 299 << c[1] << " " 312 << c[1] << " " 300 << c[2] << " " 313 << c[2] << " " 301 << c[3] << " " 314 << c[3] << " " 302 << c[4] << " " 315 << c[4] << " " 303 << c[5] << " " 316 << c[5] << " " 304 << c[6] << " " 317 << c[6] << " " 305 << c[7] << " " 318 << c[7] << " " 306 << c[8] << G4endl ; 319 << c[8] << G4endl ; 307 #endif 320 #endif 308 321 309 G4JTPolynomialSolver trapEq ; 322 G4JTPolynomialSolver trapEq ; 310 G4int num = trapEq.FindRoots(c,8,srd,si); << 323 G4int num = trapEq.FindRoots(c,8,sr,si); >> 324 311 325 312 for (G4int i = 0 ; i<num ; ++i ) // loop << 326 for (G4int i = 0 ; i<num ; i++ ) { // loop over all mathematical solutions 313 { << 327 if ( si[i]==0.0 ) { // only real solutions 314 if ( si[i]==0.0 ) // only real solutio << 328 #ifdef G4TWISTDEBUG 315 { << 329 G4cout << "Solution " << i << " : " << sr[i] << G4endl ; 316 #ifdef G4TWISTDEBUG << 330 #endif 317 G4cout << "Solution " << i << " : " << << 331 phi = std::fmod(sr[i] , pihalf) ; 318 #endif << 332 319 phi = std::fmod(srd[i] , pihalf) ; << 333 u = (1/std::cos(phi)*(2*phixz + 4*fDz*phi*v.x() - 2*fdeltaX*phi*v.z() + (fDy2plus1*fPhiTwist + 2*fDy2minus1*phi)*v.z()* std::sin(phi)))/(2.*fPhiTwist*v.z()) ; 320 u = (1/std::cos(phi)*(2*phixz + 4*fDz* << 321 - 2*fdeltaX*phi*v.z() + (fDy2plus1*f << 322 + 2*fDy2minus1*phi)*v.z()* std::sin( << 323 334 324 xbuftmp.phi = phi ; 335 xbuftmp.phi = phi ; 325 xbuftmp.u = u ; 336 xbuftmp.u = u ; 326 xbuftmp.areacode = sOutside ; 337 xbuftmp.areacode = sOutside ; 327 xbuftmp.distance = kInfinity ; 338 xbuftmp.distance = kInfinity ; 328 xbuftmp.isvalid = false ; 339 xbuftmp.isvalid = false ; 329 340 330 xbuf.push_back(xbuftmp) ; // store it 341 xbuf.push_back(xbuftmp) ; // store it to xbuf 331 342 332 #ifdef G4TWISTDEBUG 343 #ifdef G4TWISTDEBUG 333 G4cout << "solution " << i << " = " << 344 G4cout << "solution " << i << " = " << phi << " , " << u << G4endl ; 334 #endif 345 #endif 335 346 336 } // end if real solution 347 } // end if real solution 337 } // end loop i 348 } // end loop i 338 } // end general case << 349 >> 350 } // end general case >> 351 339 352 340 nxx = (G4int)xbuf.size() ; // save the numb << 353 nxx = xbuf.size() ; // save the number of solutions 341 354 342 G4ThreeVector xxonsurface ; // point 355 G4ThreeVector xxonsurface ; // point on surface 343 G4ThreeVector surfacenormal ; // normal 356 G4ThreeVector surfacenormal ; // normal vector 344 G4double deltaX ; // distance between inter << 357 G4double deltaX ; // distance between intersection point and point on surface 345 G4double theta ; // angle 358 G4double theta ; // angle between track and surfacenormal 346 G4double factor ; // a scal 359 G4double factor ; // a scaling factor 347 G4int maxint = 30 ; // number 360 G4int maxint = 30 ; // number of iterations 348 361 349 362 350 for (auto & k : xbuf) << 363 for ( size_t k = 0 ; k<xbuf.size() ; k++ ) { 351 { << 364 352 #ifdef G4TWISTDEBUG 365 #ifdef G4TWISTDEBUG 353 G4cout << "Solution " << k << " : " 366 G4cout << "Solution " << k << " : " 354 << "reconstructed phiR = " << xbuf[ 367 << "reconstructed phiR = " << xbuf[k].phi 355 << ", uR = " << xbuf[k].u << G4endl 368 << ", uR = " << xbuf[k].u << G4endl ; 356 #endif 369 #endif 357 370 358 phi = k.phi ; // get the stored values fo << 371 phi = xbuf[k].phi ; // get the stored values for phi and u 359 u = k.u ; << 372 u = xbuf[k].u ; 360 373 361 IsConverged = false ; // no convergence 374 IsConverged = false ; // no convergence at the beginning 362 375 363 for ( G4int i = 1 ; i<maxint ; ++i ) << 376 for ( G4int i = 1 ; i<maxint ; i++ ) { 364 { << 377 365 xxonsurface = SurfacePoint(phi,u) ; 378 xxonsurface = SurfacePoint(phi,u) ; 366 surfacenormal = NormAng(phi,u) ; 379 surfacenormal = NormAng(phi,u) ; 367 tmpdist = DistanceToPlaneWithV(p, v, xxo 380 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 368 deltaX = ( tmpxx - xxonsurface ).mag() ; 381 deltaX = ( tmpxx - xxonsurface ).mag() ; 369 theta = std::fabs(std::acos(v*surfacenor 382 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ; 370 if ( theta < 0.001 ) << 383 if ( theta < 0.001 ) { 371 { << 372 factor = 50 ; 384 factor = 50 ; 373 IsParallel = true ; 385 IsParallel = true ; 374 } 386 } 375 else << 387 else { 376 { << 377 factor = 1 ; 388 factor = 1 ; 378 } 389 } 379 390 380 #ifdef G4TWISTDEBUG 391 #ifdef G4TWISTDEBUG 381 G4cout << "Step i = " << i << ", distanc << 392 G4cout << "Step i = " << i << ", distance = " << tmpdist << ", " << deltaX << G4endl ; 382 << tmpdist << ", " << deltaX << G << 383 G4cout << "X = " << tmpxx << G4endl ; 393 G4cout << "X = " << tmpxx << G4endl ; 384 #endif 394 #endif 385 395 386 GetPhiUAtX(tmpxx, phi, u); // new point << 396 GetPhiUAtX(tmpxx, phi, u) ; // the new point xx is accepted and phi/u replaced 387 397 388 #ifdef G4TWISTDEBUG 398 #ifdef G4TWISTDEBUG 389 G4cout << "approximated phi = " << phi < 399 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 390 #endif 400 #endif 391 401 392 if ( deltaX <= factor*ctol ) { IsConverg 402 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; } >> 403 393 } // end iterative loop (i) 404 } // end iterative loop (i) 394 405 >> 406 >> 407 // new code 21.09.05 O.Link 395 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 408 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 396 409 >> 410 397 #ifdef G4TWISTDEBUG 411 #ifdef G4TWISTDEBUG 398 G4cout << "refined solution " << phi << " 412 G4cout << "refined solution " << phi << " , " << u << G4endl ; 399 G4cout << "distance = " << tmpdist << G4en 413 G4cout << "distance = " << tmpdist << G4endl ; 400 G4cout << "local X = " << tmpxx << G4endl 414 G4cout << "local X = " << tmpxx << G4endl ; 401 #endif 415 #endif 402 416 403 tmpisvalid = false ; // init 417 tmpisvalid = false ; // init 404 418 405 if ( IsConverged ) << 419 if ( IsConverged ) { 406 { << 420 407 if (validate == kValidateWithTol) << 421 if (validate == kValidateWithTol) { 408 { << 409 tmpareacode = GetAreaCode(tmpxx); 422 tmpareacode = GetAreaCode(tmpxx); 410 if (!IsOutside(tmpareacode)) << 423 if (!IsOutside(tmpareacode)) { 411 { << 412 if (tmpdist >= 0) tmpisvalid = true; 424 if (tmpdist >= 0) tmpisvalid = true; 413 } 425 } 414 } << 426 } else if (validate == kValidateWithoutTol) { 415 else if (validate == kValidateWithoutTol << 416 { << 417 tmpareacode = GetAreaCode(tmpxx, false 427 tmpareacode = GetAreaCode(tmpxx, false); 418 if (IsInside(tmpareacode)) << 428 if (IsInside(tmpareacode)) { 419 { << 420 if (tmpdist >= 0) tmpisvalid = true; 429 if (tmpdist >= 0) tmpisvalid = true; 421 } 430 } 422 } << 431 } else { // kDontValidate 423 else // kDontValidate << 424 { << 425 G4Exception("G4TwistTrapParallelSide:: 432 G4Exception("G4TwistTrapParallelSide::DistanceToSurface()", 426 "GeomSolids0001", FatalExc 433 "GeomSolids0001", FatalException, 427 "Feature NOT implemented ! 434 "Feature NOT implemented !"); 428 } 435 } >> 436 429 } 437 } 430 else << 438 else { 431 { << 432 tmpdist = kInfinity; // no convergen 439 tmpdist = kInfinity; // no convergence after 10 steps 433 tmpisvalid = false ; // solution is 440 tmpisvalid = false ; // solution is not vaild 434 } 441 } 435 442 >> 443 436 // store the found values 444 // store the found values 437 k.xx = tmpxx ; << 445 xbuf[k].xx = tmpxx ; 438 k.distance = tmpdist ; << 446 xbuf[k].distance = tmpdist ; 439 k.areacode = tmpareacode ; << 447 xbuf[k].areacode = tmpareacode ; 440 k.isvalid = tmpisvalid ; << 448 xbuf[k].isvalid = tmpisvalid ; >> 449 >> 450 441 } // end loop over physical solutions (vari 451 } // end loop over physical solutions (variable k) 442 452 >> 453 443 std::sort(xbuf.begin() , xbuf.end(), Distanc 454 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting 444 455 445 #ifdef G4TWISTDEBUG 456 #ifdef G4TWISTDEBUG 446 G4cout << G4endl << "list xbuf after sorting 457 G4cout << G4endl << "list xbuf after sorting : " << G4endl ; 447 G4cout << G4endl << G4endl ; 458 G4cout << G4endl << G4endl ; 448 #endif 459 #endif 449 460 >> 461 450 // erase identical intersection (within kCar 462 // erase identical intersection (within kCarTolerance) 451 xbuf.erase(std::unique(xbuf.begin(),xbuf.end << 463 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ) , xbuf.end() ) ; 452 464 453 465 454 // add guesses 466 // add guesses 455 467 456 auto nxxtmp = (G4int)xbuf.size() ; << 468 G4int nxxtmp = xbuf.size() ; >> 469 >> 470 if ( nxxtmp<2 || IsParallel ) { 457 471 458 if ( nxxtmp<2 || IsParallel ) << 459 { << 460 // positive end 472 // positive end 461 #ifdef G4TWISTDEBUG 473 #ifdef G4TWISTDEBUG 462 G4cout << "add guess at +z/2 .. " << G4end 474 G4cout << "add guess at +z/2 .. " << G4endl ; 463 #endif 475 #endif 464 476 465 phi = fPhiTwist/2 ; 477 phi = fPhiTwist/2 ; 466 u = 0 ; 478 u = 0 ; 467 479 468 xbuftmp.phi = phi ; 480 xbuftmp.phi = phi ; 469 xbuftmp.u = u ; 481 xbuftmp.u = u ; 470 xbuftmp.areacode = sOutside ; 482 xbuftmp.areacode = sOutside ; 471 xbuftmp.distance = kInfinity ; 483 xbuftmp.distance = kInfinity ; 472 xbuftmp.isvalid = false ; 484 xbuftmp.isvalid = false ; 473 485 474 xbuf.push_back(xbuftmp) ; // store it to 486 xbuf.push_back(xbuftmp) ; // store it to xbuf 475 487 >> 488 476 #ifdef G4TWISTDEBUG 489 #ifdef G4TWISTDEBUG 477 G4cout << "add guess at -z/2 .. " << G4end 490 G4cout << "add guess at -z/2 .. " << G4endl ; 478 #endif 491 #endif 479 492 480 phi = -fPhiTwist/2 ; 493 phi = -fPhiTwist/2 ; 481 u = 0 ; 494 u = 0 ; 482 495 483 xbuftmp.phi = phi ; 496 xbuftmp.phi = phi ; 484 xbuftmp.u = u ; 497 xbuftmp.u = u ; 485 xbuftmp.areacode = sOutside ; 498 xbuftmp.areacode = sOutside ; 486 xbuftmp.distance = kInfinity ; 499 xbuftmp.distance = kInfinity ; 487 xbuftmp.isvalid = false ; 500 xbuftmp.isvalid = false ; 488 501 489 xbuf.push_back(xbuftmp) ; // store it to 502 xbuf.push_back(xbuftmp) ; // store it to xbuf 490 503 491 for ( std::size_t k = nxxtmp ; k<xbuf.size << 504 for ( size_t k = nxxtmp ; k<xbuf.size() ; k++ ) { 492 { << 505 493 #ifdef G4TWISTDEBUG 506 #ifdef G4TWISTDEBUG 494 G4cout << "Solution " << k << " : " 507 G4cout << "Solution " << k << " : " 495 << "reconstructed phiR = " << xbu 508 << "reconstructed phiR = " << xbuf[k].phi 496 << ", uR = " << xbuf[k].u << G4en 509 << ", uR = " << xbuf[k].u << G4endl ; 497 #endif 510 #endif 498 511 499 phi = xbuf[k].phi ; // get the stored v 512 phi = xbuf[k].phi ; // get the stored values for phi and u 500 u = xbuf[k].u ; 513 u = xbuf[k].u ; 501 514 502 IsConverged = false ; // no convergenc 515 IsConverged = false ; // no convergence at the beginning 503 516 504 for ( G4int i = 1 ; i<maxint ; ++i ) << 517 for ( G4int i = 1 ; i<maxint ; i++ ) { 505 { << 518 506 xxonsurface = SurfacePoint(phi,u) ; 519 xxonsurface = SurfacePoint(phi,u) ; 507 surfacenormal = NormAng(phi,u) ; 520 surfacenormal = NormAng(phi,u) ; 508 tmpdist = DistanceToPlaneWithV(p, v, x 521 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 509 deltaX = ( tmpxx - xxonsurface ).mag() 522 deltaX = ( tmpxx - xxonsurface ).mag() ; 510 theta = std::fabs(std::acos(v*surfacen 523 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ; 511 if ( theta < 0.001 ) << 524 if ( theta < 0.001 ) { 512 { << 513 factor = 50 ; 525 factor = 50 ; 514 } 526 } 515 else << 527 else { 516 { << 517 factor = 1 ; 528 factor = 1 ; 518 } 529 } 519 530 520 #ifdef G4TWISTDEBUG 531 #ifdef G4TWISTDEBUG 521 G4cout << "Step i = " << i << ", dista << 532 G4cout << "Step i = " << i << ", distance = " << tmpdist << ", " << deltaX << G4endl ; 522 << tmpdist << ", " << deltaX << << 523 G4cout << "X = " << tmpxx << G4endl ; 533 G4cout << "X = " << tmpxx << G4endl ; 524 #endif 534 #endif 525 535 526 GetPhiUAtX(tmpxx, phi, u) ; // new poi << 536 GetPhiUAtX(tmpxx, phi, u) ; // the new point xx is accepted and phi/u replaced 527 << 537 528 #ifdef G4TWISTDEBUG 538 #ifdef G4TWISTDEBUG 529 G4cout << "approximated phi = " << phi 539 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 530 #endif 540 #endif 531 541 532 if ( deltaX <= factor*ctol ) { IsConve 542 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; } >> 543 533 } // end iterative loop (i) 544 } // end iterative loop (i) >> 545 534 546 >> 547 // new code 21.09.05 O.Link 535 if ( std::fabs(tmpdist)<ctol ) tmpdist = 548 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 536 549 >> 550 537 #ifdef G4TWISTDEBUG 551 #ifdef G4TWISTDEBUG 538 G4cout << "refined solution " << phi << 552 G4cout << "refined solution " << phi << " , " << u << G4endl ; 539 G4cout << "distance = " << tmpdist << G4 553 G4cout << "distance = " << tmpdist << G4endl ; 540 G4cout << "local X = " << tmpxx << G4end 554 G4cout << "local X = " << tmpxx << G4endl ; 541 #endif 555 #endif 542 556 543 tmpisvalid = false ; // init 557 tmpisvalid = false ; // init 544 558 545 if ( IsConverged ) << 559 if ( IsConverged ) { 546 { << 560 547 if (validate == kValidateWithTol) << 561 if (validate == kValidateWithTol) { 548 { << 549 tmpareacode = GetAreaCode(tmpxx); 562 tmpareacode = GetAreaCode(tmpxx); 550 if (!IsOutside(tmpareacode)) << 563 if (!IsOutside(tmpareacode)) { 551 { << 552 if (tmpdist >= 0) tmpisvalid = tru 564 if (tmpdist >= 0) tmpisvalid = true; 553 } 565 } 554 } << 566 } else if (validate == kValidateWithoutTol) { 555 else if (validate == kValidateWithoutT << 556 { << 557 tmpareacode = GetAreaCode(tmpxx, fal 567 tmpareacode = GetAreaCode(tmpxx, false); 558 if (IsInside(tmpareacode)) << 568 if (IsInside(tmpareacode)) { 559 { << 560 if (tmpdist >= 0) tmpisvalid = tru 569 if (tmpdist >= 0) tmpisvalid = true; 561 } 570 } 562 } << 571 } else { // kDontValidate 563 else // kDontValidate << 564 { << 565 G4Exception("G4TwistedBoxSide::Dista 572 G4Exception("G4TwistedBoxSide::DistanceToSurface()", 566 "GeomSolids0001", FatalE 573 "GeomSolids0001", FatalException, 567 "Feature NOT implemented 574 "Feature NOT implemented !"); 568 } 575 } 569 576 570 } 577 } 571 else << 578 else { 572 { << 573 tmpdist = kInfinity; // no converg 579 tmpdist = kInfinity; // no convergence after 10 steps 574 tmpisvalid = false ; // solution i 580 tmpisvalid = false ; // solution is not vaild 575 } 581 } 576 << 582 >> 583 577 // store the found values 584 // store the found values 578 xbuf[k].xx = tmpxx ; 585 xbuf[k].xx = tmpxx ; 579 xbuf[k].distance = tmpdist ; 586 xbuf[k].distance = tmpdist ; 580 xbuf[k].areacode = tmpareacode ; 587 xbuf[k].areacode = tmpareacode ; 581 xbuf[k].isvalid = tmpisvalid ; 588 xbuf[k].isvalid = tmpisvalid ; 582 589 >> 590 583 } // end loop over physical solutions 591 } // end loop over physical solutions >> 592 >> 593 584 } // end less than 2 solutions 594 } // end less than 2 solutions 585 595 >> 596 586 // sort again 597 // sort again 587 std::sort(xbuf.begin() , xbuf.end(), Distanc 598 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting 588 599 589 // erase identical intersection (within kCar 600 // erase identical intersection (within kCarTolerance) 590 xbuf.erase(std::unique(xbuf.begin(),xbuf.end << 601 xbuf.erase( std::unique(xbuf.begin(), xbuf.end() , EqualIntersection ) , xbuf.end() ) ; 591 602 592 #ifdef G4TWISTDEBUG 603 #ifdef G4TWISTDEBUG 593 G4cout << G4endl << "list xbuf after sorting 604 G4cout << G4endl << "list xbuf after sorting : " << G4endl ; 594 G4cout << G4endl << G4endl ; 605 G4cout << G4endl << G4endl ; 595 #endif 606 #endif 596 607 597 nxx = (G4int)xbuf.size() ; // determine nu << 608 nxx = xbuf.size() ; // determine number of solutions again. 