Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4TwistTrapParallelSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4TwistTrapParallelSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4TwistTrapParallelSide.cc (Version 11.2.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4TwistTrapParallelSide implementation          26 // G4TwistTrapParallelSide implementation
 27 //                                                 27 //
 28 // Author: Oliver Link (Oliver.Link@cern.ch)       28 // Author: Oliver Link (Oliver.Link@cern.ch)
 29 // -------------------------------------------     29 // --------------------------------------------------------------------
 30                                                    30 
 31 #include <cmath>                                   31 #include <cmath>
 32                                                    32 
 33 #include "G4TwistTrapParallelSide.hh"              33 #include "G4TwistTrapParallelSide.hh"
 34 #include "G4PhysicalConstants.hh"                  34 #include "G4PhysicalConstants.hh"
 35 #include "G4JTPolynomialSolver.hh"                 35 #include "G4JTPolynomialSolver.hh"
 36                                                    36 
 37 //============================================     37 //=====================================================================
 38 //* constructors -----------------------------     38 //* constructors ------------------------------------------------------
 39                                                    39 
 40 G4TwistTrapParallelSide::G4TwistTrapParallelSi     40 G4TwistTrapParallelSide::G4TwistTrapParallelSide(const G4String& name,
 41                            G4double PhiTwist,      41                            G4double PhiTwist,  // twist angle
 42                            G4double pDz,           42                            G4double pDz,       // half z lenght
 43                            G4double pTheta,        43                            G4double pTheta,    // direction between end planes
 44                            G4double pPhi,          44                            G4double pPhi,      // by polar and azimutal angles
 45                            G4double pDy1,          45                            G4double pDy1,      // half y length at -pDz
 46                            G4double pDx1,          46                            G4double pDx1,      // half x length at -pDz,-pDy
 47                            G4double pDx2,          47                            G4double pDx2,      // half x length at -pDz,+pDy
 48                            G4double pDy2,          48                            G4double pDy2,      // half y length at +pDz
 49                            G4double pDx3,          49                            G4double pDx3,      // half x length at +pDz,-pDy
 50                            G4double pDx4,          50                            G4double pDx4,      // half x length at +pDz,+pDy
 51                            G4double pAlph,         51                            G4double pAlph,     // tilt angle at +pDz
 52                            G4double AngleSide      52                            G4double AngleSide  // parity
 53                                                    53                                                )
 54   : G4VTwistSurface(name)                          54   : G4VTwistSurface(name)
 55 {                                                  55 {  
 56                                                    56   
 57   fAxis[0]    = kXAxis; // in local coordinate     57   fAxis[0]    = kXAxis; // in local coordinate system
 58   fAxis[1]    = kZAxis;                            58   fAxis[1]    = kZAxis;
 59   fAxisMin[0] = -kInfinity ;  // X Axis bounda     59   fAxisMin[0] = -kInfinity ;  // X Axis boundary
 60   fAxisMax[0] = kInfinity ;   //   depends on      60   fAxisMax[0] = kInfinity ;   //   depends on z !!
 61   fAxisMin[1] = -pDz ;        // Z Axis bounda     61   fAxisMin[1] = -pDz ;        // Z Axis boundary
 62   fAxisMax[1] = pDz ;                              62   fAxisMax[1] = pDz ;
 63                                                    63   
 64   fDx1  = pDx1 ;                                   64   fDx1  = pDx1 ;
 65   fDx2  = pDx2 ;                                   65   fDx2  = pDx2 ;
 66   fDx3  = pDx3 ;                                   66   fDx3  = pDx3 ;
 67   fDx4  = pDx4 ;                                   67   fDx4  = pDx4 ;
 68                                                    68 
 69   fDy1   = pDy1 ;                                  69   fDy1   = pDy1 ;
 70   fDy2   = pDy2 ;                                  70   fDy2   = pDy2 ;
 71                                                    71 
 72   fDz   = pDz ;                                    72   fDz   = pDz ;
 73                                                    73 
 74   fAlph = pAlph  ;                                 74   fAlph = pAlph  ;
 75   fTAlph = std::tan(fAlph) ;                       75   fTAlph = std::tan(fAlph) ;
 76                                                    76 
 77   fTheta = pTheta ;                                77   fTheta = pTheta ;
 78   fPhi   = pPhi ;                                  78   fPhi   = pPhi ;
 79                                                    79 
 80   // precalculate frequently used parameters       80   // precalculate frequently used parameters
 81   //                                               81   //
 82   fDx4plus2  = fDx4 + fDx2 ;                       82   fDx4plus2  = fDx4 + fDx2 ;
 83   fDx4minus2 = fDx4 - fDx2 ;                       83   fDx4minus2 = fDx4 - fDx2 ;
 84   fDx3plus1  = fDx3 + fDx1 ;                       84   fDx3plus1  = fDx3 + fDx1 ; 
 85   fDx3minus1 = fDx3 - fDx1 ;                       85   fDx3minus1 = fDx3 - fDx1 ;
 86   fDy2plus1  = fDy2 + fDy1 ;                       86   fDy2plus1  = fDy2 + fDy1 ;
 87   fDy2minus1 = fDy2 - fDy1 ;                       87   fDy2minus1 = fDy2 - fDy1 ;
 88                                                    88 
 89   fa1md1 = 2*fDx2 - 2*fDx1  ;                      89   fa1md1 = 2*fDx2 - 2*fDx1  ; 
 90   fa2md2 = 2*fDx4 - 2*fDx3 ;                       90   fa2md2 = 2*fDx4 - 2*fDx3 ;
 91                                                    91 
 92   fPhiTwist = PhiTwist ;    // dphi                92   fPhiTwist = PhiTwist ;    // dphi
 93   fAngleSide = AngleSide ;  // 0,90,180,270 de     93   fAngleSide = AngleSide ;  // 0,90,180,270 deg
 94                                                    94 
 95   fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fP     95   fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fPhi); // dx in surface equation
 96   fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fP     96   fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fPhi); // dy in surface equation
 97                                                    97   
 98   fRot.rotateZ( AngleSide ) ;                      98   fRot.rotateZ( AngleSide ) ; 
 99                                                    99   
100   fTrans.set(0, 0, 0);  // No Translation         100   fTrans.set(0, 0, 0);  // No Translation
101   fIsValidNorm = false;                           101   fIsValidNorm = false;
102                                                   102   
103   SetCorners() ;                                  103   SetCorners() ;
104   SetBoundaries() ;                               104   SetBoundaries() ;
105 }                                                 105 }
106                                                   106 
107 //============================================    107 //=====================================================================
108 //* Fake default constructor -----------------    108 //* Fake default constructor ------------------------------------------
109                                                   109 
110 G4TwistTrapParallelSide::G4TwistTrapParallelSi    110 G4TwistTrapParallelSide::G4TwistTrapParallelSide( __void__& a )
111   : G4VTwistSurface(a)                            111   : G4VTwistSurface(a)
112 {                                                 112 {
113 }                                                 113 }
114                                                   114 
115 //============================================    115 //=====================================================================
116 //* destructor -------------------------------    116 //* destructor --------------------------------------------------------
117                                                   117 
118 G4TwistTrapParallelSide::~G4TwistTrapParallelS    118 G4TwistTrapParallelSide::~G4TwistTrapParallelSide() = default;
119                                                   119 
120 //============================================    120 //=====================================================================
121 //* GetNormal --------------------------------    121 //* GetNormal ---------------------------------------------------------
122                                                   122 
123 G4ThreeVector G4TwistTrapParallelSide::GetNorm    123 G4ThreeVector G4TwistTrapParallelSide::GetNormal(const G4ThreeVector& tmpxx, 
124                                                   124                                                        G4bool isGlobal) 
125 {                                                 125 {
126    // GetNormal returns a normal vector at a s    126    // GetNormal returns a normal vector at a surface (or very close
127    // to surface) point at tmpxx.                 127    // to surface) point at tmpxx.
128    // If isGlobal=true, it returns the normal     128    // If isGlobal=true, it returns the normal in global coordinate.
