Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4TriangularFacet implementation << 26 // $Id$ 27 // 27 // 28 // 31.10.2004, P R Truscott, QinetiQ Ltd, UK - << 28 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 29 // 01.08.2007, P R Truscott, QinetiQ Ltd, UK << 29 // >> 30 // CHANGE HISTORY >> 31 // -------------- >> 32 // >> 33 // 31 October 2004, P R Truscott, QinetiQ Ltd, UK - Created. >> 34 // >> 35 // 01 August 2007 P R Truscott, QinetiQ Ltd, UK 30 // Significant modification t 36 // Significant modification to correct for errors and enhance 31 // based on patches/observati 37 // based on patches/observations kindly provided by Rickard 32 // Holmberg. 38 // Holmberg. 33 // 12.10.2012, M Gayer, CERN << 39 // >> 40 // 26 September 2007 >> 41 // P R Truscott, QinetiQ Ltd, UK >> 42 // Further chamges implemented to the Intersect member >> 43 // function to correctly treat rays nearly parallel to the >> 44 // plane of the triangle. >> 45 // >> 46 // 12 April 2010 P R Truscott, QinetiQ, bug fixes to treat optical >> 47 // photon transport, in particular internal reflection >> 48 // at surface. >> 49 // >> 50 // 22 August 2011 I Hrivnacova, Orsay, fix in Intersect() to take into >> 51 // account geometrical tolerance and cases of zero distance >> 52 // from surface. >> 53 // >> 54 // 12 October 2012 M Gayer, CERN 34 // New implementation reducin 55 // New implementation reducing memory requirements by 50%, 35 // and considerable CPU speed 56 // and considerable CPU speedup together with the new 36 // implementation of G4Tessel 57 // implementation of G4TessellatedSolid. 37 // 23.02.2016, E Tcherniaev, CERN << 58 // 38 // Improved test to detect de << 59 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 39 // too narrow) triangles. << 40 // ------------------------------------------- << 41 60 42 #include "G4TriangularFacet.hh" 61 #include "G4TriangularFacet.hh" 43 62 44 #include "Randomize.hh" 63 #include "Randomize.hh" 45 #include "G4TessellatedGeometryAlgorithms.hh" 64 #include "G4TessellatedGeometryAlgorithms.hh" 46 65 47 using namespace std; 66 using namespace std; 48 67 49 ////////////////////////////////////////////// 68 /////////////////////////////////////////////////////////////////////////////// 50 // 69 // 51 // Definition of triangular facet using absolu 70 // Definition of triangular facet using absolute vectors to fVertices. 52 // From this for first vector is retained to d 71 // From this for first vector is retained to define the facet location and 53 // two relative vectors (E0 and E1) define the 72 // two relative vectors (E0 and E1) define the sides and orientation of 54 // the outward surface normal. 73 // the outward surface normal. 55 // 74 // 56 G4TriangularFacet::G4TriangularFacet (const G4 << 75 G4TriangularFacet::G4TriangularFacet (const G4ThreeVector &vt0, 57 const G4 << 76 const G4ThreeVector &vt1, 58 const G4 << 77 const G4ThreeVector &vt2, 59 G4 78 G4FacetVertexType vertexType) >> 79 : fSqrDist(0.) 