598 609 599 for ( G4int i = 0 ; i<(G4int)xbuf.size() ; + << 610 for ( size_t i = 0 ; i<xbuf.size() ; i++ ) { 600 { << 611 601 distance[i] = xbuf[i].distance; 612 distance[i] = xbuf[i].distance; 602 gxx[i] = ComputeGlobalPoint(xbuf[i].x 613 gxx[i] = ComputeGlobalPoint(xbuf[i].xx); 603 areacode[i] = xbuf[i].areacode ; 614 areacode[i] = xbuf[i].areacode ; 604 isvalid[i] = xbuf[i].isvalid ; 615 isvalid[i] = xbuf[i].isvalid ; 605 616 606 fCurStatWithV.SetCurrentStatus(i, gxx[i], 617 fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i], 607 isvalid[i 618 isvalid[i], nxx, validate, &gp, &gv); >> 619 608 #ifdef G4TWISTDEBUG 620 #ifdef G4TWISTDEBUG 609 G4cout << "element Nr. " << i 621 G4cout << "element Nr. " << i 610 << ", local Intersection = " << xbu 622 << ", local Intersection = " << xbuf[i].xx 611 << ", distance = " << xbuf[i].dista 623 << ", distance = " << xbuf[i].distance 612 << ", u = " << xbuf[i].u 624 << ", u = " << xbuf[i].u 613 << ", phi = " << xbuf[i].phi 625 << ", phi = " << xbuf[i].phi 614 << ", isvalid = " << xbuf[i].isvali 626 << ", isvalid = " << xbuf[i].isvalid 615 << G4endl ; 627 << G4endl ; 616 #endif 628 #endif >> 629 617 } // end for( i ) loop 630 } // end for( i ) loop 618 631 >> 632 619 #ifdef G4TWISTDEBUG 633 #ifdef G4TWISTDEBUG 620 G4cout << "G4TwistTrapParallelSide finished 634 G4cout << "G4TwistTrapParallelSide finished " << G4endl ; 621 G4cout << nxx << " possible physical solutio 635 G4cout << nxx << " possible physical solutions found" << G4endl ; 622 for ( G4int k= 0 ; k< nxx ; ++k ) << 636 for ( G4int k= 0 ; k< nxx ; k++ ) { 623 { << 624 G4cout << "global intersection Point found 637 G4cout << "global intersection Point found: " << gxx[k] << G4endl ; 625 G4cout << "distance = " << distance[k] << 638 G4cout << "distance = " << distance[k] << G4endl ; 626 G4cout << "isvalid = " << isvalid[k] << G4 639 G4cout << "isvalid = " << isvalid[k] << G4endl ; 627 } 640 } 628 #endif 641 #endif 629 642 630 return nxx ; 643 return nxx ; >> 644 631 } 645 } 632 646 >> 647 >> 648 633 //============================================ 649 //===================================================================== 634 //* DistanceToSurface ------------------------ 650 //* DistanceToSurface ------------------------------------------------- 635 651 636 G4int G4TwistTrapParallelSide::DistanceToSurfa << 652 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector &gp, 637 << 653 G4ThreeVector gxx[], 638 << 654 G4double distance[], 639 << 655 G4int areacode[]) 640 { 656 { 641 const G4double ctol = 0.5 * kCarTolerance; << 657 // to do >> 658 >> 659 static const G4double ctol = 0.5 * kCarTolerance; 642 660 643 fCurStat.ResetfDone(kDontValidate, &gp); 661 fCurStat.ResetfDone(kDontValidate, &gp); 644 662 645 if (fCurStat.IsDone()) << 663 if (fCurStat.IsDone()) { 646 { << 664 G4int i; 647 for (G4int i=0; i<fCurStat.GetNXX(); ++i << 665 for (i=0; i<fCurStat.GetNXX(); i++) { 648 { << 649 gxx[i] = fCurStat.GetXX(i); 666 gxx[i] = fCurStat.GetXX(i); 650 distance[i] = fCurStat.GetDistance(i) 667 distance[i] = fCurStat.GetDistance(i); 651 areacode[i] = fCurStat.GetAreacode(i) 668 areacode[i] = fCurStat.GetAreacode(i); 652 } 669 } 653 return fCurStat.GetNXX(); 670 return fCurStat.GetNXX(); 654 } << 671 } else { 655 else // initialize << 672 // initialize 656 { << 673 G4int i; 657 for (G4int i=0; i<G4VSURFACENXX; ++i) << 674 for (i=0; i<G4VSURFACENXX; i++) { 658 { << 659 distance[i] = kInfinity; 675 distance[i] = kInfinity; 660 areacode[i] = sOutside; 676 areacode[i] = sOutside; 661 gxx[i].set(kInfinity, kInfinity, kInf 677 gxx[i].set(kInfinity, kInfinity, kInfinity); 662 } 678 } 663 } 679 } 664 680 665 G4ThreeVector p = ComputeLocalPoint(gp); 681 G4ThreeVector p = ComputeLocalPoint(gp); 666 G4ThreeVector xx; // intersection point 682 G4ThreeVector xx; // intersection point 667 G4ThreeVector xxonsurface ; // interpolated 683 G4ThreeVector xxonsurface ; // interpolated intersection point 668 684 669 // the surfacenormal at that surface point 685 // the surfacenormal at that surface point 670 G4double phiR = 0 ; // 686 G4double phiR = 0 ; // 671 G4double uR = 0 ; 687 G4double uR = 0 ; 672 688 673 G4ThreeVector surfacenormal ; 689 G4ThreeVector surfacenormal ; 674 G4double deltaX ; 690 G4double deltaX ; 675 691 676 G4int maxint = 20 ; 692 G4int maxint = 20 ; 677 693 678 for ( G4int i = 1 ; i<maxint ; ++i ) << 694 for ( G4int i = 1 ; i<maxint ; i++ ) { 679 { << 695 680 xxonsurface = SurfacePoint(phiR,uR) ; 696 xxonsurface = SurfacePoint(phiR,uR) ; 681 surfacenormal = NormAng(phiR,uR) ; 697 surfacenormal = NormAng(phiR,uR) ; 682 distance[0] = DistanceToPlane(p, xxonsurf 698 distance[0] = DistanceToPlane(p, xxonsurface, surfacenormal, xx); // new XX 683 deltaX = ( xx - xxonsurface ).mag() ; 699 deltaX = ( xx - xxonsurface ).mag() ; 684 700 685 #ifdef G4TWISTDEBUG 701 #ifdef G4TWISTDEBUG 686 G4cout << "i = " << i << ", distance = " << 702 G4cout << "i = " << i << ", distance = " << distance[0] << ", " << deltaX << G4endl ; 687 << distance[0] << ", " << deltaX < << 688 G4cout << "X = " << xx << G4endl ; 703 G4cout << "X = " << xx << G4endl ; 689 #endif 704 #endif 690 705 691 // the new point xx is accepted and phi/p 706 // the new point xx is accepted and phi/psi replaced 692 GetPhiUAtX(xx, phiR, uR) ; 707 GetPhiUAtX(xx, phiR, uR) ; 693 708 694 if ( deltaX <= ctol ) { break ; } 709 if ( deltaX <= ctol ) { break ; } >> 710 695 } 711 } 696 712 697 // check validity of solution ( valid phi,p 713 // check validity of solution ( valid phi,psi ) 698 714 699 G4double halfphi = 0.5*fPhiTwist ; 715 G4double halfphi = 0.5*fPhiTwist ; 700 G4double uMax = GetBoundaryMax(phiR) ; 716 G4double uMax = GetBoundaryMax(phiR) ; 701 G4double uMin = GetBoundaryMin(phiR) ; 717 G4double uMin = GetBoundaryMin(phiR) ; 702 718 703 if ( phiR > halfphi ) phiR = halfphi ; 719 if ( phiR > halfphi ) phiR = halfphi ; 704 if ( phiR < -halfphi ) phiR = -halfphi ; 720 if ( phiR < -halfphi ) phiR = -halfphi ; 705 if ( uR > uMax ) uR = uMax ; 721 if ( uR > uMax ) uR = uMax ; 706 if ( uR < uMin ) uR = uMin ; 722 if ( uR < uMin ) uR = uMin ; 707 723 708 xxonsurface = SurfacePoint(phiR,uR) ; 724 xxonsurface = SurfacePoint(phiR,uR) ; 709 distance[0] = ( p - xx ).mag() ; 725 distance[0] = ( p - xx ).mag() ; 710 if ( distance[0] <= ctol ) { distance[0] = 726 if ( distance[0] <= ctol ) { distance[0] = 0 ; } 711 727 712 // end of validity 728 // end of validity 713 729 714 #ifdef G4TWISTDEBUG 730 #ifdef G4TWISTDEBUG 715 G4cout << "refined solution " << phiR << " 731 G4cout << "refined solution " << phiR << " , " << uR << " , " << G4endl ; 716 G4cout << "distance = " << distance[0] << G 732 G4cout << "distance = " << distance[0] << G4endl ; 717 G4cout << "X = " << xx << G4endl ; 733 G4cout << "X = " << xx << G4endl ; 718 #endif 734 #endif 719 735 720 G4bool isvalid = true; 736 G4bool isvalid = true; 721 gxx[0] = ComputeGlobalPoint(xx); 737 gxx[0] = ComputeGlobalPoint(xx); 722 738 723 #ifdef G4TWISTDEBUG 739 #ifdef G4TWISTDEBUG 724 G4cout << "intersection Point found: " << g 740 G4cout << "intersection Point found: " << gxx[0] << G4endl ; 725 G4cout << "distance = " << distance[0] << G 741 G4cout << "distance = " << distance[0] << G4endl ; 726 #endif 742 #endif 727 743 728 fCurStat.SetCurrentStatus(0, gxx[0], distan 744 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0], 729 isvalid, 1, kDontV 745 isvalid, 1, kDontValidate, &gp); 730 return 1; 746 return 1; 731 } 747 } 732 748 >> 749 733 //============================================ 750 //===================================================================== 734 //* GetAreaCode ------------------------------ 751 //* GetAreaCode ------------------------------------------------------- 735 752 736 G4int G4TwistTrapParallelSide::GetAreaCode(con << 753 G4int G4TwistTrapParallelSide::GetAreaCode(const G4ThreeVector &xx, 737 G4b << 754 G4bool withTol) 738 { 755 { 739 // We must use the function in local coordi 756 // We must use the function in local coordinate system. 740 // See the description of DistanceToSurface 757 // See the description of DistanceToSurface(p,v). 741 758 742 const G4double ctol = 0.5 * kCarTolerance; << 759 static const G4double ctol = 0.5 * kCarTolerance; 743 760 744 G4double phi ; 761 G4double phi ; 745 G4double yprime ; 762 G4double yprime ; 746 GetPhiUAtX(xx, phi,yprime ) ; 763 GetPhiUAtX(xx, phi,yprime ) ; 747 764 748 G4double fXAxisMax = GetBoundaryMax(phi) ; 765 G4double fXAxisMax = GetBoundaryMax(phi) ; 749 G4double fXAxisMin = GetBoundaryMin(phi) ; 766 G4double fXAxisMin = GetBoundaryMin(phi) ; 750 767 751 #ifdef G4TWISTDEBUG 768 #ifdef G4TWISTDEBUG 752 G4cout << "GetAreaCode: phi = " << phi << G 769 G4cout << "GetAreaCode: phi = " << phi << G4endl ; 753 G4cout << "GetAreaCode: yprime = " << yprim 770 G4cout << "GetAreaCode: yprime = " << yprime << G4endl ; 754 G4cout << "Intervall is " << fXAxisMin << " 771 G4cout << "Intervall is " << fXAxisMin << " to " << fXAxisMax << G4endl ; 755 #endif 772 #endif 756 773 757 G4int areacode = sInside; 774 G4int areacode = sInside; 758 775 759 if (fAxis[0] == kXAxis && fAxis[1] == kZAxi << 776 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) { 760 { << 777 761 G4int zaxis = 1; 778 G4int zaxis = 1; 762 779 763 if (withTol) << 780 if (withTol) { 764 { << 781 765 G4bool isoutside = false; << 782 G4bool isoutside = false; 766 783 767 // test boundary of xaxis 784 // test boundary of xaxis 768 785 769 if (yprime < fXAxisMin + ctol) << 786 if (yprime < fXAxisMin + ctol) { 770 { << 771 areacode |= (sAxis0 & (sAxisX | sA 787 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary; 772 if (yprime <= fXAxisMin - ctol) is 788 if (yprime <= fXAxisMin - ctol) isoutside = true; 773 789 774 } << 790 } else if (yprime > fXAxisMax - ctol) { 775 else if (yprime > fXAxisMax - ctol) << 776 { << 777 areacode |= (sAxis0 & (sAxisX | sA 791 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary; 778 if (yprime >= fXAxisMax + ctol) i 792 if (yprime >= fXAxisMax + ctol) isoutside = true; 779 } 793 } 780 794 781 // test boundary of z-axis 795 // test