129    //                                             129    //
130                                                   130 
131    G4ThreeVector xx;                              131    G4ThreeVector xx;
132    if (isGlobal)                                  132    if (isGlobal)
133    {                                              133    {
134       xx = ComputeLocalPoint(tmpxx);              134       xx = ComputeLocalPoint(tmpxx);
135       if ((xx - fCurrentNormal.p).mag() < 0.5     135       if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance)
136       {                                           136       {
137          return ComputeGlobalDirection(fCurren    137          return ComputeGlobalDirection(fCurrentNormal.normal);
138       }                                           138       }
139    }                                              139    }
140    else                                           140    else
141    {                                              141    {
142       xx = tmpxx;                                 142       xx = tmpxx;
143       if (xx == fCurrentNormal.p)                 143       if (xx == fCurrentNormal.p)
144       {                                           144       {
145          return fCurrentNormal.normal;            145          return fCurrentNormal.normal;
146       }                                           146       }
147    }                                              147    }
148                                                   148 
149    G4double phi ;                                 149    G4double phi ;
150    G4double u ;                                   150    G4double u ;
151                                                   151 
152    GetPhiUAtX(xx,phi,u) ;   // phi,u for point    152    GetPhiUAtX(xx,phi,u) ;   // phi,u for point xx close to surface 
153                                                   153 
154    G4ThreeVector normal =  NormAng(phi,u) ;  /    154    G4ThreeVector normal =  NormAng(phi,u) ;  // the normal vector at phi,u
155                                                   155 
156 #ifdef G4TWISTDEBUG                               156 #ifdef G4TWISTDEBUG
157    G4cout  << "normal vector = " << normal <<     157    G4cout  << "normal vector = " << normal << G4endl ;
158    G4cout << "phi = " << phi << " , u = " << u    158    G4cout << "phi = " << phi << " , u = " << u << G4endl ;
159 #endif                                            159 #endif
160                                                   160 
161    //    normal = normal/normal.mag() ;           161    //    normal = normal/normal.mag() ;
162                                                   162 
163    if (isGlobal)                                  163    if (isGlobal)
164    {                                              164    {
165       fCurrentNormal.normal = ComputeGlobalDir    165       fCurrentNormal.normal = ComputeGlobalDirection(normal.unit());
166    }                                              166    }
167    else                                           167    else
168    {                                              168    {
169       fCurrentNormal.normal = normal.unit();      169       fCurrentNormal.normal = normal.unit();
170    }                                              170    }
171    return fCurrentNormal.normal;                  171    return fCurrentNormal.normal;
172 }                                                 172 }
173                                                   173 
174 //============================================    174 //=====================================================================
175 //* DistanceToSurface ------------------------    175 //* DistanceToSurface -------------------------------------------------
176                                                   176 
177 G4int G4TwistTrapParallelSide::DistanceToSurfa    177 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector& gp,
178                                                   178                                                  const G4ThreeVector& gv,
179                                                   179                                                  G4ThreeVector  gxx[],
180                                                   180                                                  G4double       distance[],
181                                                   181                                                  G4int          areacode[],
182                                                   182                                                  G4bool         isvalid[],
183                                                   183                                                  EValidate      validate)
184 {                                                 184 {
185   static const G4double pihalf = pi/2 ;           185   static const G4double pihalf = pi/2 ;
186   const G4double ctol = 0.5 * kCarTolerance;      186   const G4double ctol = 0.5 * kCarTolerance;
187                                                   187 
188   G4bool IsParallel = false ;                     188   G4bool IsParallel = false ;
189   G4bool IsConverged =  false ;                   189   G4bool IsConverged =  false ;
190                                                   190 
191   G4int nxx = 0 ;  // number of physical solut    191   G4int nxx = 0 ;  // number of physical solutions
192                                                   192 
193   fCurStatWithV.ResetfDone(validate, &gp, &gv)    193   fCurStatWithV.ResetfDone(validate, &gp, &gv);
194                                                   194 
195   if (fCurStatWithV.IsDone())                     195   if (fCurStatWithV.IsDone())
196   {                                               196   {
197     for (G4int i=0; i<fCurStatWithV.GetNXX();     197     for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
198     {                                             198     {
199       gxx[i] = fCurStatWithV.GetXX(i);            199       gxx[i] = fCurStatWithV.GetXX(i);
200       distance[i] = fCurStatWithV.GetDistance(    200       distance[i] = fCurStatWithV.GetDistance(i);
201       areacode[i] = fCurStatWithV.GetAreacode(    201       areacode[i] = fCurStatWithV.GetAreacode(i);
202       isvalid[i]  = fCurStatWithV.IsValid(i);     202       isvalid[i]  = fCurStatWithV.IsValid(i);
203     }                                             203     }
204     return fCurStatWithV.GetNXX();                204     return fCurStatWithV.GetNXX();
205   }                                               205   }
206   else   // initialize                            206   else   // initialize
207   {                                               207   {
208     for (G4int i=0; i<G4VSURFACENXX ; ++i)        208     for (G4int i=0; i<G4VSURFACENXX ; ++i)
209     {                                             209     {
210       distance[i] = kInfinity;                    210       distance[i] = kInfinity;
211       areacode[i] = sOutside;                     211       areacode[i] = sOutside;
212       isvalid[i]  = false;                        212       isvalid[i]  = false;
213       gxx[i].set(kInfinity, kInfinity, kInfini    213       gxx[i].set(kInfinity, kInfinity, kInfinity);
214     }                                             214     }
215   }                                               215   }
216                                                   216 
217   G4ThreeVector p = ComputeLocalPoint(gp);        217   G4ThreeVector p = ComputeLocalPoint(gp);
218   G4ThreeVector v = ComputeLocalDirection(gv);    218   G4ThreeVector v = ComputeLocalDirection(gv);
219                                                   219   
220 #ifdef G4TWISTDEBUG                               220 #ifdef G4TWISTDEBUG
221   G4cout << "Local point p = " << p << G4endl     221   G4cout << "Local point p = " << p << G4endl ;
222   G4cout << "Local direction v = " << v << G4e    222   G4cout << "Local direction v = " << v << G4endl ; 
223 #endif                                            223 #endif
224                                                   224 
225   G4double phi,u ;  // parameters                 225   G4double phi,u ;  // parameters
226                                                   226 
227   // temporary variables                          227   // temporary variables
228                                                   228 
229   G4double      tmpdist = kInfinity ;             229   G4double      tmpdist = kInfinity ;
230   G4ThreeVector tmpxx;                            230   G4ThreeVector tmpxx;
231   G4int         tmpareacode = sOutside ;          231   G4int         tmpareacode = sOutside ;
232   G4bool        tmpisvalid  = false ;             232   G4bool        tmpisvalid  = false ;
233                                                   233 
234   std::vector<Intersection> xbuf ;                234   std::vector<Intersection> xbuf ;
235   Intersection xbuftmp ;                          235   Intersection xbuftmp ;
236                                                   236   
237   // prepare some variables for the intersecti    237   // prepare some variables for the intersection finder
238                                                   238 
239   G4double L = 2*fDz ;                            239   G4double L = 2*fDz ;
240                                                   240 
241   G4double phixz = fPhiTwist * ( p.x() * v.z()    241   G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ;
242   G4double phiyz = fPhiTwist * ( p.y() * v.z()    242   G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ;
243                                                   243 
244   // special case vz = 0                          244   // special case vz = 0
245                                                   245 
246   if ( v.z() == 0. )                              246   if ( v.z() == 0. )
247   {                                               247   {
248     if ( std::fabs(p.z()) <= L )       // inte    248     if ( std::fabs(p.z()) <= L )       // intersection possible in z
249     {                                             249     {
250       phi = p.z() * fPhiTwist / L ;  // phi is    250       phi = p.z() * fPhiTwist / L ;  // phi is determined by the z-position 
251                                                   251 
252       u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p.    252       u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p.y()*v.x() - fdeltaX*phi*v.y()
253               + fPhiTwist*p.x()*v.y()) + (fDy2    253               + fPhiTwist*p.x()*v.y()) + (fDy2plus1*fPhiTwist
254               + 2*fDy2minus1*phi)*(v.x()*std::    254               + 2*fDy2minus1*phi)*(v.x()*std::cos(phi) + v.y()*std::sin(phi)))
255         / (2.* fPhiTwist*(v.y()*std::cos(phi)     255         / (2.* fPhiTwist*(v.y()*std::cos(phi) - v.x()*std::sin(phi)));
256                                                   256 
257       xbuftmp.phi = phi ;                         257       xbuftmp.phi = phi ;
258       xbuftmp.u = u ;                             258       xbuftmp.u = u ;
259       xbuftmp.areacode = sOutside ;               259       xbuftmp.areacode = sOutside ;
260       xbuftmp.distance = kInfinity ;              260       xbuftmp.distance = kInfinity ;
261       xbuftmp.isvalid = false ;                   261       xbuftmp.isvalid = false ;
262                                                   262 
