Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4TwistTrapParallelSide implementation 26 // G4TwistTrapParallelSide implementation 27 // 27 // 28 // Author: Oliver Link (Oliver.Link@cern.ch) 28 // Author: Oliver Link (Oliver.Link@cern.ch) 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include <cmath> 31 #include <cmath> 32 32 33 #include "G4TwistTrapParallelSide.hh" 33 #include "G4TwistTrapParallelSide.hh" 34 #include "G4PhysicalConstants.hh" 34 #include "G4PhysicalConstants.hh" 35 #include "G4JTPolynomialSolver.hh" 35 #include "G4JTPolynomialSolver.hh" 36 36 37 //============================================ 37 //===================================================================== 38 //* constructors ----------------------------- 38 //* constructors ------------------------------------------------------ 39 39 40 G4TwistTrapParallelSide::G4TwistTrapParallelSi 40 G4TwistTrapParallelSide::G4TwistTrapParallelSide(const G4String& name, 41 G4double PhiTwist, 41 G4double PhiTwist, // twist angle 42 G4double pDz, 42 G4double pDz, // half z lenght 43 G4double pTheta, 43 G4double pTheta, // direction between end planes 44 G4double pPhi, 44 G4double pPhi, // by polar and azimutal angles 45 G4double pDy1, 45 G4double pDy1, // half y length at -pDz 46 G4double pDx1, 46 G4double pDx1, // half x length at -pDz,-pDy 47 G4double pDx2, 47 G4double pDx2, // half x length at -pDz,+pDy 48 G4double pDy2, 48 G4double pDy2, // half y length at +pDz 49 G4double pDx3, 49 G4double pDx3, // half x length at +pDz,-pDy 50 G4double pDx4, 50 G4double pDx4, // half x length at +pDz,+pDy 51 G4double pAlph, 51 G4double pAlph, // tilt angle at +pDz 52 G4double AngleSide 52 G4double AngleSide // parity 53 53 ) 54 : G4VTwistSurface(name) 54 : G4VTwistSurface(name) 55 { 55 { 56 56 57 fAxis[0] = kXAxis; // in local coordinate 57 fAxis[0] = kXAxis; // in local coordinate system 58 fAxis[1] = kZAxis; 58 fAxis[1] = kZAxis; 59 fAxisMin[0] = -kInfinity ; // X Axis bounda 59 fAxisMin[0] = -kInfinity ; // X Axis boundary 60 fAxisMax[0] = kInfinity ; // depends on 60 fAxisMax[0] = kInfinity ; // depends on z !! 61 fAxisMin[1] = -pDz ; // Z Axis bounda 61 fAxisMin[1] = -pDz ; // Z Axis boundary 62 fAxisMax[1] = pDz ; 62 fAxisMax[1] = pDz ; 63 63 64 fDx1 = pDx1 ; 64 fDx1 = pDx1 ; 65 fDx2 = pDx2 ; 65 fDx2 = pDx2 ; 66 fDx3 = pDx3 ; 66 fDx3 = pDx3 ; 67 fDx4 = pDx4 ; 67 fDx4 = pDx4 ; 68 68 69 fDy1 = pDy1 ; 69 fDy1 = pDy1 ; 70 fDy2 = pDy2 ; 70 fDy2 = pDy2 ; 71 71 72 fDz = pDz ; 72 fDz = pDz ; 73 73 74 fAlph = pAlph ; 74 fAlph = pAlph ; 75 fTAlph = std::tan(fAlph) ; 75 fTAlph = std::tan(fAlph) ; 76 76 77 fTheta = pTheta ; 77 fTheta = pTheta ; 78 fPhi = pPhi ; 78 fPhi = pPhi ; 79 79 80 // precalculate frequently used parameters 80 // precalculate frequently used parameters 81 // 81 // 82 fDx4plus2 = fDx4 + fDx2 ; 82 fDx4plus2 = fDx4 + fDx2 ; 83 fDx4minus2 = fDx4 - fDx2 ; 83 fDx4minus2 = fDx4 - fDx2 ; 84 fDx3plus1 = fDx3 + fDx1 ; 84 fDx3plus1 = fDx3 + fDx1 ; 85 fDx3minus1 = fDx3 - fDx1 ; 85 fDx3minus1 = fDx3 - fDx1 ; 86 fDy2plus1 = fDy2 + fDy1 ; 86 fDy2plus1 = fDy2 + fDy1 ; 87 fDy2minus1 = fDy2 - fDy1 ; 87 fDy2minus1 = fDy2 - fDy1 ; 88 88 89 fa1md1 = 2*fDx2 - 2*fDx1 ; 89 fa1md1 = 2*fDx2 - 2*fDx1 ; 90 fa2md2 = 2*fDx4 - 2*fDx3 ; 90 fa2md2 = 2*fDx4 - 2*fDx3 ; 91 91 92 fPhiTwist = PhiTwist ; // dphi 92 fPhiTwist = PhiTwist ; // dphi 93 fAngleSide = AngleSide ; // 0,90,180,270 de 93 fAngleSide = AngleSide ; // 0,90,180,270 deg 94 94 95 fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fP 95 fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fPhi); // dx in surface equation 96 fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fP 96 fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fPhi); // dy in surface equation 97 97 98 fRot.rotateZ( AngleSide ) ; 98 fRot.rotateZ( AngleSide ) ; 99 99 100 fTrans.set(0, 0, 0); // No Translation 100 fTrans.set(0, 0, 0); // No Translation 101 fIsValidNorm = false; 101 fIsValidNorm = false; 102 102 103 SetCorners() ; 103 SetCorners() ; 104 SetBoundaries() ; 104 SetBoundaries() ; 105 } 105 } 106 106 107 //============================================ 107 //===================================================================== 108 //* Fake default constructor ----------------- 108 //* Fake default constructor ------------------------------------------ 109 109 110 G4TwistTrapParallelSide::G4TwistTrapParallelSi 110 G4TwistTrapParallelSide::G4TwistTrapParallelSide( __void__& a ) 111 : G4VTwistSurface(a) 111 : G4VTwistSurface(a) 112 { 112 { 113 } 113 } 114 114 115 //============================================ 115 //===================================================================== 116 //* destructor ------------------------------- 116 //* destructor -------------------------------------------------------- 117 117 118 G4TwistTrapParallelSide::~G4TwistTrapParallelS 118 G4TwistTrapParallelSide::~G4TwistTrapParallelSide() = default; 119 119 120 //============================================ 120 //===================================================================== 121 //* GetNormal -------------------------------- 121 //* GetNormal --------------------------------------------------------- 122 122 123 G4ThreeVector G4TwistTrapParallelSide::GetNorm 123 G4ThreeVector G4TwistTrapParallelSide::GetNormal(const G4ThreeVector& tmpxx, 124 124 G4bool isGlobal) 125 { 125 { 126 // GetNormal returns a normal vector at a s 126 // GetNormal returns a normal vector at a surface (or very close 127 // to surface) point at tmpxx. 127 // to surface) point at tmpxx. 128 // If isGlobal=true, it returns the normal 128 // If isGlobal=true, it returns the normal in global coordinate. 129 // 129 // 130 130 131 G4ThreeVector xx; 131 G4ThreeVector xx; 132 if (isGlobal) 132 if (isGlobal) 133 { 133 { 134 xx = ComputeLocalPoint(tmpxx); 134 xx = ComputeLocalPoint(tmpxx); 135 if ((xx - fCurrentNormal.p).mag() < 0.5 135 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance) 136 { 136 { 137 return ComputeGlobalDirection(fCurren 137 return ComputeGlobalDirection(fCurrentNormal.normal); 138 } 138 } 139 } 139 } 140 else 140 else 141 { 141 { 142 xx = tmpxx; 142 xx = tmpxx; 143 if (xx == fCurrentNormal.p) 143 if (xx == fCurrentNormal.p) 144 { 144 { 145 return fCurrentNormal.normal; 145 return fCurrentNormal.normal; 146 } 146 } 147 } 147 } 148 148 149 G4double phi ; 149 G4double phi ; 150 G4double u ; 150 G4double u ; 151 151 152 GetPhiUAtX(xx,phi,u) ; // phi,u for point 152 GetPhiUAtX(xx,phi,u) ; // phi,u for point xx close to surface 153 153 154 G4ThreeVector normal = NormAng(phi,u) ; / 154 G4ThreeVector normal = NormAng(phi,u) ; // the normal vector at phi,u 155 155 156 #ifdef G4TWISTDEBUG 156 #ifdef G4TWISTDEBUG 157 G4cout << "normal vector = " << normal << 157 G4cout << "normal vector = " << normal << G4endl ; 158 G4cout << "phi = " << phi << " , u = " << u 158 G4cout << "phi = " << phi << " , u = " << u << G4endl ; 159 #endif 159 #endif 160 160 161 // normal = normal/normal.mag() ; 161 // normal = normal/normal.mag() ; 162 162 163 if (isGlobal) 163 if (isGlobal) 164 { 164 { 165 fCurrentNormal.normal = ComputeGlobalDir 165 fCurrentNormal.normal = ComputeGlobalDirection(normal.unit()); 166 } 166 } 167 else 167 else 168 { 168 { 169 fCurrentNormal.normal = normal.unit(); 169 fCurrentNormal.normal = normal.unit(); 170 } 170 } 171 return fCurrentNormal.normal; 171 return fCurrentNormal.normal; 172 } 172 } 173 173 174 //============================================ 174 //===================================================================== 175 //* DistanceToSurface ------------------------ 175 //* DistanceToSurface ------------------------------------------------- 176 176 177 G4int G4TwistTrapParallelSide::DistanceToSurfa 177 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector& gp, 178 178 const G4ThreeVector& gv, 179 179 G4ThreeVector gxx[], 180 180 G4double distance[], 181 181 G4int areacode[], 182 182 G4bool isvalid[], 183 183 EValidate validate) 184 { 184 { 185 static const G4double pihalf = pi/2 ; 185 static const G4double pihalf = pi/2 ; 186 const G4double ctol = 0.5 * kCarTolerance; 186 const G4double ctol = 0.5 * kCarTolerance; 187 187 188 G4bool IsParallel = false ; 188 G4bool IsParallel = false ; 189 G4bool IsConverged = false ; 189 G4bool IsConverged = false ; 190 190 191 G4int nxx = 0 ; // number of physical solut 191 G4int nxx = 0 ; // number of physical solutions 192 192 193 fCurStatWithV.ResetfDone(validate, &gp, &gv) 193 fCurStatWithV.ResetfDone(validate, &gp, &gv); 194 194 195 if (fCurStatWithV.IsDone()) 195 if (fCurStatWithV.IsDone()) 196 { 196 { 197 for (G4int i=0; i<fCurStatWithV.GetNXX(); 197 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i) 198 { 198 { 199 gxx[i] = fCurStatWithV.GetXX(i); 199 gxx[i] = fCurStatWithV.GetXX(i); 200 distance[i] = fCurStatWithV.GetDistance( 200 distance[i] = fCurStatWithV.GetDistance(i); 201 areacode[i] = fCurStatWithV.GetAreacode( 201 areacode[i] = fCurStatWithV.GetAreacode(i); 202 isvalid[i] = fCurStatWithV.IsValid(i); 202 isvalid[i] = fCurStatWithV.IsValid(i); 203 } 203 } 204 return fCurStatWithV.GetNXX(); 204 return fCurStatWithV.GetNXX(); 205 } 205 } 206 else // initialize 206 else // initialize 207 { 207 { 208 for (G4int i=0; i<G4VSURFACENXX ; ++i) 208 for (G4int i=0; i<G4VSURFACENXX ; ++i) 209 { 209 { 210 distance[i] = kInfinity; 210 distance[i] = kInfinity; 211 areacode[i] = sOutside; 211 areacode[i] = sOutside; 212 isvalid[i] = false; 212 isvalid[i] = false; 213 gxx[i].set(kInfinity, kInfinity, kInfini 213 gxx[i].set(kInfinity, kInfinity, kInfinity); 214 } 214 } 215 } 215 } 216 216 217 G4ThreeVector p = ComputeLocalPoint(gp); 217 G4ThreeVector p = ComputeLocalPoint(gp); 218 G4ThreeVector v = ComputeLocalDirection(gv); 218 G4ThreeVector v = ComputeLocalDirection(gv); 219 219 220 #ifdef G4TWISTDEBUG 220 #ifdef G4TWISTDEBUG 221 G4cout << "Local point p = " << p << G4endl 221 G4cout << "Local point p = " << p << G4endl ; 222 G4cout << "Local direction v = " << v << G4e 222 G4cout << "Local direction v = " << v << G4endl ; 223 #endif 223 #endif 224 224 225 G4double phi,u ; // parameters 225 G4double phi,u ; // parameters 226 226 227 // temporary variables 227 // temporary variables 228 228 229 G4double tmpdist = kInfinity ; 229 G4double tmpdist = kInfinity ; 230 G4ThreeVector tmpxx; 230 G4ThreeVector tmpxx; 231 G4int tmpareacode = sOutside ; 231 G4int tmpareacode = sOutside ; 232 G4bool tmpisvalid = false ; 232 G4bool tmpisvalid = false ; 233 233 234 std::vector<Intersection> xbuf ; 234 std::vector<Intersection> xbuf ; 235 Intersection xbuftmp ; 235 Intersection xbuftmp ; 236 236 237 // prepare some variables for the intersecti 237 // prepare some variables for the intersection finder 238 238 239 G4double L = 2*fDz ; 239 G4double L = 2*fDz ; 240 240 241 G4double phixz = fPhiTwist * ( p.x() * v.z() 241 G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ; 242 G4double phiyz = fPhiTwist * ( p.y() * v.z() 242 G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ; 243 243 244 // special case vz = 0 244 // special case vz = 0 245 245 246 if ( v.z() == 0. ) 246 if ( v.z() == 0. ) 247 { 247 { 248 if ( std::fabs(p.z()) <= L ) // inte 248 if ( std::fabs(p.z()) <= L ) // intersection possible in z 249 { 249 { 250 phi = p.z() * fPhiTwist / L ; // phi is 250 phi = p.z() * fPhiTwist / L ; // phi is determined by the z-position 251 251 252 u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p. 252 u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p.y()*v.x() - fdeltaX*phi*v.y() 253 + fPhiTwist*p.x()*v.y()) + (fDy2 253 + fPhiTwist*p.x()*v.y()) + (fDy2plus1*fPhiTwist 254 + 2*fDy2minus1*phi)*(v.x()*std:: 254 + 2*fDy2minus1*phi)*(v.x()*std::cos(phi) + v.y()*std::sin(phi))) 255 / (2.* fPhiTwist*(v.y()*std::cos(phi) 255 / (2.* fPhiTwist*(v.y()*std::cos(phi) - v.x()*std::sin(phi))); 256 256 257 xbuftmp.phi = phi ; 257 xbuftmp.phi = phi ; 258 xbuftmp.u = u ; 258 xbuftmp.u = u ; 259 xbuftmp.areacode = sOutside ; 259 xbuftmp.areacode = sOutside ; 260 xbuftmp.distance = kInfinity ; 260 xbuftmp.distance = kInfinity ; 261 xbuftmp.isvalid = false ; 261 xbuftmp.isvalid = false ; 262 262 263 xbuf.push_back(xbuftmp) ; // store it to 263 xbuf.push_back(xbuftmp) ; // store it to xbuf 264 } 264 } 265 else // no in 265 else // no intersection possible 266 { 266 { 267 distance[0] = kInfinity; 267 distance[0] = kInfinity; 268 gxx[0].set(kInfinity,kInfinity,kInfinity 268 gxx[0].set(kInfinity,kInfinity,kInfinity); 269 isvalid[0] = false ; 269 isvalid[0] = false ; 270 areacode[0] = sOutside ; 270 areacode[0] = sOutside ; 271 fCurStatWithV.SetCurrentStatus(0, gxx[0] 271 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], 272 areacode[ 272 areacode[0], isvalid[0], 273 0, valida 273 0, validate, &gp, &gv); 274 274 275 return 0; 275 return 0; 276 } // end std::fabs(p.z() <= L 276 } // end std::fabs(p.z() <= L 277 } // end v.z() == 0 277 } // end v.z() == 0 278 else // general solution for non-zero vz 278 else // general solution for non-zero vz 279 { 279 { 280 G4double c[9],srd[8],si[8] ; 280 G4double c[9],srd[8],si[8] ; 281 281 282 c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwi 282 c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwist*v.z()) ; 283 c[7] = -7200*(phixz - 2*fDz*v.y() + (fdelt 283 c[7] = -7200*(phixz - 2*fDz*v.y() + (fdeltaY + fDy2minus1)*v.z()) ; 284 c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60 284 c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60*fdeltaX*v.z() 285 + 11*fDy2plus1*fPhiTwist*v.z()) ; 285 + 11*fDy2plus1*fPhiTwist*v.z()) ; 286 c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*f 286 c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*fdeltaY*v.z() 