60 { 80 { 61 fVertices = new vector<G4ThreeVector>(3); 81 fVertices = new vector<G4ThreeVector>(3); 62 82 63 SetVertex(0, vt0); 83 SetVertex(0, vt0); 64 if (vertexType == ABSOLUTE) 84 if (vertexType == ABSOLUTE) 65 { 85 { 66 SetVertex(1, vt1); 86 SetVertex(1, vt1); 67 SetVertex(2, vt2); 87 SetVertex(2, vt2); 68 fE1 = vt1 - vt0; 88 fE1 = vt1 - vt0; 69 fE2 = vt2 - vt0; 89 fE2 = vt2 - vt0; 70 } 90 } 71 else 91 else 72 { 92 { 73 SetVertex(1, vt0 + vt1); 93 SetVertex(1, vt0 + vt1); 74 SetVertex(2, vt0 + vt2); 94 SetVertex(2, vt0 + vt2); 75 fE1 = vt1; 95 fE1 = vt1; 76 fE2 = vt2; 96 fE2 = vt2; 77 } 97 } 78 98 79 G4ThreeVector E1xE2 = fE1.cross(fE2); << 80 fArea = 0.5 * E1xE2.mag(); << 81 for (G4int i = 0; i < 3; ++i) fIndices[i] = 99 for (G4int i = 0; i < 3; ++i) fIndices[i] = -1; 82 100 83 fIsDefined = true; << 101 G4double eMag1 = fE1.mag(); 84 G4double delta = kCarTolerance; // Set toler << 102 G4double eMag2 = fE2.mag(); >> 103 G4double eMag3 = (fE2-fE1).mag(); 85 104 86 // Check length of edges << 105 if (eMag1 <= kCarTolerance || eMag2 <= kCarTolerance 87 // << 106 || eMag3 <= kCarTolerance) 88 G4double leng1 = fE1.mag(); << 89 G4double leng2 = (fE2-fE1).mag(); << 90 G4double leng3 = fE2.mag(); << 91 if (leng1 <= delta || leng2 <= delta || leng << 92 { << 93 fIsDefined = false; << 94 } << 95 << 96 // Check min height of triangle << 97 // << 98 if (fIsDefined) << 99 { << 100 if (2.*fArea/std::max(std::max(leng1,leng2 << 101 { << 102 fIsDefined = false; << 103 } << 104 } << 105 << 106 // Define facet << 107 // << 108 if (!fIsDefined) << 109 { 107 { 110 ostringstream message; 108 ostringstream message; 111 message << "Facet is too small or too narr << 109 message << "Length of sides of facet are too small." << endl 112 << "Triangle area = " << fArea << << 110 << "fVertices[0] = " << GetVertex(0) << endl 113 << "P0 = " << GetVertex(0) << G4en << 111 << "fVertices[1] = " << GetVertex(1) << endl 114 << "P1 = " << GetVertex(1) << G4en << 112 << "fVertices[2] = " << GetVertex(2) << endl 115 << "P2 = " << GetVertex(2) << G4en << 113 << "Side lengths = fVertices[0]->fVertices[1]" << eMag1 << endl 116 << "Side1 length (P0->P1) = " << l << 114 << "Side lengths = fVertices[0]->fVertices[2]" << eMag2 << endl 117 << "Side2 length (P1->P2) = " << l << 115 << "Side lengths = fVertices[1]->fVertices[2]" << eMag3; 118 << "Side3 length (P2->P0) = " << l << 119 G4Exception("G4TriangularFacet::G4Triangul 116 G4Exception("G4TriangularFacet::G4TriangularFacet()", 120 "GeomSolids1001", JustWarning, message); << 117 "GeomSolids1001", JustWarning, message); >> 118 fIsDefined = false; 121 fSurfaceNormal.set(0,0,0); 119 fSurfaceNormal.set(0,0,0); 122 fA = fB = fC = 0.0; 120 fA = fB = fC = 0.0; 123 fDet = 0.0; 121 fDet = 0.0; 124 fCircumcentre = vt0 + 0.5*fE1 + 0.5*fE2; << 125 fArea = fRadius = 0.0; 122 fArea = fRadius = 0.0; 126 } 123 } 127 else 124 else 128 { 125 { 129 fSurfaceNormal = E1xE2.unit(); << 126 fIsDefined = true; >> 127 fSurfaceNormal = fE1.cross(fE2).unit(); 130 fA = fE1.mag2(); 128 fA = fE1.mag2(); 131 fB = fE1.dot(fE2); 129 fB = fE1.dot(fE2); 132 fC = fE2.mag2(); 130 fC = fE2.mag2(); 133 fDet = std::fabs(fA*fC - fB*fB); << 131 fDet = fabs(fA*fC - fB*fB); 134 132 135 fCircumcentre = << 133 // sMin = -0.5*kCarTolerance/sqrt(fA); 136 vt0 + (E1xE2.cross(fE1)*fC + fE2.cross(E << 134 // sMax = 1.0 - sMin; 137 fRadius = (fCircumcentre - vt0).mag(); << 135 // tMin = -0.5*kCarTolerance/sqrt(fC); >> 136 // G4ThreeVector vtmp = 0.25 * (fE1 + fE2); >> 137 >> 138 fArea = 0.5 * (fE1.cross(fE2)).mag(); >> 139 G4double lambda0 = (fA-fB) * fC / (8.0*fArea*fArea); >> 140 G4double lambda1 = (fC-fB) * fA / (8.0*fArea*fArea); >> 141 G4ThreeVector p0 = GetVertex(0); >> 142 fCircumcentre = p0 + lambda0*fE1 + lambda1*fE2; >> 143 G4double radiusSqr = (fCircumcentre-p0).mag2(); >> 144 fRadius = sqrt(radiusSqr); 138 } 145 } 139 } 146 } 140 147 141 ////////////////////////////////////////////// 148 /////////////////////////////////////////////////////////////////////////////// 142 // 149 // 143 G4TriangularFacet::G4TriangularFacet () 150 G4TriangularFacet::G4TriangularFacet () >> 151 : fSqrDist(0.) 144 { 152 { 145 fVertices = new vector<G4ThreeVector>(3); 153 fVertices = new vector<G4ThreeVector>(3); 146 G4ThreeVector zero(0,0,0); 154 G4ThreeVector zero(0,0,0); 147 SetVertex(0, zero); 155 SetVertex(0, zero); 148 SetVertex(1, zero); 156 SetVertex(1, zero); 149 SetVertex(2, zero); 157 SetVertex(2, zero); 150 for (G4int i = 0; i < 3; ++i) fIndices[i] = 158 for (G4int i = 0; i < 3; ++i) fIndices[i] = -1; 151 fIsDefined = false; 159 fIsDefined = false; 152 fSurfaceNormal.set(0,0,0); 160 fSurfaceNormal.set(0,0,0); 153 fA = fB = fC = 0; 161 fA = fB = fC = 0; 154 fE1 = zero; 162 fE1 = zero; 155 fE2 = zero; 163 fE2 = zero; 156 fDet = 0.0; 164 fDet = 0.0; 157 fArea = fRadius = 0.0; 165 fArea = fRadius = 0.0; 158 } 166 } 159 167 160 ////////////////////////////////////////////// 168 /////////////////////////////////////////////////////////////////////////////// 161 // 169 // 162 G4TriangularFacet::~G4TriangularFacet () 170 G4TriangularFacet::~G4TriangularFacet () 163 { 171 { 164 SetVertices(nullptr); << 172 SetVertices(0); 165 } 173 } 166 174 167 ////////////////////////////////////////////// 175 /////////////////////////////////////////////////////////////////////////////// 168 // 176 // 169 void G4TriangularFacet::CopyFrom (const G4Tria << 177 void G4TriangularFacet::CopyFrom (const G4TriangularFacet &rhs) 170 { 178 { 171 auto p = (char *) &rhs; << 179 char *p = (char *) &rhs; 172 copy(p, p + sizeof(*this), (char *)this); 180 copy(p, p + sizeof(*this), (char *)this); 173 181 174 if (fIndices[0] < 0 && fVertices == nullptr) << 182 if (fIndices[0] < 0 && fVertices) 175 { 183 { 176 fVertices = new vector<G4ThreeVector>(3); 184 fVertices = new vector<G4ThreeVector>(3); 177 for (G4int i = 0; i < 3; ++i) (*fVertices) 185 for (G4int i = 0; i < 3; ++i) (*fVertices)[i] = (*rhs.fVertices)[i]; 178 } 186 } 179 } 187 } 180 188 181 ////////////////////////////////////////////// 189 /////////////////////////////////////////////////////////////////////////////// 182 // 190 // 183 void G4TriangularFacet::MoveFrom (G4Triangular << 191 G4TriangularFacet::G4TriangularFacet (const G4TriangularFacet &rhs) 184 { << 185 fSurfaceNormal = std::move(rhs.fSurfaceNorma << 186 fArea = rhs.fArea; << 187 fCircumcentre = std::move(rhs.fCircumcentre) << 188 fRadius = rhs.fRadius; << 189 fIndices = rhs.fIndices; << 190 fA = rhs.fA; fB = rhs.fB; fC = rhs.fC; << 191 fDet = rhs.fDet; << 192 fSqrDist = rhs.fSqrDist; << 193 fE1 = std::move(rhs.fE1); fE2 = std::move(rh << 194 fIsDefined = rhs.fIsDefined; << 195 fVertices = rhs.fVertices; << 196 rhs.fVertices = nullptr; << 197 } << 198 << 199 ////////////////////////////////////////////// << 200 // << 201 G4TriangularFacet::G4TriangularFacet (const G4 << 202 : G4VFacet(rhs) 192 : G4VFacet(rhs) 203 { 193 { 204 CopyFrom(rhs); 194 CopyFrom(rhs); 205 } 195 } 206 196 207 ////////////////////////////////////////////// 197 /////////////////////////////////////////////////////////////////////////////// 208 // 198 // 209 G4TriangularFacet::G4TriangularFacet (G4Triang << 199 G4TriangularFacet & 210 : G4VFacet(rhs) << 200 G4TriangularFacet::operator=(const G4TriangularFacet &rhs) 211 { << 212 MoveFrom(rhs); << 213 } << 214 << 215 ////////////////////////////////////////////// << 216 // << 217 G4TriangularFacet& << 218 G4TriangularFacet::operator=(const G4Triangula << 219 { 201 { 220 SetVertices(nullptr); << 202 SetVertices(0); 221 203 222 if (this != &rhs) 204 if (this != &rhs) 223 { << 224 delete fVertices; << 225 CopyFrom(rhs); 205 CopyFrom(rhs); 226 } << 227 << 228 return *this; << 229 } << 230 << 231 ////////////////////////////////////////////// << 232 // << 233 G4TriangularFacet& << 234 G4TriangularFacet::operator=(G4TriangularFacet << 235 { << 236 SetVertices(nullptr); << 237 << 238 if (this != &rhs) << 239 { << 240 delete fVertices; << 241 MoveFrom(rhs); << 242 } << 243 206 244 return *this; 207 return *this; 245 } 208 } 246 209 247 ////////////////////////////////////////////// 210 /////////////////////////////////////////////////////////////////////////////// 248 // 211 // 249 // GetClone 212 // GetClone 250 // 213 // 251 // Simple member function to generate fA dupli 214 // Simple member function to generate fA duplicate of the triangular facet. 252 // 215 // 253 G4VFacet* G4TriangularFacet::GetClone () << 216 G4VFacet *G4TriangularFacet::GetClone () 254 { 217 { 255 auto fc = new G4TriangularFacet (GetVertex(0 << 218 G4TriangularFacet *fc = 256 GetVertex(2 << 219 new G4TriangularFacet (GetVertex(0), GetVertex(1), GetVertex(2), ABSOLUTE); 257 return fc; 220 return fc; 258 } 221 } 259 222 260 ////////////////////////////////////////////// 223 /////////////////////////////////////////////////////////////////////////////// 261 // 224 // 262 // GetFlippedFacet 225 // GetFlippedFacet 263 // 226 // 264 // Member function to generate an identical fa 227 // Member function to generate an identical facet, but with the normal vector 265 // pointing at 180 degrees. 