263       xbuf.push_back(xbuftmp) ; // store it to    263       xbuf.push_back(xbuftmp) ; // store it to xbuf
264     }                                             264     }
265     else                              // no in    265     else                              // no intersection possible
266     {                                             266     {
267       distance[0] = kInfinity;                    267       distance[0] = kInfinity;
268       gxx[0].set(kInfinity,kInfinity,kInfinity    268       gxx[0].set(kInfinity,kInfinity,kInfinity);
269       isvalid[0] = false ;                        269       isvalid[0] = false ;
270       areacode[0] = sOutside ;                    270       areacode[0] = sOutside ;
271       fCurStatWithV.SetCurrentStatus(0, gxx[0]    271       fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0],
272                                      areacode[    272                                      areacode[0], isvalid[0],
273                                      0, valida    273                                      0, validate, &gp, &gv);
274                                                   274       
275       return 0;                                   275       return 0;
276     }  // end std::fabs(p.z() <= L                276     }  // end std::fabs(p.z() <= L 
277   } // end v.z() == 0                             277   } // end v.z() == 0
278   else   // general solution for non-zero vz      278   else   // general solution for non-zero vz
279   {                                               279   {
280     G4double c[9],srd[8],si[8] ;                  280     G4double c[9],srd[8],si[8] ;  
281                                                   281 
282     c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwi    282     c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwist*v.z()) ;
283     c[7] = -7200*(phixz - 2*fDz*v.y() + (fdelt    283     c[7] = -7200*(phixz - 2*fDz*v.y() + (fdeltaY + fDy2minus1)*v.z()) ;
284     c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60    284     c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60*fdeltaX*v.z()
285          + 11*fDy2plus1*fPhiTwist*v.z()) ;        285          + 11*fDy2plus1*fPhiTwist*v.z()) ;
286     c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*f    286     c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*fdeltaY*v.z()
287          + 11*fDy2minus1*v.z()) ;                 287          + 11*fDy2minus1*v.z()) ;
288     c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320    288     c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320*fdeltaX*v.z()
289          + 4*fDy2plus1*fPhiTwist*v.z()) ;         289          + 4*fDy2plus1*fPhiTwist*v.z()) ;
290     c[3] = -404*phixz + 3048*fDz*v.y() - 1524*    290     c[3] = -404*phixz + 3048*fDz*v.y() - 1524*fdeltaY*v.z()
291          + 96*fDy2minus1*v.z() ;                  291          + 96*fDy2minus1*v.z() ;
292     c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fde    292     c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fdeltaX*v.z()) ;
293     c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdelta    293     c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdeltaY*v.z()) ;
294     c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ;      294     c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ;
295                                                   295 
296                                                   296 
297 #ifdef G4TWISTDEBUG                               297 #ifdef G4TWISTDEBUG
298     G4cout << "coef = " << c[0] << " "            298     G4cout << "coef = " << c[0] << " " 
299            <<  c[1] << " "                        299            <<  c[1] << " "  
300            <<  c[2] << " "                        300            <<  c[2] << " "  
301            <<  c[3] << " "                        301            <<  c[3] << " "  
302            <<  c[4] << " "                        302            <<  c[4] << " "  
303            <<  c[5] << " "                        303            <<  c[5] << " "  
304            <<  c[6] << " "                        304            <<  c[6] << " "  
305            <<  c[7] << " "                        305            <<  c[7] << " "  
306            <<  c[8] << G4endl ;                   306            <<  c[8] << G4endl ;
307 #endif                                            307 #endif    
308                                                   308 
309     G4JTPolynomialSolver trapEq ;                 309     G4JTPolynomialSolver trapEq ;
310     G4int num = trapEq.FindRoots(c,8,srd,si);     310     G4int num = trapEq.FindRoots(c,8,srd,si);
311                                                   311 
312     for (G4int i = 0 ; i<num ; ++i )   // loop    312     for (G4int i = 0 ; i<num ; ++i )   // loop over all mathematical solutions
313     {                                             313     {
314       if ( si[i]==0.0 )   // only real solutio    314       if ( si[i]==0.0 )   // only real solutions
315       {                                           315       {
316 #ifdef G4TWISTDEBUG                               316 #ifdef G4TWISTDEBUG
317         G4cout << "Solution " << i << " : " <<    317         G4cout << "Solution " << i << " : " << srd[i] << G4endl ;
318 #endif                                            318 #endif
319         phi = std::fmod(srd[i] , pihalf)  ;       319         phi = std::fmod(srd[i] , pihalf)  ;
320         u = (1/std::cos(phi)*(2*phixz + 4*fDz*    320         u = (1/std::cos(phi)*(2*phixz + 4*fDz*phi*v.x()
321           - 2*fdeltaX*phi*v.z() + (fDy2plus1*f    321           - 2*fdeltaX*phi*v.z() + (fDy2plus1*fPhiTwist
322           + 2*fDy2minus1*phi)*v.z()* std::sin(    322           + 2*fDy2minus1*phi)*v.z()* std::sin(phi)))/(2.*fPhiTwist*v.z()) ;
323                                                   323 
324         xbuftmp.phi = phi ;                       324         xbuftmp.phi = phi ;
325         xbuftmp.u = u ;                           325         xbuftmp.u = u ;
326         xbuftmp.areacode = sOutside ;             326         xbuftmp.areacode = sOutside ;
327         xbuftmp.distance = kInfinity ;            327         xbuftmp.distance = kInfinity ;
328         xbuftmp.isvalid = false ;                 328         xbuftmp.isvalid = false ;
329                                                   329         
330         xbuf.push_back(xbuftmp) ;  // store it    330         xbuf.push_back(xbuftmp) ;  // store it to xbuf
331                                                   331       
332 #ifdef G4TWISTDEBUG                               332 #ifdef G4TWISTDEBUG
333         G4cout << "solution " << i << " = " <<    333         G4cout << "solution " << i << " = " << phi << " , " << u  << G4endl ;
334 #endif                                            334 #endif
335                                                   335 
336       }  // end if real solution                  336       }  // end if real solution
337     }  // end loop i                              337     }  // end loop i
338   }  // end general case                          338   }  // end general case
339                                                   339 
340   nxx = (G4int)xbuf.size() ;  // save the numb    340   nxx = (G4int)xbuf.size() ;  // save the number of  solutions
341                                                   341 
342   G4ThreeVector xxonsurface  ;       // point     342   G4ThreeVector xxonsurface  ;       // point on surface
343   G4ThreeVector surfacenormal  ;     // normal    343   G4ThreeVector surfacenormal  ;     // normal vector  
344   G4double deltaX  ; // distance between inter    344   G4double deltaX  ; // distance between intersection point and point on surface
345   G4double theta  ;                  // angle     345   G4double theta  ;                  // angle between track and surfacenormal
346   G4double factor ;                  // a scal    346   G4double factor ;                  // a scaling factor
347   G4int maxint = 30 ;                // number    347   G4int maxint = 30 ;                // number of iterations
348                                                   348 
349                                                   349 
350   for (auto & k : xbuf)                           350   for (auto & k : xbuf)
351   {                                               351   {
352 #ifdef G4TWISTDEBUG                               352 #ifdef G4TWISTDEBUG
353     G4cout << "Solution " << k << " : "           353     G4cout << "Solution " << k << " : " 
354            << "reconstructed phiR = " << xbuf[    354            << "reconstructed phiR = " << xbuf[k].phi
355            << ", uR = " << xbuf[k].u << G4endl    355            << ", uR = " << xbuf[k].u << G4endl ; 
356 #endif                                            356 #endif
357                                                   357     
358     phi = k.phi ;  // get the stored values fo    358     phi = k.phi ;  // get the stored values for phi and u
359     u = k.u ;                                     359     u = k.u ;
360                                                   360 
361     IsConverged = false ;   // no convergence     361     IsConverged = false ;   // no convergence at the beginning
362                                                   362     
363     for ( G4int i = 1 ; i<maxint ; ++i )          363     for ( G4int i = 1 ; i<maxint ; ++i )
364     {                                             364     {
365       xxonsurface = SurfacePoint(phi,u) ;         365       xxonsurface = SurfacePoint(phi,u) ;
366       surfacenormal = NormAng(phi,u) ;            366       surfacenormal = NormAng(phi,u) ;
367       tmpdist = DistanceToPlaneWithV(p, v, xxo    367       tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 
368       deltaX = ( tmpxx - xxonsurface ).mag() ;    368       deltaX = ( tmpxx - xxonsurface ).mag() ; 
369       theta = std::fabs(std::acos(v*surfacenor    369       theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
370       if ( theta < 0.001 )                        370       if ( theta < 0.001 )
371       {                                           371       { 
372         factor = 50 ;                             372         factor = 50 ;
373         IsParallel = true ;                       373         IsParallel = true ;
374       }                                           374       }
375       else                                        375       else
376       {                                           376       {
377         factor = 1 ;                              377         factor = 1 ;
378       }                                           378       }
379                                                   379 
380 #ifdef G4TWISTDEBUG                               380 #ifdef G4TWISTDEBUG
381       G4cout << "Step i = " << i << ", distanc    381       G4cout << "Step i = " << i << ", distance = "
382              << tmpdist << ", " << deltaX << G    382              << tmpdist << ", " << deltaX << G4endl ;
383       G4cout << "X = " << tmpxx << G4endl ;       383       G4cout << "X = " << tmpxx << G4endl ;
384 #endif                                            384 #endif
385                                                   385       
386       GetPhiUAtX(tmpxx, phi, u); // new point     386       GetPhiUAtX(tmpxx, phi, u); // new point xx is accepted and phi/u replaced
387                                                   387       