287 + 11*fDy2minus1*v.z()) ; 287 + 11*fDy2minus1*v.z()) ; 288 c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320 288 c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320*fdeltaX*v.z() 289 + 4*fDy2plus1*fPhiTwist*v.z()) ; 289 + 4*fDy2plus1*fPhiTwist*v.z()) ; 290 c[3] = -404*phixz + 3048*fDz*v.y() - 1524* 290 c[3] = -404*phixz + 3048*fDz*v.y() - 1524*fdeltaY*v.z() 291 + 96*fDy2minus1*v.z() ; 291 + 96*fDy2minus1*v.z() ; 292 c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fde 292 c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fdeltaX*v.z()) ; 293 c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdelta 293 c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdeltaY*v.z()) ; 294 c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ; 294 c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ; 295 295 296 296 297 #ifdef G4TWISTDEBUG 297 #ifdef G4TWISTDEBUG 298 G4cout << "coef = " << c[0] << " " 298 G4cout << "coef = " << c[0] << " " 299 << c[1] << " " 299 << c[1] << " " 300 << c[2] << " " 300 << c[2] << " " 301 << c[3] << " " 301 << c[3] << " " 302 << c[4] << " " 302 << c[4] << " " 303 << c[5] << " " 303 << c[5] << " " 304 << c[6] << " " 304 << c[6] << " " 305 << c[7] << " " 305 << c[7] << " " 306 << c[8] << G4endl ; 306 << c[8] << G4endl ; 307 #endif 307 #endif 308 308 309 G4JTPolynomialSolver trapEq ; 309 G4JTPolynomialSolver trapEq ; 310 G4int num = trapEq.FindRoots(c,8,srd,si); 310 G4int num = trapEq.FindRoots(c,8,srd,si); 311 311 312 for (G4int i = 0 ; i<num ; ++i ) // loop 312 for (G4int i = 0 ; i<num ; ++i ) // loop over all mathematical solutions 313 { 313 { 314 if ( si[i]==0.0 ) // only real solutio 314 if ( si[i]==0.0 ) // only real solutions 315 { 315 { 316 #ifdef G4TWISTDEBUG 316 #ifdef G4TWISTDEBUG 317 G4cout << "Solution " << i << " : " << 317 G4cout << "Solution " << i << " : " << srd[i] << G4endl ; 318 #endif 318 #endif 319 phi = std::fmod(srd[i] , pihalf) ; 319 phi = std::fmod(srd[i] , pihalf) ; 320 u = (1/std::cos(phi)*(2*phixz + 4*fDz* 320 u = (1/std::cos(phi)*(2*phixz + 4*fDz*phi*v.x() 321 - 2*fdeltaX*phi*v.z() + (fDy2plus1*f 321 - 2*fdeltaX*phi*v.z() + (fDy2plus1*fPhiTwist 322 + 2*fDy2minus1*phi)*v.z()* std::sin( 322 + 2*fDy2minus1*phi)*v.z()* std::sin(phi)))/(2.*fPhiTwist*v.z()) ; 323 323 324 xbuftmp.phi = phi ; 324 xbuftmp.phi = phi ; 325 xbuftmp.u = u ; 325 xbuftmp.u = u ; 326 xbuftmp.areacode = sOutside ; 326 xbuftmp.areacode = sOutside ; 327 xbuftmp.distance = kInfinity ; 327 xbuftmp.distance = kInfinity ; 328 xbuftmp.isvalid = false ; 328 xbuftmp.isvalid = false ; 329 329 330 xbuf.push_back(xbuftmp) ; // store it 330 xbuf.push_back(xbuftmp) ; // store it to xbuf 331 331 332 #ifdef G4TWISTDEBUG 332 #ifdef G4TWISTDEBUG 333 G4cout << "solution " << i << " = " << 333 G4cout << "solution " << i << " = " << phi << " , " << u << G4endl ; 334 #endif 334 #endif 335 335 336 } // end if real solution 336 } // end if real solution 337 } // end loop i 337 } // end loop i 338 } // end general case 338 } // end general case 339 339 340 nxx = (G4int)xbuf.size() ; // save the numb 340 nxx = (G4int)xbuf.size() ; // save the number of solutions 341 341 342 G4ThreeVector xxonsurface ; // point 342 G4ThreeVector xxonsurface ; // point on surface 343 G4ThreeVector surfacenormal ; // normal 343 G4ThreeVector surfacenormal ; // normal vector 344 G4double deltaX ; // distance between inter 344 G4double deltaX ; // distance between intersection point and point on surface 345 G4double theta ; // angle 345 G4double theta ; // angle between track and surfacenormal 346 G4double factor ; // a scal 346 G4double factor ; // a scaling factor 347 G4int maxint = 30 ; // number 347 G4int maxint = 30 ; // number of iterations 348 348 349 349 350 for (auto & k : xbuf) 350 for (auto & k : xbuf) 351 { 351 { 352 #ifdef G4TWISTDEBUG 352 #ifdef G4TWISTDEBUG 353 G4cout << "Solution " << k << " : " 353 G4cout << "Solution " << k << " : " 354 << "reconstructed phiR = " << xbuf[ 354 << "reconstructed phiR = " << xbuf[k].phi 355 << ", uR = " << xbuf[k].u << G4endl 355 << ", uR = " << xbuf[k].u << G4endl ; 356 #endif 356 #endif 357 357 358 phi = k.phi ; // get the stored values fo 358 phi = k.phi ; // get the stored values for phi and u 359 u = k.u ; 359 u = k.u ; 360 360 361 IsConverged = false ; // no convergence 361 IsConverged = false ; // no convergence at the beginning 362 362 363 for ( G4int i = 1 ; i<maxint ; ++i ) 363 for ( G4int i = 1 ; i<maxint ; ++i ) 364 { 364 { 365 xxonsurface = SurfacePoint(phi,u) ; 365 xxonsurface = SurfacePoint(phi,u) ; 366 surfacenormal = NormAng(phi,u) ; 366 surfacenormal = NormAng(phi,u) ; 367 tmpdist = DistanceToPlaneWithV(p, v, xxo 367 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 368 deltaX = ( tmpxx - xxonsurface ).mag() ; 368 deltaX = ( tmpxx - xxonsurface ).mag() ; 369 theta = std::fabs(std::acos(v*surfacenor 369 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ; 370 if ( theta < 0.001 ) 370 if ( theta < 0.001 ) 371 { 371 { 372 factor = 50 ; 372 factor = 50 ; 373 IsParallel = true ; 373 IsParallel = true ; 374 } 374 } 375 else 375 else 376 { 376 { 377 factor = 1 ; 377 factor = 1 ; 378 } 378 } 379 379 380 #ifdef G4TWISTDEBUG 380 #ifdef G4TWISTDEBUG 381 G4cout << "Step i = " << i << ", distanc 381 G4cout << "Step i = " << i << ", distance = " 382 << tmpdist << ", " << deltaX << G 382 << tmpdist << ", " << deltaX << G4endl ; 383 G4cout << "X = " << tmpxx << G4endl ; 383 G4cout << "X = " << tmpxx << G4endl ; 384 #endif 384 #endif 385 385 386 GetPhiUAtX(tmpxx, phi, u); // new point 386 GetPhiUAtX(tmpxx, phi, u); // new point xx is accepted and phi/u replaced 387 387 388 #ifdef G4TWISTDEBUG 388 #ifdef G4TWISTDEBUG 389 G4cout << "approximated phi = " << phi < 389 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 390 #endif 390 #endif 391 391 392 if ( deltaX <= factor*ctol ) { IsConverg 392 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; } 393 } // end iterative loop (i) 393 } // end iterative loop (i) 394 394 395 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 395 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 396 396 397 #ifdef G4TWISTDEBUG 397 #ifdef G4TWISTDEBUG 398 G4cout << "refined solution " << phi << " 398 G4cout << "refined solution " << phi << " , " << u << G4endl ; 399 G4cout << "distance = " << tmpdist << G4en 399 G4cout << "distance = " << tmpdist << G4endl ; 400 G4cout << "local X = " << tmpxx << G4endl 400 G4cout << "local X = " << tmpxx << G4endl ; 401 #endif 401 #endif 402 402 403 tmpisvalid = false ; // init 403 tmpisvalid = false ; // init 404 404 405 if ( IsConverged ) 405 if ( IsConverged ) 406 { 406 { 407 if (validate == kValidateWithTol) 407 if (validate == kValidateWithTol) 408 { 408 { 409 tmpareacode = GetAreaCode(tmpxx); 409 tmpareacode = GetAreaCode(tmpxx); 410 if (!IsOutside(tmpareacode)) 410 if (!IsOutside(tmpareacode)) 411 { 411 { 412 if (tmpdist >= 0) tmpisvalid = true; 412 if (tmpdist >= 0) tmpisvalid = true; 413 } 413 } 414 } 414 } 415 else if (validate == kValidateWithoutTol 415 else if (validate == kValidateWithoutTol) 416 { 416 { 417 tmpareacode = GetAreaCode(tmpxx, false 417 tmpareacode = GetAreaCode(tmpxx, false); 418 if (IsInside(tmpareacode)) 418 if (IsInside(tmpareacode)) 419 { 419 { 420 if (tmpdist >= 0) tmpisvalid = true; 420 if (tmpdist >= 0) tmpisvalid = true; 421 } 421 } 422 } 422 } 423 else // kDontValidate 423 else // kDontValidate 424 { 424 { 425 G4Exception("G4TwistTrapParallelSide:: 425 G4Exception("G4TwistTrapParallelSide::DistanceToSurface()", 426 "GeomSolids0001", FatalExc 426 "GeomSolids0001", FatalException, 427 "Feature NOT implemented ! 