boundary of z-axis 782 796 783 if (xx.z() < fAxisMin[zaxis] + ctol) << 797 if (xx.z() < fAxisMin[zaxis] + ctol) { 784 { << 785 areacode |= (sAxis1 & (sAxisZ | sA 798 areacode |= (sAxis1 & (sAxisZ | sAxisMin)); 786 799 787 if ((areacode & sBoundary) != 0) << 800 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner. 788 else areaco 801 else areacode |= sBoundary; 789 if (xx.z() <= fAxisMin[zaxis] - ct 802 if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true; 790 803 791 } << 804 } else if (xx.z() > fAxisMax[zaxis] - ctol) { 792 else if (xx.z() > fAxisMax[zaxis] - c << 793 { << 794 areacode |= (sAxis1 & (sAxisZ | sA 805 areacode |= (sAxis1 & (sAxisZ | sAxisMax)); 795 806 796 if ((areacode & sBoundary) != 0) << 807 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner. 797 else areaco 808 else areacode |= sBoundary; 798 if (xx.z() >= fAxisMax[zaxis] + ct 809 if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true; 799 } 810 } 800 811 801 // if isoutside = true, clear inside 812 // if isoutside = true, clear inside bit. 802 // if not on boundary, add axis infor 813 // if not on boundary, add axis information. 803 814 804 if (isoutside) << 815 if (isoutside) { 805 { << 806 G4int tmpareacode = areacode & (~s 816 G4int tmpareacode = areacode & (~sInside); 807 areacode = tmpareacode; 817 areacode = tmpareacode; 808 } << 818 } else if ((areacode & sBoundary) != sBoundary) { 809 else if ((areacode & sBoundary) != sB << 810 { << 811 areacode |= (sAxis0 & sAxisX) | (s 819 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ); 812 } 820 } 813 821 814 } << 822 } else { 815 else << 823 816 { << 817 // boundary of y-axis 824 // boundary of y-axis 818 825 819 if (yprime < fXAxisMin ) << 826 if (yprime < fXAxisMin ) { 820 { << 821 areacode |= (sAxis0 & (sAxisX | sA 827 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary; 822 } << 828 } else if (yprime > fXAxisMax) { 823 else if (yprime > fXAxisMax) << 824 { << 825 areacode |= (sAxis0 & (sAxisX | sA 829 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary; 826 } 830 } 827 831 828 // boundary of z-axis 832 // boundary of z-axis 829 833 830 if (xx.z() < fAxisMin[zaxis]) << 834 if (xx.z() < fAxisMin[zaxis]) { 831 { << 832 areacode |= (sAxis1 & (sAxisZ | sA 835 areacode |= (sAxis1 & (sAxisZ | sAxisMin)); 833 if ((areacode & sBoundary) != 0) << 836 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner. 834 else areaco 837 else areacode |= sBoundary; 835 838 836 } << 839 } else if (xx.z() > fAxisMax[zaxis]) { 837 else if (xx.z() > fAxisMax[zaxis]) << 838 { << 839 areacode |= (sAxis1 & (sAxisZ | sA 840 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ; 840 if ((areacode & sBoundary) != 0) << 841 if (areacode & sBoundary) areacode |= sCorner; // xx is on the corner. 841 else areaco 842 else areacode |= sBoundary; 842 } 843 } 843 844 844 if ((areacode & sBoundary) != sBounda << 845 if ((areacode & sBoundary) != sBoundary) { 845 { << 846 areacode |= (sAxis0 & sAxisX) | (s 846 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ); 847 } 847 } 848 } 848 } 849 return areacode; 849 return areacode; 850 } << 850 } else { 851 else << 852 { << 853 G4Exception("G4TwistTrapParallelSide::Ge 851 G4Exception("G4TwistTrapParallelSide::GetAreaCode()", 854 "GeomSolids0001", FatalExcep 852 "GeomSolids0001", FatalException, 855 "Feature NOT implemented !") 853 "Feature NOT implemented !"); 856 } 854 } 857 return areacode; 855 return areacode; 858 } 856 } 859 857 860 //============================================ 858 //===================================================================== 861 //* SetCorners() ----------------------------- 859 //* SetCorners() ------------------------------------------------------ 862 860 863 void G4TwistTrapParallelSide::SetCorners() 861 void G4TwistTrapParallelSide::SetCorners() 864 { 862 { 865 863 866 // Set Corner points in local coodinate. 864 // Set Corner points in local coodinate. 867 865 868 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis << 866 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) { 869 { << 867 870 G4double x, y, z; 868 G4double x, y, z; 871 869 872 // corner of Axis0min and Axis1min 870 // corner of Axis0min and Axis1min 873 871 874 x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*st << 872 x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.) + fDy1*std::sin(fPhiTwist/2.) ; 875 + fDy1*std::sin(fPhiTwist/2.) ; << 873 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.) + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwist/2.) ; 876 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/ << 877 + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwis << 878 z = -fDz ; 874 z = -fDz ; 879 875 880 SetCorner(sC0Min1Min, x, y, z); 876 SetCorner(sC0Min1Min, x, y, z); 881 877 882 // corner of Axis0max and Axis1min 878 // corner of Axis0max and Axis1min 883 879 884 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std << 880 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.) + fDy1*std::sin(fPhiTwist/2.) ; 885 + fDy1*std::sin(fPhiTwist/2.) ; << 881 