388 #ifdef G4TWISTDEBUG                               388 #ifdef G4TWISTDEBUG
389       G4cout << "approximated phi = " << phi <    389       G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 
390 #endif                                            390 #endif
391                                                   391       
392       if ( deltaX <= factor*ctol ) { IsConverg    392       if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
393     }  // end iterative loop (i)                  393     }  // end iterative loop (i)
394                                                   394     
395     if ( std::fabs(tmpdist)<ctol ) tmpdist = 0    395     if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 
396                                                   396 
397 #ifdef G4TWISTDEBUG                               397 #ifdef G4TWISTDEBUG
398     G4cout << "refined solution "  << phi << "    398     G4cout << "refined solution "  << phi << " , " << u  <<  G4endl ;
399     G4cout << "distance = " << tmpdist << G4en    399     G4cout << "distance = " << tmpdist << G4endl ;
400     G4cout << "local X = " << tmpxx << G4endl     400     G4cout << "local X = " << tmpxx << G4endl ;
401 #endif                                            401 #endif
402                                                   402     
403     tmpisvalid = false ;  // init                 403     tmpisvalid = false ;  // init 
404                                                   404 
405     if ( IsConverged )                            405     if ( IsConverged )
406     {                                             406     {
407       if (validate == kValidateWithTol)           407       if (validate == kValidateWithTol)
408       {                                           408       {
409         tmpareacode = GetAreaCode(tmpxx);         409         tmpareacode = GetAreaCode(tmpxx);
410         if (!IsOutside(tmpareacode))              410         if (!IsOutside(tmpareacode))
411         {                                         411         {
412           if (tmpdist >= 0) tmpisvalid = true;    412           if (tmpdist >= 0) tmpisvalid = true;
413         }                                         413         }
414       }                                           414       }
415       else if (validate == kValidateWithoutTol    415       else if (validate == kValidateWithoutTol)
416       {                                           416       {
417         tmpareacode = GetAreaCode(tmpxx, false    417         tmpareacode = GetAreaCode(tmpxx, false);
418         if (IsInside(tmpareacode))                418         if (IsInside(tmpareacode))
419         {                                         419         {
420           if (tmpdist >= 0) tmpisvalid = true;    420           if (tmpdist >= 0) tmpisvalid = true;
421         }                                         421         }
422       }                                           422       }
423       else  // kDontValidate                      423       else  // kDontValidate
424       {                                           424       {
425         G4Exception("G4TwistTrapParallelSide::    425         G4Exception("G4TwistTrapParallelSide::DistanceToSurface()",
426                     "GeomSolids0001", FatalExc    426                     "GeomSolids0001", FatalException,
427                     "Feature NOT implemented !    427                     "Feature NOT implemented !");
428       }                                           428       }
429     }                                             429     } 
430     else                                          430     else
431     {                                             431     {
432       tmpdist = kInfinity;     // no convergen    432       tmpdist = kInfinity;     // no convergence after 10 steps 
433       tmpisvalid = false ;     // solution is     433       tmpisvalid = false ;     // solution is not vaild
434     }                                             434     }  
435                                                   435 
436     // store the found values                     436     // store the found values 
437     k.xx = tmpxx ;                                437     k.xx = tmpxx ;
438     k.distance = tmpdist ;                        438     k.distance = tmpdist ;
439     k.areacode = tmpareacode ;                    439     k.areacode = tmpareacode ;
440     k.isvalid = tmpisvalid ;                      440     k.isvalid = tmpisvalid ;
441   }  // end loop over physical solutions (vari    441   }  // end loop over physical solutions (variable k)
442                                                   442 
443   std::sort(xbuf.begin() , xbuf.end(), Distanc    443   std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ;  // sorting
444                                                   444 
445 #ifdef G4TWISTDEBUG                               445 #ifdef G4TWISTDEBUG
446   G4cout << G4endl << "list xbuf after sorting    446   G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
447   G4cout << G4endl << G4endl ;                    447   G4cout << G4endl << G4endl ;
448 #endif                                            448 #endif
449                                                   449 
450   // erase identical intersection (within kCar    450   // erase identical intersection (within kCarTolerance) 
451   xbuf.erase(std::unique(xbuf.begin(),xbuf.end    451   xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end());
452                                                   452 
453                                                   453 
454   // add guesses                                  454   // add guesses
455                                                   455 
456   auto nxxtmp = (G4int)xbuf.size() ;              456   auto nxxtmp = (G4int)xbuf.size() ;
457                                                   457 
458   if ( nxxtmp<2 || IsParallel  )                  458   if ( nxxtmp<2 || IsParallel  )
459   {                                               459   {
460     // positive end                               460     // positive end
461 #ifdef G4TWISTDEBUG                               461 #ifdef G4TWISTDEBUG
462     G4cout << "add guess at +z/2 .. " << G4end    462     G4cout << "add guess at +z/2 .. " << G4endl ;
463 #endif                                            463 #endif
464                                                   464 
465     phi = fPhiTwist/2 ;                           465     phi = fPhiTwist/2 ;
466     u   =  0 ;                                    466     u   =  0 ;
467                                                   467     
468     xbuftmp.phi = phi ;                           468     xbuftmp.phi = phi ;
469     xbuftmp.u = u ;                               469     xbuftmp.u = u ;
470     xbuftmp.areacode = sOutside ;                 470     xbuftmp.areacode = sOutside ;
471     xbuftmp.distance = kInfinity ;                471     xbuftmp.distance = kInfinity ;
472     xbuftmp.isvalid = false ;                     472     xbuftmp.isvalid = false ;
473                                                   473     
474     xbuf.push_back(xbuftmp) ;  // store it to     474     xbuf.push_back(xbuftmp) ;  // store it to xbuf
475                                                   475 
476 #ifdef G4TWISTDEBUG                               476 #ifdef G4TWISTDEBUG
477     G4cout << "add guess at -z/2 .. " << G4end    477     G4cout << "add guess at -z/2 .. " << G4endl ;
478 #endif                                            478 #endif
479                                                   479 
480     phi = -fPhiTwist/2 ;                          480     phi = -fPhiTwist/2 ;
481     u   = 0 ;                                     481     u   = 0 ;
482                                                   482 
483     xbuftmp.phi = phi ;                           483     xbuftmp.phi = phi ;
484     xbuftmp.u = u ;                               484     xbuftmp.u = u ;
485     xbuftmp.areacode = sOutside ;                 485     xbuftmp.areacode = sOutside ;
486     xbuftmp.distance = kInfinity ;                486     xbuftmp.distance = kInfinity ;
487     xbuftmp.isvalid = false ;                     487     xbuftmp.isvalid = false ;
488                                                   488     
489     xbuf.push_back(xbuftmp) ;  // store it to     489     xbuf.push_back(xbuftmp) ;  // store it to xbuf
490                                                   490 
491     for ( std::size_t k = nxxtmp ; k<xbuf.size    491     for ( std::size_t k = nxxtmp ; k<xbuf.size() ; ++k )
492     {                                             492     {
493 #ifdef G4TWISTDEBUG                               493 #ifdef G4TWISTDEBUG
494       G4cout << "Solution " << k << " : "         494       G4cout << "Solution " << k << " : " 
495              << "reconstructed phiR = " << xbu    495              << "reconstructed phiR = " << xbuf[k].phi
496              << ", uR = " << xbuf[k].u << G4en    496              << ", uR = " << xbuf[k].u << G4endl ; 
497 #endif                                            497 #endif
498                                                   498       
499       phi = xbuf[k].phi ;  // get the stored v    499       phi = xbuf[k].phi ;  // get the stored values for phi and u
500       u   = xbuf[k].u ;                           500       u   = xbuf[k].u ;
501                                                   501 
502       IsConverged = false ;   // no convergenc    502       IsConverged = false ;   // no convergence at the beginning
503                                                   503       
504       for ( G4int i = 1 ; i<maxint ; ++i )        504       for ( G4int i = 1 ; i<maxint ; ++i )
505       {                                           505       {
506         xxonsurface = SurfacePoint(phi,u) ;       506         xxonsurface = SurfacePoint(phi,u) ;
507         surfacenormal = NormAng(phi,u) ;          507         surfacenormal = NormAng(phi,u) ;
508         tmpdist = DistanceToPlaneWithV(p, v, x    508         tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 
509         deltaX = ( tmpxx - xxonsurface ).mag()    509         deltaX = ( tmpxx - xxonsurface ).mag() ; 
510         theta = std::fabs(std::acos(v*surfacen    510         theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
511         if ( theta < 0.001 )                      511         if ( theta < 0.001 )
512         {                                         512         { 
513           factor = 50 ;                           513           factor = 50 ;    
514         }                                         514         }
515         else                                      515         else
516         {                                         516         {
517           factor = 1 ;                            517           factor = 1 ;
518         }                                         518         }
519                                                   519         
520 #ifdef G4TWISTDEBUG                               520 #ifdef G4TWISTDEBUG
521         G4cout << "Step i = " << i << ", dista    521         G4cout << "Step i = " << i << ", distance = "
522                << tmpdist << ", " << deltaX <<    522                << tmpdist << ", " << deltaX << G4endl ;
523         G4cout << "X = " << tmpxx << G4endl ;     523         G4cout << "X = " << tmpxx << G4endl ;
524 #endif                                            524 #endif