427 "Feature NOT implemented !"); 428 } 428 } 429 } 429 } 430 else 430 else 431 { 431 { 432 tmpdist = kInfinity; // no convergen 432 tmpdist = kInfinity; // no convergence after 10 steps 433 tmpisvalid = false ; // solution is 433 tmpisvalid = false ; // solution is not vaild 434 } 434 } 435 435 436 // store the found values 436 // store the found values 437 k.xx = tmpxx ; 437 k.xx = tmpxx ; 438 k.distance = tmpdist ; 438 k.distance = tmpdist ; 439 k.areacode = tmpareacode ; 439 k.areacode = tmpareacode ; 440 k.isvalid = tmpisvalid ; 440 k.isvalid = tmpisvalid ; 441 } // end loop over physical solutions (vari 441 } // end loop over physical solutions (variable k) 442 442 443 std::sort(xbuf.begin() , xbuf.end(), Distanc 443 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting 444 444 445 #ifdef G4TWISTDEBUG 445 #ifdef G4TWISTDEBUG 446 G4cout << G4endl << "list xbuf after sorting 446 G4cout << G4endl << "list xbuf after sorting : " << G4endl ; 447 G4cout << G4endl << G4endl ; 447 G4cout << G4endl << G4endl ; 448 #endif 448 #endif 449 449 450 // erase identical intersection (within kCar 450 // erase identical intersection (within kCarTolerance) 451 xbuf.erase(std::unique(xbuf.begin(),xbuf.end 451 xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end()); 452 452 453 453 454 // add guesses 454 // add guesses 455 455 456 auto nxxtmp = (G4int)xbuf.size() ; 456 auto nxxtmp = (G4int)xbuf.size() ; 457 457 458 if ( nxxtmp<2 || IsParallel ) 458 if ( nxxtmp<2 || IsParallel ) 459 { 459 { 460 // positive end 460 // positive end 461 #ifdef G4TWISTDEBUG 461 #ifdef G4TWISTDEBUG 462 G4cout << "add guess at +z/2 .. " << G4end 462 G4cout << "add guess at +z/2 .. " << G4endl ; 463 #endif 463 #endif 464 464 465 phi = fPhiTwist/2 ; 465 phi = fPhiTwist/2 ; 466 u = 0 ; 466 u = 0 ; 467 467 468 xbuftmp.phi = phi ; 468 xbuftmp.phi = phi ; 469 xbuftmp.u = u ; 469 xbuftmp.u = u ; 470 xbuftmp.areacode = sOutside ; 470 xbuftmp.areacode = sOutside ; 471 xbuftmp.distance = kInfinity ; 471 xbuftmp.distance = kInfinity ; 472 xbuftmp.isvalid = false ; 472 xbuftmp.isvalid = false ; 473 473 474 xbuf.push_back(xbuftmp) ; // store it to 474 xbuf.push_back(xbuftmp) ; // store it to xbuf 475 475 476 #ifdef G4TWISTDEBUG 476 #ifdef G4TWISTDEBUG 477 G4cout << "add guess at -z/2 .. " << G4end 477 G4cout << "add guess at -z/2 .. " << G4endl ; 478 #endif 478 #endif 479 479 480 phi = -fPhiTwist/2 ; 480 phi = -fPhiTwist/2 ; 481 u = 0 ; 481 u = 0 ; 482 482 483 xbuftmp.phi = phi ; 483 xbuftmp.phi = phi ; 484 xbuftmp.u = u ; 484 xbuftmp.u = u ; 485 xbuftmp.areacode = sOutside ; 485 xbuftmp.areacode = sOutside ; 486 xbuftmp.distance = kInfinity ; 486 xbuftmp.distance = kInfinity ; 487 xbuftmp.isvalid = false ; 487 xbuftmp.isvalid = false ; 488 488 489 xbuf.push_back(xbuftmp) ; // store it to 489 xbuf.push_back(xbuftmp) ; // store it to xbuf 490 490 491 for ( std::size_t k = nxxtmp ; k<xbuf.size 491 for ( std::size_t k = nxxtmp ; k<xbuf.size() ; ++k ) 492 { 492 { 493 #ifdef G4TWISTDEBUG 493 #ifdef G4TWISTDEBUG 494 G4cout << "Solution " << k << " : " 494 G4cout << "Solution " << k << " : " 495 << "reconstructed phiR = " << xbu 495 << "reconstructed phiR = " << xbuf[k].phi 496 << ", uR = " << xbuf[k].u << G4en 496 << ", uR = " << xbuf[k].u << G4endl ; 497 #endif 497 #endif 498 498 499 phi = xbuf[k].phi ; // get the stored v 499 phi = xbuf[k].phi ; // get the stored values for phi and u 500 u = xbuf[k].u ; 500 u = xbuf[k].u ; 501 501 502 IsConverged = false ; // no convergenc 502 IsConverged = false ; // no convergence at the beginning 503 503 504 for ( G4int i = 1 ; i<maxint ; ++i ) 504 for ( G4int i = 1 ; i<maxint ; ++i ) 505 { 505 { 506 xxonsurface = SurfacePoint(phi,u) ; 506 xxonsurface = SurfacePoint(phi,u) ; 507 surfacenormal = NormAng(phi,u) ; 507 surfacenormal = NormAng(phi,u) ; 508 tmpdist = DistanceToPlaneWithV(p, v, x 508 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx); 509 deltaX = ( tmpxx - xxonsurface ).mag() 509 deltaX = ( tmpxx - xxonsurface ).mag() ; 510 theta = std::fabs(std::acos(v*surfacen 510 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ; 511 if ( theta < 0.001 ) 511 if ( theta < 0.001 ) 512 { 512 { 513 factor = 50 ; 513 factor = 50 ; 514 } 514 } 515 else 515 else 516 { 516 { 517 factor = 1 ; 517 factor = 1 ; 518 } 518 } 519 519 520 #ifdef G4TWISTDEBUG 520 #ifdef G4TWISTDEBUG 521 G4cout << "Step i = " << i << ", dista 521 G4cout << "Step i = " << i << ", distance = " 522 << tmpdist << ", " << deltaX << 522 << tmpdist << ", " << deltaX << G4endl ; 523 G4cout << "X = " << tmpxx << G4endl ; 523 G4cout << "X = " << tmpxx << G4endl ; 524 #endif 524 #endif 525 525 526 GetPhiUAtX(tmpxx, phi, u) ; // new poi 526 GetPhiUAtX(tmpxx, phi, u) ; // new point xx accepted and phi/u replaced 527 527 528 #ifdef G4TWISTDEBUG 528 #ifdef G4TWISTDEBUG 529 G4cout << "approximated phi = " << phi 529 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ; 530 #endif 530 #endif 531 531 532 if ( deltaX <= factor*ctol ) { IsConve 532 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; } 533 } // end iterative loop (i) 533 } // end iterative loop (i) 534 534 535 if ( std::fabs(tmpdist)<ctol ) tmpdist = 535 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ; 536 536 537 #ifdef G4TWISTDEBUG 537 #ifdef G4TWISTDEBUG 538 G4cout << "refined solution " << phi << 538 G4cout << "refined solution " << phi << " , " << u << G4endl ; 539 G4cout << "distance = " << tmpdist << G4 539 G4cout << "distance = " << tmpdist << G4endl ; 540 G4cout << "local X = " << tmpxx << G4end 540 G4cout << "local X = " << tmpxx << G4endl ; 541 #endif 541 #endif 542 542 543 tmpisvalid = false ; // init 543 tmpisvalid = false ; // init 544 544 545 if ( IsConverged ) 545 if ( IsConverged ) 546 { 546 { 547 if (validate == kValidateWithTol) 547 if (validate == kValidateWithTol) 548 { 548 { 549 tmpareacode = GetAreaCode(tmpxx); 549 tmpareacode = GetAreaCode(tmpxx); 550 if (!IsOutside(tmpareacode)) 550 if (!IsOutside(tmpareacode)) 551 { 551 { 552 if (tmpdist >= 0) tmpisvalid = tru 552 if (tmpdist >= 0) tmpisvalid = true; 553 } 553 } 554 } 554 } 555 else if (validate == kValidateWithoutT 555 else if (validate == kValidateWithoutTol) 556 { 556 { 557 tmpareacode = GetAreaCode(tmpxx, fal 557 tmpareacode = GetAreaCode(tmpxx, false); 558 if (IsInside(tmpareacode)) 558 if (IsInside(tmpareacode)) 559 { 559 { 560 if (tmpdist >= 0) tmpisvalid = tru 560 if (tmpdist >= 0) tmpisvalid = true; 561 } 561 } 562 } 562 } 563 else // kDontValidate 563 else // kDontValidate 564 { 564 { 565 G4Exception("G4TwistedBoxSide::Dista 565 G4Exception("G4TwistedBoxSide::DistanceToSurface()", 566 "GeomSolids0001", FatalE 566 "GeomSolids0001", FatalException, 567 "Feature NOT implemented 567 "Feature NOT implemented !"); 568 } 568 } 569 569 570 } 570 } 571 else 571 else 572 { 572 { 573 tmpdist = kInfinity; // no converg 573 tmpdist = kInfinity; // no convergence after 10 steps 574 tmpisvalid = false ; // solution i 574 tmpisvalid = false ; // solution is not vaild 575 } 575 } 576 576 577 // store the found values 577 // store the found values 578 xbuf[k].xx = tmpxx ; 578 xbuf[k].xx = tmpxx ; 579 xbuf[k].distance = tmpdist ; 579 xbuf[k].distance = tmpdist ; 580 xbuf[k].areacode = tmpareacode ; 580 xbuf[k].areacode = tmpareacode ; 581 xbuf[k].isvalid = tmpisvalid ; 581 xbuf[k].isvalid = tmpisvalid ; 582 582 583 } // end loop over physical solutions 583 } // end loop over physical solutions 584 } // end less than 2 solutions 584 } // end less than 2 solutions 585 585 586 // sort again 586 // sort again 587 std::sort(xbuf.begin() , xbuf.end(), Distanc 587 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting 588 588 589 // erase identical intersection (within kCar 589 // erase identical intersection (within kCarTolerance) 590 xbuf.erase(std::unique(xbuf.begin(),xbuf.end 590 xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end()); 591 591 592 #ifdef G4TWISTDEBUG 592 #ifdef G4TWISTDEBUG 593 G4cout << G4endl << "list xbuf after sorting 593 G4cout << G4endl << "list xbuf after sorting : " << G4endl ; 594 G4cout << G4endl << G4endl ; 594 G4cout << G4endl << G4endl ; 595 #endif 595 #endif 596 596 597 nxx = (G4int)xbuf.size() ; // determine nu 597 nxx = (G4int)xbuf.size() ; // determine number of solutions again. 598 598 599 for ( G4int i = 0 ; i<(G4int)xbuf.size() ; + 599 for ( G4int i = 0 ; i<(G4int)xbuf.size() ; ++i ) 600 { 600 { 601 distance[i] = xbuf[i].distance; 601 distance[i] = xbuf[i].distance; 602 gxx[i] = ComputeGlobalPoint(xbuf[i].x 602 gxx[i] = ComputeGlobalPoint(xbuf[i].xx); 603 areacode[i] = xbuf[i].areacode ; 603 areacode[i] = xbuf[i].areacode ; 604 isvalid[i] = xbuf[i].isvalid ; 604 isvalid[i] = xbuf[i].isvalid ; 605 605 606 fCurStatWithV.SetCurrentStatus(i, gxx[i], 606 fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i], 607 isvalid[i 607 isvalid[i], nxx, validate, &gp, &gv); 608 #ifdef G4TWISTDEBUG 608 #ifdef G4TWISTDEBUG 609 G4cout << "element Nr. " << i 609 G4cout << "element Nr. " << i 610 << ", local Intersection = " << xbu 610 << ", local Intersection = " << xbuf[i].xx 611 << ", distance = " << xbuf[i].dista 611 << ", distance = " << xbuf[i].distance 612 << ", u = " << xbuf[i].u 612 << ", u = " << xbuf[i].u 613 << ", phi = " << xbuf[i].phi 613 << ", phi = " << xbuf[i].phi 614 << ", isvalid = " << xbuf[i].isvali 614 << ", isvalid = " << xbuf[i].isvalid 615 << G4endl ; 615 << G4endl ; 616 #endif 616 #endif 617 } // end for( i ) loop 617 } // end for( i ) loop 618 618 619 #ifdef G4TWISTDEBUG 619 #ifdef G4TWISTDEBUG 620 G4cout << "G4TwistTrapParallelSide finished 620 G4cout << "G4TwistTrapParallelSide finished " << G4endl ; 621 G4cout << nxx << " possible physical solutio 621 G4cout << nxx << " possible physical solutions found" << G4endl ; 622 for ( G4int k= 0 ; k< nxx ; ++k ) 622 for ( G4int k= 0 ; k< nxx ; ++k ) 623 { 623 { 624 G4cout << "global intersection Point found 624 G4cout << "global intersection Point found: " << gxx[k] << G4endl ; 625 G4cout << "distance = " << distance[k] << 625 G4cout << "distance = " << distance[k] << G4endl ; 626 G4cout << "isvalid = " << isvalid[k] << G4 626 G4cout << "isvalid = " << isvalid[k] << G4endl ; 627 } 627 } 628 #endif 628 #endif 629 629 630 return nxx ; 630 return nxx ; 631 } 631 } 632 632 633 //============================================ 633 //===================================================================== 634 //* DistanceToSurface ------------------------ 634 //* DistanceToSurface ------------------------------------------------- 635 635 636 G4int G4TwistTrapParallelSide::DistanceToSurfa 636 G4int G4TwistTrapParallelSide::DistanceToSurface(const G4ThreeVector& gp, 637 637 G4ThreeVector gxx[], 638 638 G4double distance[], 639 639 G4int areacode[]) 640 { 640 { 641 const G4double ctol = 0.5 * kCarTolerance; 641 const G4double ctol = 0.5 * kCarTolerance; 642 642 643 fCurStat.ResetfDone(kDontValidate, &gp); 643 fCurStat.ResetfDone(kDontValidate, &gp); 644 644 645 if (fCurStat.IsDone()) 645 if (fCurStat.IsDone()) 646 { 646 { 647 for (G4int i=0; i<fCurStat.GetNXX(); ++i 647 for (G4int i=0; i<fCurStat.GetNXX(); ++i) 648 { 648 { 649 gxx[i] = fCurStat.GetXX(i); 649 gxx[i] = fCurStat.GetXX(i); 650 distance[i] = fCurStat.GetDistance(i) 650 distance[i] = fCurStat.GetDistance(i); 651 areacode[i] = fCurStat.GetAreacode(i) 651 areacode[i] = fCurStat.GetAreacode(i); 652 } 652 } 653 return fCurStat.GetNXX(); 653 return fCurStat.GetNXX(); 654 } 654 } 655 else // initialize 655 else // initialize 656 { 656 { 657 for (G4int i=0; i<G4VSURFACENXX; ++i) 657 for (G4int i=0; i<G4VSURFACENXX; ++i) 658 { 658 { 659 distance[i] = kInfinity; 659 distance[i] = kInfinity; 660 areacode[i] = sOutside; 660 areacode[i] = sOutside; 661 gxx[i].set(kInfinity, kInfinity, kInf 661 gxx[i].set(kInfinity, kInfinity, kInfinity); 662 } 662 } 663 } 663 } 664 664 665 G4ThreeVector p = ComputeLocalPoint(gp); 665 G4ThreeVector p = ComputeLocalPoint(gp); 666 G4ThreeVector xx; // intersection point 666 G4ThreeVector xx; // intersection point 667 G4ThreeVector xxonsurface ; // interpolated 667 G4ThreeVector xxonsurface ; // interpolated intersection point 668 668 669 // the surfacenormal at that surface point 669 // the surfacenormal at that surface point 670 G4double phiR = 0 ; // 670 G4double phiR = 0 ; // 671 G4double uR = 0 ; 671 G4double uR = 0 ; 672 672 673 G4ThreeVector surfacenormal ; 673 G4ThreeVector surfacenormal ; 674 G4double deltaX ; 674 G4double deltaX ; 675 675 676 G4int maxint = 20 ; 676 G4int maxint = 20 ; 677 677 678 for ( G4int i = 1 ; i<maxint ; ++i ) 678 for ( G4int i = 1 ; i<maxint ; ++i ) 679 { 679 { 680 xxonsurface = SurfacePoint(phiR,uR) ; 680 xxonsurface = SurfacePoint(phiR,uR) ; 681 surfacenormal = NormAng(phiR,uR) ; 681 surfacenormal = NormAng(phiR,uR) ; 682 distance[0] = DistanceToPlane(p, xxonsurf 682 distance[0] = DistanceToPlane(p, xxonsurface, surfacenormal, xx); // new