228 // pointing at 180 degrees. 266 // 229 // 267 G4TriangularFacet* G4TriangularFacet::GetFlipp << 230 G4TriangularFacet *G4TriangularFacet::GetFlippedFacet () 268 { 231 { 269 auto flipped = new G4TriangularFacet (GetVer << 232 G4TriangularFacet *flipped = 270 GetVer << 233 new G4TriangularFacet (GetVertex(0), GetVertex(1), GetVertex(2), ABSOLUTE); 271 return flipped; 234 return flipped; 272 } 235 } 273 236 274 ////////////////////////////////////////////// 237 /////////////////////////////////////////////////////////////////////////////// 275 // 238 // 276 // Distance (G4ThreeVector) 239 // Distance (G4ThreeVector) 277 // 240 // 278 // Determines the vector between p and the clo 241 // Determines the vector between p and the closest point on the facet to p. 279 // This is based on the algorithm published in 242 // This is based on the algorithm published in "Geometric Tools for Computer 280 // Graphics," Philip J Scheider and David H Eb 243 // Graphics," Philip J Scheider and David H Eberly, Elsevier Science (USA), 281 // 2003. at the time of writing, the algorith 244 // 2003. at the time of writing, the algorithm is also available in fA 282 // technical note "Distance between point and 245 // technical note "Distance between point and triangle in 3D," by David Eberly 283 // at http://www.geometrictools.com/Documentat 246 // at http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf 284 // 247 // 285 // The by-product is the square-distance fSqrD 248 // The by-product is the square-distance fSqrDist, which is retained 286 // in case needed by the other "Distance" memb 249 // in case needed by the other "Distance" member functions. 287 // 250 // 288 G4ThreeVector G4TriangularFacet::Distance (con << 251 G4ThreeVector G4TriangularFacet::Distance (const G4ThreeVector &p) 289 { 252 { 290 G4ThreeVector D = GetVertex(0) - p; 253 G4ThreeVector D = GetVertex(0) - p; 291 G4double d = fE1.dot(D); 254 G4double d = fE1.dot(D); 292 G4double e = fE2.dot(D); 255 G4double e = fE2.dot(D); 293 G4double f = D.mag2(); 256 G4double f = D.mag2(); 294 G4double q = fB*e - fC*d; 257 G4double q = fB*e - fC*d; 295 G4double t = fB*d - fA*e; 258 G4double t = fB*d - fA*e; 296 fSqrDist = 0.; 259 fSqrDist = 0.; 297 260 298 if (q+t <= fDet) 261 if (q+t <= fDet) 299 { 262 { 300 if (q < 0.0) 263 if (q < 0.0) 301 { 264 { 302 if (t < 0.0) 265 if (t < 0.0) 303 { 266 { 304 // 267 // 305 // We are in region 4. 268 // We are in region 4. 306 // 269 // 307 if (d < 0.0) 270 if (d < 0.0) 308 { 271 { 309 t = 0.0; 272 t = 0.0; 310 if (-d >= fA) {q = 1.0; fSqrDist = f 273 if (-d >= fA) {q = 1.0; fSqrDist = fA + 2.0*d + f;} 311 else {q = -d/fA; fSqrDist = 274 else {q = -d/fA; fSqrDist = d*q + f;} 312 } 275 } 313 else 276 else 314 { 277 { 315 q = 0.0; 278 q = 0.0; 316 if (e >= 0.0) {t = 0.0; fSqrDi 279 if (e >= 0.0) {t = 0.0; fSqrDist = f;} 317 else if (-e >= fC) {t = 1.0; fSqrD 280 else if (-e >= fC) {t = 1.0; fSqrDist = fC + 2.0*e + f;} 318 else {t = -e/fC; fSqr 281 else {t = -e/fC; fSqrDist = e*t + f;} 319 } 282 } 320 } 283 } 321 else 284 else 322 { 285 { 323 // 286 // 324 // We are in region 3. 