525                                                   525 
526         GetPhiUAtX(tmpxx, phi, u) ; // new poi    526         GetPhiUAtX(tmpxx, phi, u) ; // new point xx accepted and phi/u replaced
527                                                   527 
528 #ifdef G4TWISTDEBUG                               528 #ifdef G4TWISTDEBUG
529         G4cout << "approximated phi = " << phi    529         G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 
530 #endif                                            530 #endif
531                                                   531       
532         if ( deltaX <= factor*ctol ) { IsConve    532         if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
533       }  // end iterative loop (i)                533       }  // end iterative loop (i)
534                                                   534 
535       if ( std::fabs(tmpdist)<ctol ) tmpdist =    535       if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 
536                                                   536 
537 #ifdef G4TWISTDEBUG                               537 #ifdef G4TWISTDEBUG
538       G4cout << "refined solution "  << phi <<    538       G4cout << "refined solution "  << phi << " , " << u  <<  G4endl ;
539       G4cout << "distance = " << tmpdist << G4    539       G4cout << "distance = " << tmpdist << G4endl ;
540       G4cout << "local X = " << tmpxx << G4end    540       G4cout << "local X = " << tmpxx << G4endl ;
541 #endif                                            541 #endif
542                                                   542 
543       tmpisvalid = false ;  // init               543       tmpisvalid = false ;  // init 
544                                                   544 
545       if ( IsConverged )                          545       if ( IsConverged )
546       {                                           546       {
547         if (validate == kValidateWithTol)         547         if (validate == kValidateWithTol)
548         {                                         548         {
549           tmpareacode = GetAreaCode(tmpxx);       549           tmpareacode = GetAreaCode(tmpxx);
550           if (!IsOutside(tmpareacode))            550           if (!IsOutside(tmpareacode))
551           {                                       551           {
552             if (tmpdist >= 0) tmpisvalid = tru    552             if (tmpdist >= 0) tmpisvalid = true;
553           }                                       553           }
554         }                                         554         }
555         else if (validate == kValidateWithoutT    555         else if (validate == kValidateWithoutTol)
556         {                                         556         {
557           tmpareacode = GetAreaCode(tmpxx, fal    557           tmpareacode = GetAreaCode(tmpxx, false);
558           if (IsInside(tmpareacode))              558           if (IsInside(tmpareacode))
559           {                                       559           {
560             if (tmpdist >= 0) tmpisvalid = tru    560             if (tmpdist >= 0) tmpisvalid = true;
561           }                                       561           }
562         }                                         562         }
563         else  // kDontValidate                    563         else  // kDontValidate
564         {                                         564         {
565           G4Exception("G4TwistedBoxSide::Dista    565           G4Exception("G4TwistedBoxSide::DistanceToSurface()",
566                       "GeomSolids0001", FatalE    566                       "GeomSolids0001", FatalException,
567                       "Feature NOT implemented    567                       "Feature NOT implemented !");
568         }                                         568         }
569                                                   569         
570       }                                           570       } 
571       else                                        571       else
572       {                                           572       {
573         tmpdist = kInfinity;     // no converg    573         tmpdist = kInfinity;     // no convergence after 10 steps 
574         tmpisvalid = false ;     // solution i    574         tmpisvalid = false ;     // solution is not vaild
575       }                                           575       }  
576                                                   576 
577       // store the found values                   577       // store the found values 
578       xbuf[k].xx = tmpxx ;                        578       xbuf[k].xx = tmpxx ;
579       xbuf[k].distance = tmpdist ;                579       xbuf[k].distance = tmpdist ;
580       xbuf[k].areacode = tmpareacode ;            580       xbuf[k].areacode = tmpareacode ;
581       xbuf[k].isvalid = tmpisvalid ;              581       xbuf[k].isvalid = tmpisvalid ;
582                                                   582 
583     }  // end loop over physical solutions        583     }  // end loop over physical solutions 
584   }  // end less than 2 solutions                 584   }  // end less than 2 solutions
585                                                   585 
586   // sort again                                   586   // sort again
587   std::sort(xbuf.begin() , xbuf.end(), Distanc    587   std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ;  // sorting
588                                                   588 
589   // erase identical intersection (within kCar    589   // erase identical intersection (within kCarTolerance) 
590   xbuf.erase(std::unique(xbuf.begin(),xbuf.end    590   xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end());
591                                                   591 
592 #ifdef G4TWISTDEBUG                               592 #ifdef G4TWISTDEBUG
593   G4cout << G4endl << "list xbuf after sorting    593   G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
594   G4cout << G4endl << G4endl ;                    594   G4cout << G4endl << G4endl ;
595 #endif                                            595 #endif
596                                                   596 
597   nxx = (G4int)xbuf.size() ;   // determine nu    597   nxx = (G4int)xbuf.size() ;   // determine number of solutions again.
598                                                   598 
599   for ( G4int i = 0 ; i<(G4int)xbuf.size() ; +    599   for ( G4int i = 0 ; i<(G4int)xbuf.size() ; ++i )
600   {                                               600   {
601     distance[i] = xbuf[i].distance;               601     distance[i] = xbuf[i].distance;
602     gxx[i]      = ComputeGlobalPoint(xbuf[i].x    602     gxx[i]      = ComputeGlobalPoint(xbuf[i].xx);
603     areacode[i] = xbuf[i].areacode ;              603     areacode[i] = xbuf[i].areacode ;
604     isvalid[i]  = xbuf[i].isvalid ;               604     isvalid[i]  = xbuf[i].isvalid ;
605                                                   605     
606     fCurStatWithV.SetCurrentStatus(i, gxx[i],     606     fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i],
607                                      isvalid[i    607                                      isvalid[i], nxx, validate, &gp, &gv);
608 #ifdef G4TWISTDEBUG                               608 #ifdef G4TWISTDEBUG
609     G4cout << "element Nr. " << i                 609     G4cout << "element Nr. " << i 
610            << ", local Intersection = " << xbu    610            << ", local Intersection = " << xbuf[i].xx 
611            << ", distance = " << xbuf[i].dista    611            << ", distance = " << xbuf[i].distance 
612            << ", u = " << xbuf[i].u               612            << ", u = " << xbuf[i].u 
613            << ", phi = " << xbuf[i].phi           613            << ", phi = " << xbuf[i].phi 
614            << ", isvalid = " << xbuf[i].isvali    614            << ", isvalid = " << xbuf[i].isvalid 
615            << G4endl ;                            615            << G4endl ;
616 #endif                                            616 #endif
617   }  // end for( i ) loop                         617   }  // end for( i ) loop
618                                                   618 
619 #ifdef G4TWISTDEBUG                               619 #ifdef G4TWISTDEBUG
620   G4cout << "G4TwistTrapParallelSide finished     620   G4cout << "G4TwistTrapParallelSide finished " << G4endl ;
621   G4cout << nxx << " possible physical solutio    621   G4cout << nxx << " possible physical solutions found" << G4endl ;
622   for ( G4int k= 0 ; k< nxx ; ++k )               622   for ( G4int k= 0 ; k< nxx ; ++k )
623   {                                               623   {
624     G4cout << "global intersection Point found    624     G4cout << "global intersection Point found: " << gxx[k] << G4endl ;
625     G4cout << "distance = " << distance[k] <<     625     G4cout << "distance = " << distance[k] << G4endl ;
626     G4cout << "isvalid = " << isvalid[k] << G4    626     G4cout << "isvalid = " << isvalid[k] << G4endl ;
627   }                                               627   }
628 #endif                                            628 #endif
629                                                   629 
630   return nxx ;                                    630   return nxx ;
631 }                                                 631 }
632                                                   632 
633 //============================================    633 //=====================================================================
634 //* DistanceToSurface ------------------------    634 //* DistanceToSurface -------------------------------------------------
635                                                   635 
636 G4int G4TwistTrapParallelSide::DistanceToSurfa    636 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector& gp,
637                                                   637                                                  G4ThreeVector gxx[],
638                                                   638                                                  G4double      distance[],
639                                                   639                                                  G4int         areacode[])
640 {                                                 640 {  
641   const G4double ctol = 0.5 * kCarTolerance;      641   const G4double ctol = 0.5 * kCarTolerance;
642                                                   642 
643   fCurStat.ResetfDone(kDontValidate, &gp);        643   fCurStat.ResetfDone(kDontValidate, &gp);
644                                                   644 
645    if (fCurStat.IsDone())                         645    if (fCurStat.IsDone())
646    {                                              646    {
647       for (G4int i=0; i<fCurStat.GetNXX(); ++i    647       for (G4int i=0; i<fCurStat.GetNXX(); ++i)
648       {                                           648       {
649          gxx[i] = fCurStat.GetXX(i);              649          gxx[i] = fCurStat.GetXX(i);
650          distance[i] = fCurStat.GetDistance(i)    650          distance[i] = fCurStat.GetDistance(i);
651          areacode[i] = fCurStat.GetAreacode(i)    651          areacode[i] = fCurStat.GetAreacode(i);
652       }                                           652       }
653       return fCurStat.GetNXX();                   653       return fCurStat.GetNXX();
654    }                                              654    }