XX 683 deltaX = ( xx - xxonsurface ).mag() ; 683 deltaX = ( xx - xxonsurface ).mag() ; 684 684 685 #ifdef G4TWISTDEBUG 685 #ifdef G4TWISTDEBUG 686 G4cout << "i = " << i << ", distance = " 686 G4cout << "i = " << i << ", distance = " 687 << distance[0] << ", " << deltaX < 687 << distance[0] << ", " << deltaX << G4endl ; 688 G4cout << "X = " << xx << G4endl ; 688 G4cout << "X = " << xx << G4endl ; 689 #endif 689 #endif 690 690 691 // the new point xx is accepted and phi/p 691 // the new point xx is accepted and phi/psi replaced 692 GetPhiUAtX(xx, phiR, uR) ; 692 GetPhiUAtX(xx, phiR, uR) ; 693 693 694 if ( deltaX <= ctol ) { break ; } 694 if ( deltaX <= ctol ) { break ; } 695 } 695 } 696 696 697 // check validity of solution ( valid phi,p 697 // check validity of solution ( valid phi,psi ) 698 698 699 G4double halfphi = 0.5*fPhiTwist ; 699 G4double halfphi = 0.5*fPhiTwist ; 700 G4double uMax = GetBoundaryMax(phiR) ; 700 G4double uMax = GetBoundaryMax(phiR) ; 701 G4double uMin = GetBoundaryMin(phiR) ; 701 G4double uMin = GetBoundaryMin(phiR) ; 702 702 703 if ( phiR > halfphi ) phiR = halfphi ; 703 if ( phiR > halfphi ) phiR = halfphi ; 704 if ( phiR < -halfphi ) phiR = -halfphi ; 704 if ( phiR < -halfphi ) phiR = -halfphi ; 705 if ( uR > uMax ) uR = uMax ; 705 if ( uR > uMax ) uR = uMax ; 706 if ( uR < uMin ) uR = uMin ; 706 if ( uR < uMin ) uR = uMin ; 707 707 708 xxonsurface = SurfacePoint(phiR,uR) ; 708 xxonsurface = SurfacePoint(phiR,uR) ; 709 distance[0] = ( p - xx ).mag() ; 709 distance[0] = ( p - xx ).mag() ; 710 if ( distance[0] <= ctol ) { distance[0] = 710 if ( distance[0] <= ctol ) { distance[0] = 0 ; } 711 711 712 // end of validity 712 // end of validity 713 713 714 #ifdef G4TWISTDEBUG 714 #ifdef G4TWISTDEBUG 715 G4cout << "refined solution " << phiR << " 715 G4cout << "refined solution " << phiR << " , " << uR << " , " << G4endl ; 716 G4cout << "distance = " << distance[0] << G 716 G4cout << "distance = " << distance[0] << G4endl ; 717 G4cout << "X = " << xx << G4endl ; 717 G4cout << "X = " << xx << G4endl ; 718 #endif 718 #endif 719 719 720 G4bool isvalid = true; 720 G4bool isvalid = true; 721 gxx[0] = ComputeGlobalPoint(xx); 721 gxx[0] = ComputeGlobalPoint(xx); 722 722 723 #ifdef G4TWISTDEBUG 723 #ifdef G4TWISTDEBUG 724 G4cout << "intersection Point found: " << g 724 G4cout << "intersection Point found: " << gxx[0] << G4endl ; 725 G4cout << "distance = " << distance[0] << G 725 G4cout << "distance = " << distance[0] << G4endl ; 726 #endif 726 #endif 727 727 728 fCurStat.SetCurrentStatus(0, gxx[0], distan 728 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0], 729 isvalid, 1, kDontV 729 isvalid, 1, kDontValidate, &gp); 730 return 1; 730 return 1; 731 } 731 } 732 732 733 //============================================ 733 //===================================================================== 734 //* GetAreaCode ------------------------------ 734 //* GetAreaCode ------------------------------------------------------- 735 735 736 G4int G4TwistTrapParallelSide::GetAreaCode(con 736 G4int G4TwistTrapParallelSide::GetAreaCode(const G4ThreeVector& xx, 737 G4b 737 G4bool withTol) 738 { 738 { 739 // We must use the function in local coordi 739 // We must use the function in local coordinate system. 740 // See the description of DistanceToSurface 740 // See the description of DistanceToSurface(p,v). 741 741 742 const G4double ctol = 0.5 * kCarTolerance; 742 const G4double ctol = 0.5 * kCarTolerance; 743 743 744 G4double phi ; 744 G4double phi ; 745 G4double yprime ; 745 G4double yprime ; 746 GetPhiUAtX(xx, phi,yprime ) ; 746 GetPhiUAtX(xx, phi,yprime ) ; 747 747 748 G4double fXAxisMax = GetBoundaryMax(phi) ; 748 G4double fXAxisMax = GetBoundaryMax(phi) ; 749 G4double fXAxisMin = GetBoundaryMin(phi) ; 749 G4double fXAxisMin = GetBoundaryMin(phi) ; 750 750 751 #ifdef G4TWISTDEBUG 751 #ifdef G4TWISTDEBUG 752 G4cout << "GetAreaCode: phi = " << phi << G 752 G4cout << "GetAreaCode: phi = " << phi << G4endl ; 753 G4cout << "GetAreaCode: yprime = " << yprim 753 G4cout << "GetAreaCode: yprime = " << yprime << G4endl ; 754 G4cout << "Intervall is " << fXAxisMin << " 754 G4cout << "Intervall is " << fXAxisMin << " to " << fXAxisMax << G4endl ; 755 #endif 755 #endif 756 756 757 G4int areacode = sInside; 757 G4int areacode = sInside; 758 758 759 if (fAxis[0] == kXAxis && fAxis[1] == kZAxi 759 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) 760 { 760 { 761 G4int zaxis = 1; 761 G4int zaxis = 1; 762 762 763 if (withTol) 763 if (withTol) 764 { 764 { 765 G4bool isoutside = false; 765 G4bool isoutside = false; 766 766 767 // test boundary of xaxis 767 // test boundary of xaxis 768 768 769 if (yprime < fXAxisMin + ctol) 769 if (yprime < fXAxisMin + ctol) 770 { 770 { 771 areacode |= (sAxis0 & (sAxisX | sA 771 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary; 772 if (yprime <= fXAxisMin - ctol) is 772 if (yprime <= fXAxisMin - ctol) isoutside = true; 773 773 774 } 774 } 775 else if (yprime > fXAxisMax - ctol) 775 else if (yprime > fXAxisMax - ctol) 776 { 776 { 777 areacode |= (sAxis0 & (sAxisX | sA 777 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary; 778 if (yprime >= fXAxisMax + ctol) i 778 if (yprime >= fXAxisMax + ctol) isoutside = true; 779 } 779 } 780 780 781 // test boundary of z-axis 781 // test boundary of z-axis 782 782 783 if (xx.z() < fAxisMin[zaxis] + ctol) 783 if (xx.z() < fAxisMin[zaxis] + ctol) 784 { 784 { 785 areacode |= (sAxis1 & (sAxisZ | sA 785 areacode |= (sAxis1 & (sAxisZ | sAxisMin)); 786 786 787 if ((areacode & sBoundary) != 0) 787 if ((areacode & sBoundary) != 0) areacode |= sCorner; // xx is on corner. 788 else areaco 788 else areacode |= sBoundary; 789 if (xx.z() <= fAxisMin[zaxis] - ct 789 if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true; 790 790 791 } 791 } 792 else if (xx.z() > fAxisMax[zaxis] - c 792 else if (xx.z() > fAxisMax[zaxis] - ctol) 793 { 793 { 794 areacode |= (sAxis1 & (sAxisZ | sA 794 areacode |= (sAxis1 & (sAxisZ | sAxisMax)); 795 795 796 if ((areacode & sBoundary) != 0) 796 if ((areacode & sBoundary) != 0) areacode |= sCorner; // xx is on corner. 797 else areaco 797 else areacode |= sBoundary; 798 if (xx.z() >= fAxisMax[zaxis] + ct 798 if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true; 799 } 799 } 800 800 801 // if isoutside = true, clear inside 801 // if isoutside = true, clear inside bit. 802 // if not on boundary, add axis infor 802 // if not on boundary, add axis information. 