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.) - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.) ; 886 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/ << 887 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwis << 888 z = -fDz; 882 z = -fDz; 889 883 890 SetCorner(sC0Max1Min, x, y, z); 884 SetCorner(sC0Max1Min, x, y, z); 891 885 892 // corner of Axis0max and Axis1max 886 // corner of Axis0max and Axis1max 893 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std: << 887 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.) - fDy2*std::sin(fPhiTwist/2.) ; 894 - fDy2*std::sin(fPhiTwist/2.) ; << 888 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.) + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ; 895 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2 << 896 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwis << 897 z = fDz ; 889 z = fDz ; 898 890 899 SetCorner(sC0Max1Max, x, y, z); 891 SetCorner(sC0Max1Max, x, y, z); 900 892 901 // corner of Axis0min and Axis1max 893 // corner of Axis0min and Axis1max 902 x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std << 894 x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.) - fDy2*std::sin(fPhiTwist/2.) ; 903 - fDy2*std::sin(fPhiTwist/2.) ; << 895 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.) + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ; 904 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2 << 905 + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwi << 906 z = fDz ; 896 z = fDz ; 907 897 908 SetCorner(sC0Min1Max, x, y, z); 898 SetCorner(sC0Min1Max, x, y, z); 909 } << 899 910 else << 900 } else { 911 { << 901 912 G4Exception("G4TwistTrapParallelSide::SetC 902 G4Exception("G4TwistTrapParallelSide::SetCorners()", 913 "GeomSolids0001", FatalExcepti 903 "GeomSolids0001", FatalException, 914 "Method NOT implemented !"); 904 "Method NOT implemented !"); 915 } 905 } 916 } 906 } 917 907 918 //============================================ 908 //===================================================================== 919 //* SetBoundaries() -------------------------- 909 //* SetBoundaries() --------------------------------------------------- 920 910 921 void G4TwistTrapParallelSide::SetBoundaries() 911 void G4TwistTrapParallelSide::SetBoundaries() 922 { 912 { 923 // Set direction-unit vector of boundary-li 913 // Set direction-unit vector of boundary-lines in local coodinate. 924 // 914 // 925 915 926 G4ThreeVector direction; 916 G4ThreeVector direction; 927 917 928 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis << 918 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) { 929 { << 919 930 // sAxis0 & sAxisMin 920 // sAxis0 & sAxisMin 931 direction = GetCorner(sC0Min1Max) - GetCor 921 direction = GetCorner(sC0Min1Max) - GetCorner(sC0Min1Min); 932 direction = direction.unit(); 922 direction = direction.unit(); 933 SetBoundary(sAxis0 & (sAxisX | sAxisMin), 923 SetBoundary(sAxis0 & (sAxisX | sAxisMin), direction, 934 GetCorner(sC0Min1Min), sAxisZ) 924 GetCorner(sC0Min1Min), sAxisZ) ; 935 925 936 // sAxis0 & sAxisMax 926 // sAxis0 & sAxisMax 937 direction = GetCorner(sC0Max1Max) - GetCor 927 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min); 938 direction = direction.unit(); 928 direction = direction.unit(); 939 SetBoundary(sAxis0 & (sAxisX | sAxisMax), 929 SetBoundary(sAxis0 & (sAxisX | sAxisMax), direction, 940 GetCorner(sC0Max1Min), sAxisZ) 930 GetCorner(sC0Max1Min), sAxisZ); 941 931 942 // sAxis1 & sAxisMin 932 // sAxis1 & sAxisMin 943 direction = GetCorner(sC0Max1Min) - GetCor 933 direction = GetCorner(sC0Max1Min) - GetCorner(sC0Min1Min); 944 direction = direction.unit(); 934 direction = direction.unit(); 945 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), 935 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction, 946 GetCorner(sC0Min1Min), sAxisX) 936 GetCorner(sC0Min1Min), sAxisX); 947 937 948 // sAxis1 & sAxisMax 938 // sAxis1 & sAxisMax 949 direction = GetCorner(sC0Max1Max) - GetCor 939 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max); 950 direction = direction.unit(); 940 direction = direction.unit(); 951 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), 941 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction, 952 GetCorner(sC0Min1Max), sAxisX) 942 GetCorner(sC0Min1Max), sAxisX); >> 943 >> 944 } else { >> 945 >> 946 G4Exception("G4TwistTrapParallelSide::SetCorners()", >> 947 "GeomSolids0001", FatalException, >> 948 "Feature NOT implemented !"); 953 } 949 } 954 else << 950 955 { << 956 G4Exception("G4TwistTrapParallelSide::SetC << 957 "GeomSolids0001", FatalExcepti << 958 "Feature NOT implemented !"); << 959 } << 960 } 951 } 961 952 962 //============================================ 953 //===================================================================== 963 //* GetPhiUAtX() ----------------------------- 954 //* GetPhiUAtX() ------------------------------------------------------ 964 955 965 void 956 void 966 G4TwistTrapParallelSide::GetPhiUAtX( const G4T << 957 G4TwistTrapParallelSide::GetPhiUAtX( G4ThreeVector p, G4double &phi, G4double &u) 967 G4double& << 968 { 958 { 969 // find closest point XX on surface for a gi 959 // find closest point XX on surface for a given point p 970 // X0 is a point on the surface, d is the d << 960 // X0 is a point on the surface, d is the direction ( both for a fixed z = pz) 971 // ( both for a fixed z = pz) << 972 961 973 // phi is given by the z coordinate of p 962 // phi is given by the z coordinate of p 974 963 975 phi = p.z()/(2*fDz)*fPhiTwist ; 964 phi = p.z()/(2*fDz)*fPhiTwist ; 976 965 977 u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std << 966 u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std::cos(phi) + (-(fdeltaY*phi) + fPhiTwist*p.y())*std::sin(phi))/fPhiTwist ; 978 + (-(fdeltaY*phi) + fPhiTwist*p.y())*std:: << 967 979 } 968 } 980 969 981 //============================================ 970 //===================================================================== 982 //* ProjectPoint() --------------------------- 971 //* ProjectPoint() ---------------------------------------------------- 983 972 984 G4ThreeVector G4TwistTrapParallelSide::Project << 973 G4ThreeVector G4TwistTrapParallelSide::ProjectPoint(const G4ThreeVector &p, 985 974 G4bool isglobal) 986 { 975 { 987 // Get Rho at p.z() on Hyperbolic Surface. 976 // Get Rho at p.z() on Hyperbolic Surface. 988 G4ThreeVector tmpp; 977 G4ThreeVector tmpp; 989 if (isglobal) << 978 if (isglobal) { 990 { << 991 tmpp = fRot.inverse()*p - fTrans; 979 tmpp = fRot.inverse()*p - fTrans; 992 } << 980 } else { 993 else << 994 { << 995 tmpp = p; 981 tmpp = p; 996 } 982 } 997 983 998 G4double phi ; 984 G4double phi ; 999 G4double u ; 985 G4double u ; 1000 986 1001 GetPhiUAtX( tmpp, phi, u ) ; // calculate << 987 GetPhiUAtX( tmpp, phi, u ) ; // calculate (phi, u) for a point p close the surface 1002 988 1003 G4ThreeVector xx = SurfacePoint(phi,u) ; // << 989 G4ThreeVector xx = SurfacePoint(phi,u) ; // transform back to cartesian coordinates 1004 990 1005 if (isglobal) << 991 if (isglobal) { 1006 { << 1007 return (fRot * xx + fTrans); 992 return (fRot * xx + fTrans); 1008 } << 993 } else { 1009 else << 1010 { << 1011 return xx; 994 return xx; 1012 } 995 } 1013 } 996 } 1014 997 1015 //=========================================== 998 //===================================================================== 1016 //* GetFacets() ----------------------------- 999 //* GetFacets() ------------------------------------------------------- 1017 1000 1018 void G4TwistTrapParallelSide::GetFacets( G4in << 1001 void G4TwistTrapParallelSide::GetFacets( G4int m, G4int n, G4double xyz[][3], 1019 G4in 1002 G4int faces[][4], G4int iside ) 1020 { 1003 { >> 1004 1021 G4double phi ; 1005 G4double phi ; 1022 G4double z, u ; // the two parameters f 1006 G4double z, u ; // the two parameters for the surface equation 1023 G4ThreeVector p ; // a point on the surfac 1007 G4ThreeVector p ; // a point on the surface, given by (z,u) 1024 1008 1025 G4int nnode ; 1009 G4int nnode ; 1026 G4int nface ; 1010 G4int nface ; 1027 1011 1028 G4double umin, umax ; 1012 G4double umin, umax ; 1029 1013 1030 // calculate the (n-1)*(k-1) vertices << 1014 // calculate the (n-1)*(m-1) vertices >> 1015 >> 1016 G4int i,j ; >> 1017 >> 1018 for ( i = 0 ; i<n ; i++ ) { 1031 1019 1032 for ( G4int i = 0 ; i<n ; ++i ) << 1033 { << 1034 z = -fDz+i*(2.*fDz)/(n-1) ; 1020 z = -fDz+i*(2.*fDz)/(n-1) ; 1035 phi = z*fPhiTwist/(2*fDz) ; 1021 phi = z*fPhiTwist/(2*fDz) ; 1036 umin = GetBoundaryMin(phi) ; 1022 umin = GetBoundaryMin(phi) ; 1037 umax = GetBoundaryMax(phi) ; 1023 umax = GetBoundaryMax(phi) ; 1038 1024 1039 for ( G4int j = 0 ; j<k ; ++j ) << 1025 for ( j = 0 ; j<m ; j++ ) { 1040 { << 1026 1041 nnode = GetNode(i,j,k,n,iside) ; << 1027 nnode = GetNode(i,j,m,n,iside) ; 1042 u = umax - j*(umax-umin)/(k-1) ; << 1028 u = umax - j*(umax-umin)/(m-1) ; 1043 p = SurfacePoint(phi,u,true) ; // surf << 1029 p = SurfacePoint(phi,u,true) ; // surface point in global coordinate system 1044 1030 1045 xyz[nnode][0] = p.x() ; 1031 xyz[nnode][0] = p.x() ; 1046 xyz[nnode][1] = p.y() ; 1032 xyz[nnode][1] = p.y() ; 1047 xyz[nnode][2] = p.z() ; 1033 xyz[nnode][2] = p.z() ; 1048 1034 1049 if ( i<n-1 && j<k-1 ) // conterclock << 1035 if ( i<n-1 && j<m-1 ) { // conterclock wise filling 1050 { << 1036 1051 nface = GetFace(i,j,k,n,iside) ; << 1037 nface = GetFace(i,j,m,n,iside) ; 1052 faces[nface][0] = GetEdgeVisibility(i << 1038 faces[nface][0] = GetEdgeVisibility(i,j,m,n,0,-1) * (GetNode(i ,j ,m,n,iside)+1) ; // fortran numbering 1053 * (GetNode(i ,j ,k, << 1039 faces[nface][1] = GetEdgeVisibility(i,j,m,n,1,-1) * (GetNode(i ,j+1,m,n,iside)+1) ; 1054 faces[nface][1] = GetEdgeVisibility(i << 1040 faces[nface][2] = GetEdgeVisibility(i,j,m,n,2,-1) * (GetNode(i+1,j+1,m,n,iside)+1) ; 1055 * (GetNode(i ,j+1,k, << 1041 faces[nface][3] = GetEdgeVisibility(i,j,m,n,3,-1) * (GetNode(i+1,j ,m,n,iside)+1) ; 1056 faces[nface][2] = GetEdgeVisibility(i << 1042 1057 * (GetNode(i+1,j+1,k, << 1058 faces[nface][3] = GetEdgeVisibility(i << 1059 * (GetNode(i+1,j ,k, << 1060 } 1043 } 1061 } 1044 } 1062 } 1045 } 1063 } 1046 } 1064 1047