655    else  // initialize                            655    else  // initialize
656    {                                              656    {
657       for (G4int i=0; i<G4VSURFACENXX; ++i)       657       for (G4int i=0; i<G4VSURFACENXX; ++i)
658       {                                           658       {
659          distance[i] = kInfinity;                 659          distance[i] = kInfinity;
660          areacode[i] = sOutside;                  660          areacode[i] = sOutside;
661          gxx[i].set(kInfinity, kInfinity, kInf    661          gxx[i].set(kInfinity, kInfinity, kInfinity);
662       }                                           662       }
663    }                                              663    }
664                                                   664    
665    G4ThreeVector p = ComputeLocalPoint(gp);       665    G4ThreeVector p = ComputeLocalPoint(gp);
666    G4ThreeVector xx;  // intersection point       666    G4ThreeVector xx;  // intersection point
667    G4ThreeVector xxonsurface ; // interpolated    667    G4ThreeVector xxonsurface ; // interpolated intersection point 
668                                                   668 
669    // the surfacenormal at that surface point     669    // the surfacenormal at that surface point
670    G4double phiR = 0  ; //                        670    G4double phiR = 0  ; // 
671    G4double uR = 0 ;                              671    G4double uR = 0 ;
672                                                   672 
673    G4ThreeVector surfacenormal ;                  673    G4ThreeVector surfacenormal ; 
674    G4double deltaX ;                              674    G4double deltaX ;
675                                                   675    
676    G4int maxint = 20 ;                            676    G4int maxint = 20 ;
677                                                   677 
678    for ( G4int i = 1 ; i<maxint ; ++i )           678    for ( G4int i = 1 ; i<maxint ; ++i )
679    {                                              679    {
680      xxonsurface = SurfacePoint(phiR,uR) ;        680      xxonsurface = SurfacePoint(phiR,uR) ;
681      surfacenormal = NormAng(phiR,uR) ;           681      surfacenormal = NormAng(phiR,uR) ;
682      distance[0] = DistanceToPlane(p, xxonsurf    682      distance[0] = DistanceToPlane(p, xxonsurface, surfacenormal, xx); // new XX
683      deltaX = ( xx - xxonsurface ).mag() ;        683      deltaX = ( xx - xxonsurface ).mag() ; 
684                                                   684 
685 #ifdef G4TWISTDEBUG                               685 #ifdef G4TWISTDEBUG
686      G4cout << "i = " << i << ", distance = "     686      G4cout << "i = " << i << ", distance = "
687             << distance[0] << ", " << deltaX <    687             << distance[0] << ", " << deltaX << G4endl ;
688      G4cout << "X = " << xx << G4endl ;           688      G4cout << "X = " << xx << G4endl ;
689 #endif                                            689 #endif
690                                                   690 
691      // the new point xx is accepted and phi/p    691      // the new point xx is accepted and phi/psi replaced
692      GetPhiUAtX(xx, phiR, uR) ;                   692      GetPhiUAtX(xx, phiR, uR) ;
693                                                   693      
694      if ( deltaX <= ctol ) { break ; }            694      if ( deltaX <= ctol ) { break ; }
695    }                                              695    }
696                                                   696 
697    // check validity of solution ( valid phi,p    697    // check validity of solution ( valid phi,psi ) 
698                                                   698 
699    G4double halfphi = 0.5*fPhiTwist ;             699    G4double halfphi = 0.5*fPhiTwist ;
700    G4double uMax = GetBoundaryMax(phiR) ;         700    G4double uMax = GetBoundaryMax(phiR) ;
701    G4double uMin = GetBoundaryMin(phiR) ;         701    G4double uMin = GetBoundaryMin(phiR) ;
702                                                   702 
703    if (  phiR > halfphi ) phiR =  halfphi ;       703    if (  phiR > halfphi ) phiR =  halfphi ;
704    if ( phiR < -halfphi ) phiR = -halfphi ;       704    if ( phiR < -halfphi ) phiR = -halfphi ;
705    if ( uR > uMax ) uR = uMax ;                   705    if ( uR > uMax ) uR = uMax ;
706    if ( uR < uMin ) uR = uMin ;                   706    if ( uR < uMin ) uR = uMin ;
707                                                   707 
708    xxonsurface = SurfacePoint(phiR,uR) ;          708    xxonsurface = SurfacePoint(phiR,uR) ;
709    distance[0] = (  p - xx ).mag() ;              709    distance[0] = (  p - xx ).mag() ;
710    if ( distance[0] <= ctol ) { distance[0] =     710    if ( distance[0] <= ctol ) { distance[0] = 0 ; } 
711                                                   711 
712    // end of validity                             712    // end of validity 
713                                                   713 
714 #ifdef G4TWISTDEBUG                               714 #ifdef G4TWISTDEBUG
715    G4cout << "refined solution "  << phiR << "    715    G4cout << "refined solution "  << phiR << " , " << uR << " , " <<  G4endl ;
716    G4cout << "distance = " << distance[0] << G    716    G4cout << "distance = " << distance[0] << G4endl ;
717    G4cout << "X = " << xx << G4endl ;             717    G4cout << "X = " << xx << G4endl ;
718 #endif                                            718 #endif
719                                                   719 
720    G4bool isvalid = true;                         720    G4bool isvalid = true;
721    gxx[0]      = ComputeGlobalPoint(xx);          721    gxx[0]      = ComputeGlobalPoint(xx);
722                                                   722    
723 #ifdef G4TWISTDEBUG                               723 #ifdef G4TWISTDEBUG
724    G4cout << "intersection Point found: " << g    724    G4cout << "intersection Point found: " << gxx[0] << G4endl ;
725    G4cout << "distance = " << distance[0] << G    725    G4cout << "distance = " << distance[0] << G4endl ;
726 #endif                                            726 #endif
727                                                   727 
728    fCurStat.SetCurrentStatus(0, gxx[0], distan    728    fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
729                             isvalid, 1, kDontV    729                             isvalid, 1, kDontValidate, &gp);
730    return 1;                                      730    return 1;
731 }                                                 731 }
732                                                   732 
733 //============================================    733 //=====================================================================
734 //* GetAreaCode ------------------------------    734 //* GetAreaCode -------------------------------------------------------
735                                                   735 
736 G4int G4TwistTrapParallelSide::GetAreaCode(con    736 G4int G4TwistTrapParallelSide::GetAreaCode(const G4ThreeVector& xx, 
737                                            G4b    737                                            G4bool withTol)
738 {                                                 738 {
739    // We must use the function in local coordi    739    // We must use the function in local coordinate system.
740    // See the description of DistanceToSurface    740    // See the description of DistanceToSurface(p,v).
741                                                   741    
742    const G4double ctol = 0.5 * kCarTolerance;     742    const G4double ctol = 0.5 * kCarTolerance;
743                                                   743 
744    G4double phi ;                                 744    G4double phi ;
745    G4double yprime ;                              745    G4double yprime ;
746    GetPhiUAtX(xx, phi,yprime ) ;                  746    GetPhiUAtX(xx, phi,yprime ) ;
747                                                   747 
748    G4double fXAxisMax = GetBoundaryMax(phi) ;     748    G4double fXAxisMax = GetBoundaryMax(phi) ;
749    G4double fXAxisMin = GetBoundaryMin(phi) ;     749    G4double fXAxisMin = GetBoundaryMin(phi) ;
750                                                   750 
751 #ifdef G4TWISTDEBUG                               751 #ifdef G4TWISTDEBUG
752    G4cout << "GetAreaCode: phi = " << phi << G    752    G4cout << "GetAreaCode: phi = " << phi << G4endl ;
753    G4cout << "GetAreaCode: yprime = " << yprim    753    G4cout << "GetAreaCode: yprime = " << yprime << G4endl ;
754    G4cout << "Intervall is " << fXAxisMin << "    754    G4cout << "Intervall is " << fXAxisMin << " to " << fXAxisMax << G4endl ;
755 #endif                                            755 #endif
756                                                   756 
757    G4int areacode = sInside;                      757    G4int areacode = sInside;
758                                                   758    
759    if (fAxis[0] == kXAxis && fAxis[1] == kZAxi    759    if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
760    {                                              760    {
761       G4int zaxis = 1;                            761       G4int zaxis = 1;
762                                                   762       
763       if (withTol)                                763       if (withTol)
764       {                                           764       {
765         G4bool isoutside = false;                 765         G4bool isoutside = false;
766                                                   766         
767         // test boundary of xaxis                 767         // test boundary of xaxis
768                                                   768 
769          if (yprime < fXAxisMin + ctol)           769          if (yprime < fXAxisMin + ctol)
770          {                                        770          {
771             areacode |= (sAxis0 & (sAxisX | sA    771             areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary; 
772             if (yprime <= fXAxisMin - ctol) is    772             if (yprime <= fXAxisMin - ctol) isoutside = true;
773                                                   773 
774          }                                        774          }
775          else if (yprime > fXAxisMax - ctol)      775          else if (yprime > fXAxisMax - ctol)
776          {                                        776          {
777             areacode |= (sAxis0 & (sAxisX | sA    777             areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
778             if (yprime >= fXAxisMax + ctol)  i    778             if (yprime >= fXAxisMax + ctol)  isoutside = true;
779          }                                        779          }
780                                                   780 
781          // test boundary of z-axis               781          // test boundary of z-axis
782                                                   782 
783          if (xx.z() < fAxisMin[zaxis] + ctol)     783          if (xx.z() < fAxisMin[zaxis] + ctol)
784          {                                        784          {
785             areacode |= (sAxis1 & (sAxisZ | sA    785             areacode |= (sAxis1 & (sAxisZ | sAxisMin)); 
786                                                   786 
787             if   ((areacode & sBoundary) != 0)    787             if   ((areacode & sBoundary) != 0) areacode |= sCorner;  // xx is on corner.