803 803 804 if (isoutside) 804 if (isoutside) 805 { 805 { 806 G4int tmpareacode = areacode & (~s 806 G4int tmpareacode = areacode & (~sInside); 807 areacode = tmpareacode; 807 areacode = tmpareacode; 808 } 808 } 809 else if ((areacode & sBoundary) != sB 809 else if ((areacode & sBoundary) != sBoundary) 810 { 810 { 811 areacode |= (sAxis0 & sAxisX) | (s 811 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ); 812 } 812 } 813 813 814 } 814 } 815 else 815 else 816 { 816 { 817 // boundary of y-axis 817 // boundary of y-axis 818 818 819 if (yprime < fXAxisMin ) 819 if (yprime < fXAxisMin ) 820 { 820 { 821 areacode |= (sAxis0 & (sAxisX | sA 821 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary; 822 } 822 } 823 else if (yprime > fXAxisMax) 823 else if (yprime > fXAxisMax) 824 { 824 { 825 areacode |= (sAxis0 & (sAxisX | sA 825 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary; 826 } 826 } 827 827 828 // boundary of z-axis 828 // boundary of z-axis 829 829 830 if (xx.z() < fAxisMin[zaxis]) 830 if (xx.z() < fAxisMin[zaxis]) 831 { 831 { 832 areacode |= (sAxis1 & (sAxisZ | sA 832 areacode |= (sAxis1 & (sAxisZ | sAxisMin)); 833 if ((areacode & sBoundary) != 0) 833 if ((areacode & sBoundary) != 0) areacode |= sCorner; // xx is on corner. 834 else areaco 834 else areacode |= sBoundary; 835 835 836 } 836 } 837 else if (xx.z() > fAxisMax[zaxis]) 837 else if (xx.z() > fAxisMax[zaxis]) 838 { 838 { 839 areacode |= (sAxis1 & (sAxisZ | sA 839 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ; 840 if ((areacode & sBoundary) != 0) 840 if ((areacode & sBoundary) != 0) areacode |= sCorner; // xx is on corner. 841 else areaco 841 else areacode |= sBoundary; 842 } 842 } 843 843 844 if ((areacode & sBoundary) != sBounda 844 if ((areacode & sBoundary) != sBoundary) 845 { 845 { 846 areacode |= (sAxis0 & sAxisX) | (s 846 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ); 847 } 847 } 848 } 848 } 849 return areacode; 849 return areacode; 850 } 850 } 851 else 851 else 852 { 852 { 853 G4Exception("G4TwistTrapParallelSide::Ge 853 G4Exception("G4TwistTrapParallelSide::GetAreaCode()", 854 "GeomSolids0001", FatalExcep 854 "GeomSolids0001", FatalException, 855 "Feature NOT implemented !") 855 "Feature NOT implemented !"); 856 } 856 } 857 return areacode; 857 return areacode; 858 } 858 } 859 859 860 //============================================ 860 //===================================================================== 861 //* SetCorners() ----------------------------- 861 //* SetCorners() ------------------------------------------------------ 862 862 863 void G4TwistTrapParallelSide::SetCorners() 863 void G4TwistTrapParallelSide::SetCorners() 864 { 864 { 865 865 866 // Set Corner points in local coodinate. 866 // Set Corner points in local coodinate. 867 867 868 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis 868 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) 869 { 869 { 870 G4double x, y, z; 870 G4double x, y, z; 871 871 872 // corner of Axis0min and Axis1min 872 // corner of Axis0min and Axis1min 873 873 874 x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*st 874 x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.) 875 + fDy1*std::sin(fPhiTwist/2.) ; 875 + fDy1*std::sin(fPhiTwist/2.) ; 876 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/ 876 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.) 877 + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwis 877 + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwist/2.) ; 878 z = -fDz ; 878 z = -fDz ; 879 879 880 SetCorner(sC0Min1Min, x, y, z); 880 SetCorner(sC0Min1Min, x, y, z); 881 881 882 // corner of Axis0max and Axis1min 882 // corner of Axis0max and Axis1min 883 883 884 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std 884 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.) 885 + fDy1*std::sin(fPhiTwist/2.) ; 885 + fDy1*std::sin(fPhiTwist/2.) ; 886 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/ 886 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.) 887 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwis 887 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.) ; 888 z = -fDz; 888 z = -fDz; 889 889 890 SetCorner(sC0Max1Min, x, y, z); 890 SetCorner(sC0Max1Min, x, y, z); 891 891 892 // corner of Axis0max and Axis1max 892 // corner of Axis0max and Axis1max 893 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std: 893 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.) 894 - fDy2*std::sin(fPhiTwist/2.) ; 894 - fDy2*std::sin(fPhiTwist/2.) ; 895 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2 895 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.) 896 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwis 896 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ; 897 z = fDz ; 897 z = fDz ; 898 898 899 SetCorner(sC0Max1Max, x, y, z); 899 SetCorner(sC0Max1Max, x, y, z); 900 900 901 // corner of Axis0min and Axis1max 901 // corner of Axis0min and Axis1max 902 x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std 902 x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.) 903 - fDy2*std::sin(fPhiTwist/2.) ; 903 - fDy2*std::sin(fPhiTwist/2.) ; 904 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2 904 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.) 905 + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwi 905 + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ; 906 z = fDz ; 906 z = fDz ; 907 907 908 SetCorner(sC0Min1Max, x, y, z); 908 SetCorner(sC0Min1Max, x, y, z); 909 } 909 } 910 else 910 else 911 { 911 { 912 G4Exception("G4TwistTrapParallelSide::SetC 912 G4Exception("G4TwistTrapParallelSide::SetCorners()", 913 "GeomSolids0001", FatalExcepti 913 "GeomSolids0001", FatalException, 914 "Method NOT implemented !"); 914 "Method NOT implemented !"); 915 } 915 } 916 } 916 } 917 917 918 //============================================ 918 //===================================================================== 919 //* SetBoundaries() -------------------------- 919 //* SetBoundaries() --------------------------------------------------- 920 920 921 void G4TwistTrapParallelSide::SetBoundaries() 921 void G4TwistTrapParallelSide::SetBoundaries() 922 { 922 { 923 // Set direction-unit vector of boundary-li 923 // Set direction-unit vector of boundary-lines in local coodinate. 