788             else                        areaco    788             else                        areacode |= sBoundary;
789             if (xx.z() <= fAxisMin[zaxis] - ct    789             if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true;
790                                                   790 
791          }                                        791          }
792          else if (xx.z() > fAxisMax[zaxis] - c    792          else if (xx.z() > fAxisMax[zaxis] - ctol)
793          {                                        793          {
794             areacode |= (sAxis1 & (sAxisZ | sA    794             areacode |= (sAxis1 & (sAxisZ | sAxisMax));
795                                                   795 
796             if   ((areacode & sBoundary) != 0)    796             if   ((areacode & sBoundary) != 0) areacode |= sCorner;  // xx is on corner.
797             else                        areaco    797             else                        areacode |= sBoundary; 
798             if (xx.z() >= fAxisMax[zaxis] + ct    798             if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true;
799          }                                        799          }
800                                                   800 
801          // if isoutside = true, clear inside     801          // if isoutside = true, clear inside bit.             
802          // if not on boundary, add axis infor    802          // if not on boundary, add axis information.             
803                                                   803          
804          if (isoutside)                           804          if (isoutside)
805          {                                        805          {
806             G4int tmpareacode = areacode & (~s    806             G4int tmpareacode = areacode & (~sInside);
807             areacode = tmpareacode;               807             areacode = tmpareacode;
808          }                                        808          }
809          else if ((areacode & sBoundary) != sB    809          else if ((areacode & sBoundary) != sBoundary)
810          {                                        810          {
811             areacode |= (sAxis0 & sAxisX) | (s    811             areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ);
812          }                                        812          }           
813                                                   813          
814       }                                           814       }
815       else                                        815       else
816       {                                           816       {
817          // boundary of y-axis                    817          // boundary of y-axis
818                                                   818 
819          if (yprime < fXAxisMin )                 819          if (yprime < fXAxisMin )
820          {                                        820          {
821             areacode |= (sAxis0 & (sAxisX | sA    821             areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary;
822          }                                        822          }
823          else if (yprime > fXAxisMax)             823          else if (yprime > fXAxisMax)
824          {                                        824          {
825             areacode |= (sAxis0 & (sAxisX | sA    825             areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
826          }                                        826          }
827                                                   827          
828          // boundary of z-axis                    828          // boundary of z-axis
829                                                   829 
830          if (xx.z() < fAxisMin[zaxis])            830          if (xx.z() < fAxisMin[zaxis])
831          {                                        831          {
832             areacode |= (sAxis1 & (sAxisZ | sA    832             areacode |= (sAxis1 & (sAxisZ | sAxisMin));
833             if   ((areacode & sBoundary) != 0)    833             if   ((areacode & sBoundary) != 0) areacode |= sCorner;  // xx is on corner.
834             else                        areaco    834             else                        areacode |= sBoundary; 
835                                                   835            
836          }                                        836          }
837          else if (xx.z() > fAxisMax[zaxis])       837          else if (xx.z() > fAxisMax[zaxis])
838          {                                        838          {
839             areacode |= (sAxis1 & (sAxisZ | sA    839             areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ;
840             if   ((areacode & sBoundary) != 0)    840             if   ((areacode & sBoundary) != 0) areacode |= sCorner;  // xx is on corner.
841             else                        areaco    841             else                        areacode |= sBoundary; 
842          }                                        842          }
843                                                   843 
844          if ((areacode & sBoundary) != sBounda    844          if ((areacode & sBoundary) != sBoundary)
845          {                                        845          {
846             areacode |= (sAxis0 & sAxisX) | (s    846             areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ);
847          }                                        847          }           
848       }                                           848       }
849       return areacode;                            849       return areacode;
850    }                                              850    }
851    else                                           851    else
852    {                                              852    {
853       G4Exception("G4TwistTrapParallelSide::Ge    853       G4Exception("G4TwistTrapParallelSide::GetAreaCode()",
854                   "GeomSolids0001", FatalExcep    854                   "GeomSolids0001", FatalException,
855                   "Feature NOT implemented !")    855                   "Feature NOT implemented !");
856    }                                              856    }
857    return areacode;                               857    return areacode;
858 }                                                 858 }
859                                                   859 
860 //============================================    860 //=====================================================================
861 //* SetCorners() -----------------------------    861 //* SetCorners() ------------------------------------------------------
862                                                   862 
863 void G4TwistTrapParallelSide::SetCorners()        863 void G4TwistTrapParallelSide::SetCorners()
864 {                                                 864 {
865                                                   865 
866   // Set Corner points in local coodinate.        866   // Set Corner points in local coodinate.   
867                                                   867 
868   if (fAxis[0] == kXAxis && fAxis[1] == kZAxis    868   if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
869   {                                               869   {
870     G4double x, y, z;                             870     G4double x, y, z;
871                                                   871 
872     // corner of Axis0min and Axis1min            872     // corner of Axis0min and Axis1min
873                                                   873 
874     x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*st    874     x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
875       + fDy1*std::sin(fPhiTwist/2.) ;             875       + fDy1*std::sin(fPhiTwist/2.) ;
876     y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/    876     y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
877       + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwis    877       + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwist/2.) ;
878     z = -fDz ;                                    878     z = -fDz ;
879                                                   879 
880     SetCorner(sC0Min1Min, x, y, z);               880     SetCorner(sC0Min1Min, x, y, z);
881                                                   881       
882     // corner of Axis0max and Axis1min            882     // corner of Axis0max and Axis1min
883                                                   883 
884     x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std    884     x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
885       + fDy1*std::sin(fPhiTwist/2.) ;             885       + fDy1*std::sin(fPhiTwist/2.) ;
886     y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/    886     y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
887       - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwis    887       - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.) ;
888     z = -fDz;                                     888     z = -fDz;
889                                                   889 
890     SetCorner(sC0Max1Min, x, y, z);               890     SetCorner(sC0Max1Min, x, y, z);
891                                                   891       
892     // corner of Axis0max and Axis1max            892     // corner of Axis0max and Axis1max
893     x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std:    893     x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
894       - fDy2*std::sin(fPhiTwist/2.) ;             894       - fDy2*std::sin(fPhiTwist/2.) ;
895     y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2    895     y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
896       + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwis    896       + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
897     z = fDz ;                                     897     z = fDz ;
898                                                   898 
899     SetCorner(sC0Max1Max, x, y, z);               899     SetCorner(sC0Max1Max, x, y, z);
900                                                   900       
901     // corner of Axis0min and Axis1max            901     // corner of Axis0min and Axis1max
902     x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std    902     x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
903       - fDy2*std::sin(fPhiTwist/2.) ;             903       - fDy2*std::sin(fPhiTwist/2.) ;
904     y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2    904     y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
905       + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwi    905       + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
906     z = fDz ;                                     906     z = fDz ;
907                                                   907 
908     SetCorner(sC0Min1Max, x, y, z);               908     SetCorner(sC0Min1Max, x, y, z);
909   }                                               909   }
910   else                                            910   else
911   {                                               911   {
912     G4Exception("G4TwistTrapParallelSide::SetC    912     G4Exception("G4TwistTrapParallelSide::SetCorners()",
913                 "GeomSolids0001", FatalExcepti    913                 "GeomSolids0001", FatalException,
914                 "Method NOT implemented !");      914                 "Method NOT implemented !");
915   }                                               915   }
916 }                                                 916 }
917                                                   917 
918 //============================================    918 //=====================================================================
919 //* SetBoundaries() --------------------------    919 //* SetBoundaries() ---------------------------------------------------
920                                                   920 
921 void G4TwistTrapParallelSide::SetBoundaries()     921 void G4TwistTrapParallelSide::SetBoundaries()
922 {                                                 922 {
923    // Set direction-unit vector of boundary-li    923    // Set direction-unit vector of boundary-lines in local coodinate. 
924    //                                             924    //   
925                                                   925 
926   G4ThreeVector direction;                        926   G4ThreeVector direction;
927                                                   927    
928   if (fAxis[0] == kXAxis && fAxis[1] == kZAxis    928   if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
929   {                                               929   {
930     // sAxis0 & sAxisMin                          930     // sAxis0 & sAxisMin
931     direction = GetCorner(sC0Min1Max) - GetCor    931     direction = GetCorner(sC0Min1Max) - GetCorner(sC0Min1Min);
932     direction = direction.unit();                 932     direction = direction.unit();
933     SetBoundary(sAxis0 & (sAxisX | sAxisMin),     933     SetBoundary(sAxis0 & (sAxisX | sAxisMin), direction, 
934                 GetCorner(sC0Min1Min), sAxisZ)    934                 GetCorner(sC0Min1Min), sAxisZ) ;
935                                                   935       
936       // sAxis0 & sAxisMax                        936       // sAxis0 & sAxisMax
937     direction = GetCorner(sC0Max1Max) - GetCor    937     direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min);
938     direction = direction.unit();                 938     direction = direction.unit();
939     SetBoundary(sAxis0 & (sAxisX | sAxisMax),     939     SetBoundary(sAxis0 & (sAxisX | sAxisMax), direction, 
940                 GetCorner(sC0Max1Min), sAxisZ)    940                 GetCorner(sC0Max1Min), sAxisZ);
941                                                   941     
942     // sAxis1 & sAxisMin                          942     // sAxis1 & sAxisMin
943     direction = GetCorner(sC0Max1Min) - GetCor    943     direction = GetCorner(sC0Max1Min) - GetCorner(sC0Min1Min);
944     direction = direction.unit();                 944     direction = direction.unit();
945     SetBoundary(sAxis1 & (sAxisZ | sAxisMin),     945     SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction, 
946                 GetCorner(sC0Min1Min), sAxisX)    946                 GetCorner(sC0Min1Min), sAxisX);
947                                                   947     
948     // sAxis1 & sAxisMax                          948     // sAxis1 & sAxisMax
949     direction = GetCorner(sC0Max1Max) - GetCor    949     direction = GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max);
950     direction = direction.unit();                 950     direction = direction.unit();
951     SetBoundary(sAxis1 & (sAxisZ | sAxisMax),     951     SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction, 
952                 GetCorner(sC0Min1Max), sAxisX)    952                 GetCorner(sC0Min1Max), sAxisX);
953   }                                               953   }
954   else                                            954   else
955   {                                               955   {
956     G4Exception("G4TwistTrapParallelSide::SetC    956     G4Exception("G4TwistTrapParallelSide::SetCorners()",
957                 "GeomSolids0001", FatalExcepti    957                 "GeomSolids0001", FatalException,
958                 "Feature NOT implemented !");     958                 "Feature NOT implemented !");
959   }                                               959   }
960 }                                                 960 }
961                                                   961 
962 //============================================    962 //=====================================================================
963 //* GetPhiUAtX() -----------------------------    963 //* GetPhiUAtX() ------------------------------------------------------
964                                                   964 
965 void                                              965 void
966 G4TwistTrapParallelSide::GetPhiUAtX( const G4T    966 G4TwistTrapParallelSide::GetPhiUAtX( const G4ThreeVector& p,
967                                      G4double&    967                                      G4double& phi, G4double& u ) 
968 {                                                 968 {
969   // find closest point XX on surface for a gi    969   // find closest point XX on surface for a given point p
970   // X0 is a point on the surface,  d is the d    970   // X0 is a point on the surface,  d is the direction
971   // ( both for a fixed z = pz)                   971   // ( both for a fixed z = pz)
972                                                   972   
973   // phi is given by the z coordinate of p        973   // phi is given by the z coordinate of p
974                                                   974 
975   phi = p.z()/(2*fDz)*fPhiTwist ;                 975   phi = p.z()/(2*fDz)*fPhiTwist ;
976                                                   976 
977   u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std    977   u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std::cos(phi)
978     + (-(fdeltaY*phi) + fPhiTwist*p.y())*std::    978     + (-(fdeltaY*phi) + fPhiTwist*p.y())*std::sin(phi))/fPhiTwist ;
979 }                                                 979 }
980                                                   980 
981 //============================================    981 //=====================================================================
982 //* ProjectPoint() ---------------------------    982 //* ProjectPoint() ----------------------------------------------------
983                                                   983 
984 G4ThreeVector G4TwistTrapParallelSide::Project    984 G4ThreeVector G4TwistTrapParallelSide::ProjectPoint(const G4ThreeVector& p, 
985                                                   985                                                     G4bool isglobal) 
986 {                                                 986 {
987   // Get Rho at p.z() on Hyperbolic Surface.      987   // Get Rho at p.z() on Hyperbolic Surface.
988   G4ThreeVector tmpp;                             988   G4ThreeVector tmpp;
989   if (isglobal)                                   989   if (isglobal)
990   {                                               990   {
991      tmpp = fRot.inverse()*p - fTrans;            991      tmpp = fRot.inverse()*p - fTrans;
992   }                                               992   }
993   else                                            993   else
994   {                                               994   {
995      tmpp = p;                                    995      tmpp = p;
996   }                                               996   }
997                                                   997 
998   G4double phi ;                                  998   G4double phi ;
999   G4double u ;                                    999   G4double u ;
1000                                                  1000 
1001   GetPhiUAtX( tmpp, phi, u ) ;  // calculate     1001   GetPhiUAtX( tmpp, phi, u ) ;  // calculate (phi, u) for p close to surface
1002                                                  1002   
1003   G4ThreeVector xx = SurfacePoint(phi,u) ; //    1003   G4ThreeVector xx = SurfacePoint(phi,u) ; // transform back to Cartesian coords
1004                                                  1004 
1005   if (isglobal)                                  1005   if (isglobal)
1006   {                                              1006   {
1007      return (fRot * xx + fTrans);                1007      return (fRot * xx + fTrans);
1008   }                                              1008   }
1009   else                                           1009   else
1010   {                                              1010   {
1011      return xx;                                  1011      return xx;
1012   }                                              1012   }
1013 }                                                1013 }
1014                                                  1014 
1015 //===========================================    1015 //=====================================================================
1016 //* GetFacets() -----------------------------    1016 //* GetFacets() -------------------------------------------------------
1017                                                  1017 
1018 void G4TwistTrapParallelSide::GetFacets( G4in    1018 void G4TwistTrapParallelSide::GetFacets( G4int k, G4int n, G4double xyz[][3],
1019                                          G4in    1019                                          G4int faces[][4], G4int iside ) 
1020 {                                                1020 {
1021   G4double phi ;                                 1021   G4double phi ;
1022   G4double z, u ;     // the two parameters f    1022   G4double z, u ;     // the two parameters for the surface equation
1023   G4ThreeVector p ;  // a point on the surfac    1023   G4ThreeVector p ;  // a point on the surface, given by (z,u)
1024                                                  1024 
1025   G4int nnode ;                                  1025   G4int nnode ;
1026   G4int nface ;                                  1026   G4int nface ;
1027                                                  1027 
1028   G4double umin, umax ;                          1028   G4double umin, umax ;
1029                                                  1029 
1030   // calculate the (n-1)*(k-1) vertices          1030   // calculate the (n-1)*(k-1) vertices
1031                                                  1031 
1032   for ( G4int i = 0 ; i<n ; ++i )                1032   for ( G4int i = 0 ; i<n ; ++i )
1033   {                                              1033   {
1034     z = -fDz+i*(2.*fDz)/(n-1) ;                  1034     z = -fDz+i*(2.*fDz)/(n-1) ;
1035     phi = z*fPhiTwist/(2*fDz) ;                  1035     phi = z*fPhiTwist/(2*fDz) ;
1036     umin = GetBoundaryMin(phi) ;                 1036     umin = GetBoundaryMin(phi) ;
1037     umax = GetBoundaryMax(phi) ;                 1037     umax = GetBoundaryMax(phi) ;
1038                                                  1038 
1039     for ( G4int j = 0 ; j<k ; ++j )              1039     for ( G4int j = 0 ; j<k ; ++j )
1040     {                                            1040     {
1041       nnode = GetNode(i,j,k,n,iside) ;           1041       nnode = GetNode(i,j,k,n,iside) ;
1042       u = umax - j*(umax-umin)/(k-1) ;           1042       u = umax - j*(umax-umin)/(k-1) ;
1043       p = SurfacePoint(phi,u,true) ;  // surf    1043       p = SurfacePoint(phi,u,true) ;  // surface point in global coords
1044                                                  1044 
1045       xyz[nnode][0] = p.x() ;                    1045       xyz[nnode][0] = p.x() ;
1046       xyz[nnode][1] = p.y() ;                    1046       xyz[nnode][1] = p.y() ;
1047       xyz[nnode][2] = p.z() ;                    1047       xyz[nnode][2] = p.z() ;
1048                                                  1048 
1049       if ( i<n-1 && j<k-1 )    // conterclock    1049       if ( i<n-1 && j<k-1 )    // conterclock wise filling
1050       {                                          1050       {
1051         nface = GetFace(i,j,k,n,iside) ;         1051         nface = GetFace(i,j,k,n,iside) ;
1052         faces[nface][0] = GetEdgeVisibility(i    1052         faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
1053                         * (GetNode(i  ,j  ,k,    1053                         * (GetNode(i  ,j  ,k,n,iside)+1) ; // fortran numbering
1054         faces[nface][1] = GetEdgeVisibility(i    1054         faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
1055                         * (GetNode(i  ,j+1,k,    1055                         * (GetNode(i  ,j+1,k,n,iside)+1) ;
1056         faces[nface][2] = GetEdgeVisibility(i    1056         faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
1057                         * (GetNode(i+1,j+1,k,    1057                         * (GetNode(i+1,j+1,k,n,iside)+1) ;
1058         faces[nface][3] = GetEdgeVisibility(i    1058         faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
1059                         * (GetNode(i+1,j  ,k,    1059                         * (GetNode(i+1,j  ,k,n,iside)+1) ;
1060       }                                          1060       }
1061     }                                            1061     }
1062   }                                              1062   }
1063 }                                                1063 }
1064                                                  1064