924 // 924 // 925 925 926 G4ThreeVector direction; 926 G4ThreeVector direction; 927 927 928 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis 928 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis) 929 { 929 { 930 // sAxis0 & sAxisMin 930 // sAxis0 & sAxisMin 931 direction = GetCorner(sC0Min1Max) - GetCor 931 direction = GetCorner(sC0Min1Max) - GetCorner(sC0Min1Min); 932 direction = direction.unit(); 932 direction = direction.unit(); 933 SetBoundary(sAxis0 & (sAxisX | sAxisMin), 933 SetBoundary(sAxis0 & (sAxisX | sAxisMin), direction, 934 GetCorner(sC0Min1Min), sAxisZ) 934 GetCorner(sC0Min1Min), sAxisZ) ; 935 935 936 // sAxis0 & sAxisMax 936 // sAxis0 & sAxisMax 937 direction = GetCorner(sC0Max1Max) - GetCor 937 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min); 938 direction = direction.unit(); 938 direction = direction.unit(); 939 SetBoundary(sAxis0 & (sAxisX | sAxisMax), 939 SetBoundary(sAxis0 & (sAxisX | sAxisMax), direction, 940 GetCorner(sC0Max1Min), sAxisZ) 940 GetCorner(sC0Max1Min), sAxisZ); 941 941 942 // sAxis1 & sAxisMin 942 // sAxis1 & sAxisMin 943 direction = GetCorner(sC0Max1Min) - GetCor 943 direction = GetCorner(sC0Max1Min) - GetCorner(sC0Min1Min); 944 direction = direction.unit(); 944 direction = direction.unit(); 945 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), 945 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction, 946 GetCorner(sC0Min1Min), sAxisX) 946 GetCorner(sC0Min1Min), sAxisX); 947 947 948 // sAxis1 & sAxisMax 948 // sAxis1 & sAxisMax 949 direction = GetCorner(sC0Max1Max) - GetCor 949 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max); 950 direction = direction.unit(); 950 direction = direction.unit(); 951 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), 951 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction, 952 GetCorner(sC0Min1Max), sAxisX) 952 GetCorner(sC0Min1Max), sAxisX); 953 } 953 } 954 else 954 else 955 { 955 { 956 G4Exception("G4TwistTrapParallelSide::SetC 956 G4Exception("G4TwistTrapParallelSide::SetCorners()", 957 "GeomSolids0001", FatalExcepti 957 "GeomSolids0001", FatalException, 958 "Feature NOT implemented !"); 958 "Feature NOT implemented !"); 959 } 959 } 960 } 960 } 961 961 962 //============================================ 962 //===================================================================== 963 //* GetPhiUAtX() ----------------------------- 963 //* GetPhiUAtX() ------------------------------------------------------ 964 964 965 void 965 void 966 G4TwistTrapParallelSide::GetPhiUAtX( const G4T 966 G4TwistTrapParallelSide::GetPhiUAtX( const G4ThreeVector& p, 967 G4double& 967 G4double& phi, G4double& u ) 968 { 968 { 969 // find closest point XX on surface for a gi 969 // find closest point XX on surface for a given point p 970 // X0 is a point on the surface, d is the d 970 // X0 is a point on the surface, d is the direction 971 // ( both for a fixed z = pz) 971 // ( both for a fixed z = pz) 972 972 973 // phi is given by the z coordinate of p 973 // phi is given by the z coordinate of p 974 974 975 phi = p.z()/(2*fDz)*fPhiTwist ; 975 phi = p.z()/(2*fDz)*fPhiTwist ; 976 976 977 u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std 977 u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std::cos(phi) 978 + (-(fdeltaY*phi) + fPhiTwist*p.y())*std:: 978 + (-(fdeltaY*phi) + fPhiTwist*p.y())*std::sin(phi))/fPhiTwist ; 979 } 979 } 980 980 981 //============================================ 981 //===================================================================== 982 //* ProjectPoint() --------------------------- 982 //* ProjectPoint() ---------------------------------------------------- 983 983 984 G4ThreeVector G4TwistTrapParallelSide::Project 984 G4ThreeVector G4TwistTrapParallelSide::ProjectPoint(const G4ThreeVector& p, 985 985 G4bool isglobal) 986 { 986 { 987 // Get Rho at p.z() on Hyperbolic Surface. 987 // Get Rho at p.z() on Hyperbolic Surface. 988 G4ThreeVector tmpp; 988 G4ThreeVector tmpp; 989 if (isglobal) 989 if (isglobal) 990 { 990 { 991 tmpp = fRot.inverse()*p - fTrans; 991 tmpp = fRot.inverse()*p - fTrans; 992 } 992 } 993 else 993 else 994 { 994 { 995 tmpp = p; 995 tmpp = p; 996 } 996 } 997 997 998 G4double phi ; 998 G4double phi ; 999 G4double u ; 999 G4double u ; 1000 1000 1001 GetPhiUAtX( tmpp, phi, u ) ; // calculate 1001 GetPhiUAtX( tmpp, phi, u ) ; // calculate (phi, u) for p close to surface 1002 1002 1003 G4ThreeVector xx = SurfacePoint(phi,u) ; // 1003 G4ThreeVector xx = SurfacePoint(phi,u) ; // transform back to Cartesian coords 1004 1004 1005 if (isglobal) 1005 if (isglobal) 1006 { 1006 { 1007 return (fRot * xx + fTrans); 1007 return (fRot * xx + fTrans); 1008 } 1008 } 1009 else 1009 else 1010 { 1010 { 1011 return xx; 1011 return xx; 1012 } 1012 } 1013 } 1013 } 1014 1014 1015 //=========================================== 1015 //===================================================================== 1016 //* GetFacets() ----------------------------- 1016 //* GetFacets() ------------------------------------------------------- 1017 1017 1018 void G4TwistTrapParallelSide::GetFacets( G4in 1018 void G4TwistTrapParallelSide::GetFacets( G4int k, G4int n, G4double xyz[][3], 1019 G4in 1019 G4int faces[][4], G4int iside ) 1020 { 1020 { 1021 G4double phi ; 1021 G4double phi ; 1022 G4double z, u ; // the two parameters f 1022 G4double z, u ; // the two parameters for the surface equation 1023 G4ThreeVector p ; // a point on the surfac 1023 G4ThreeVector p ; // a point on the surface, given by (z,u) 1024 1024 1025 G4int nnode ; 1025 G4int nnode ; 1026 G4int nface ; 1026 G4int nface ; 1027 1027 1028 G4double umin, umax ; 1028 G4double umin, umax ; 1029 1029 1030 // calculate the (n-1)*(k-1) vertices 1030 // calculate the (n-1)*(k-1) vertices 1031 1031 1032 for ( G4int i = 0 ; i<n ; ++i ) 1032 for ( G4int i = 0 ; i<n ; ++i ) 1033 { 1033 { 1034 z = -fDz+i*(2.*fDz)/(n-1) ; 1034 z = -fDz+i*(2.*fDz)/(n-1) ; 1035 phi = z*fPhiTwist/(2*fDz) ; 1035 phi = z*fPhiTwist/(2*fDz) ; 1036 umin = GetBoundaryMin(phi) ; 1036 umin = GetBoundaryMin(phi) ; 1037 umax = GetBoundaryMax(phi) ; 1037 umax = GetBoundaryMax(phi) ; 1038 1038 1039 for ( G4int j = 0 ; j<k ; ++j ) 1039 for ( G4int j = 0 ; j<k ; ++j ) 1040 { 1040 { 1041 nnode = GetNode(i,j,k,n,iside) ; 1041 nnode = GetNode(i,j,k,n,iside) ; 1042 u = umax - j*(umax-umin)/(k-1) ; 1042 u = umax - j*(umax-umin)/(k-1) ; 1043 p = SurfacePoint(phi,u,true) ; // surf 1043 p = SurfacePoint(phi,u,true) ; // surface point in global coords 1044 1044 1045 xyz[nnode][0] = p.x() ; 1045 xyz[nnode][0] = p.x() ; 1046 xyz[nnode][1] = p.y() ; 1046 xyz[nnode][1] = p.y() ; 1047 xyz[nnode][2] = p.z() ; 1047 xyz[nnode][2] = p.z() ; 1048 1048 1049 if ( i<n-1 && j<k-1 ) // conterclock 1049 if ( i<n-1 && j<k-1 ) // conterclock wise filling 1050 { 1050 { 1051 nface = GetFace(i,j,k,n,iside) ; 1051 nface = GetFace(i,j,k,n,iside) ; 1052 faces[nface][0] = GetEdgeVisibility(i 1052 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1) 1053 * (GetNode(i ,j ,k, 1053 * (GetNode(i ,j ,k,n,iside)+1) ; // fortran numbering 1054 faces[nface][1] = GetEdgeVisibility(i 1054 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1) 1055 * (GetNode(i ,j+1,k, 1055 * (GetNode(i ,j+1,k,n,iside)+1) ; 1056 faces[nface][2] = GetEdgeVisibility(i 1056 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1) 1057 * (GetNode(i+1,j+1,k, 1057 * (GetNode(i+1,j+1,k,n,iside)+1) ; 1058 faces[nface][3] = GetEdgeVisibility(i 1058 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1) 1059 * (GetNode(i+1,j ,k, 1059 * (GetNode(i+1,j ,k,n,iside)+1) ; 1060 } 1060 } 1061 } 1061 } 1062 } 1062 } 1063 } 1063 } 1064 1064