287 // We are in region 3. 325 // 288 // 326 q = 0.0; 289 q = 0.0; 327 if (e >= 0.0) {t = 0.0; fSqrDist 290 if (e >= 0.0) {t = 0.0; fSqrDist = f;} 328 else if (-e >= fC) {t = 1.0; fSqrDist 291 else if (-e >= fC) {t = 1.0; fSqrDist = fC + 2.0*e + f;} 329 else {t = -e/fC; fSqrDis 292 else {t = -e/fC; fSqrDist = e*t + f;} 330 } 293 } 331 } 294 } 332 else if (t < 0.0) 295 else if (t < 0.0) 333 { 296 { 334 // 297 // 335 // We are in region 5. 298 // We are in region 5. 336 // 299 // 337 t = 0.0; 300 t = 0.0; 338 if (d >= 0.0) {q = 0.0; fSqrDist = 301 if (d >= 0.0) {q = 0.0; fSqrDist = f;} 339 else if (-d >= fA) {q = 1.0; fSqrDist = 302 else if (-d >= fA) {q = 1.0; fSqrDist = fA + 2.0*d + f;} 340 else {q = -d/fA; fSqrDist 303 else {q = -d/fA; fSqrDist = d*q + f;} 341 } 304 } 342 else 305 else 343 { 306 { 344 // 307 // 345 // We are in region 0. 308 // We are in region 0. 346 // 309 // 347 G4double dist = fSurfaceNormal.dot(D); << 310 q = q / fDet; 348 fSqrDist = dist*dist; << 311 t = t / fDet; 349 return fSurfaceNormal*dist; << 312 fSqrDist = q*(fA*q + fB*t + 2.0*d) + t*(fB*q + fC*t + 2.0*e) + f; 350 } 313 } 351 } 314 } 352 else 315 else 353 { 316 { 354 if (q < 0.0) 317 if (q < 0.0) 355 { 318 { 356 // 319 // 357 // We are in region 2. 320 // We are in region 2. 358 // 321 // 359 G4double tmp0 = fB + d; 322 G4double tmp0 = fB + d; 360 G4double tmp1 = fC + e; 323 G4double tmp1 = fC + e; 361 if (tmp1 > tmp0) 324 if (tmp1 > tmp0) 362 { 325 { 363 G4double numer = tmp1 - tmp0; 326 G4double numer = tmp1 - tmp0; 364 G4double denom = fA - 2.0*fB + fC; 327 G4double denom = fA - 2.0*fB + fC; 365 if (numer >= denom) {q = 1.0; t = 0.0; 328 if (numer >= denom) {q = 1.0; t = 0.0; fSqrDist = fA + 2.0*d + f;} 366 else 329 else 367 { 330 { 368 q = numer/denom; 331 q = numer/denom; 369 t = 1.0 - q; 332 t = 1.0 - q; 370 fSqrDist = q*(fA*q + fB*t +2.0*d) + 333 fSqrDist = q*(fA*q + fB*t +2.0*d) + t*(fB*q + fC*t + 2.0*e) + f; 371 } 334 } 372 } 335 } 373 else 336 else 374 { 337 { 375 q = 0.0; 338 q = 0.0; 376 if (tmp1 <= 0.0) {t = 1.0; fSqrDi 339 if (tmp1 <= 0.0) {t = 1.0; fSqrDist = fC + 2.0*e + f;} 377 else if (e >= 0.0) {t = 0.0; fSqrDi 340 else if (e >= 0.0) {t = 0.0; fSqrDist = f;} 378 else {t = -e/fC; fSqr 341 else {t = -e/fC; fSqrDist = e*t + f;} 379 } 342 } 380 } 343 } 381 else if (t < 0.0) 344 else if (t < 0.0) 382 { 345 { 383 // 346 // 384 // We are in region 6. 347 // We are in region 6. 385 // 348 // 386 G4double tmp0 = fB + e; 349 G4double tmp0 = fB + e; 387 G4double tmp1 = fA + d; 350 G4double tmp1 = fA + d; 388 if (tmp1 > tmp0) 351 if (tmp1 > tmp0) 389 { 352 { 390 G4double numer = tmp1 - tmp0; 353 G4double numer = tmp1 - tmp0; 391 G4double denom = fA - 2.0*fB + fC; 354 G4double denom = fA - 2.0*fB + fC; 392 if (numer >= denom) {t = 1.0; q = 0.0; 355 if (numer >= denom) {t = 1.0; q = 0.0; fSqrDist = fC + 2.0*e + f;} 393 else 356 else 394 { 357 { 395 t = numer/denom; 358 t = numer/denom; 396 q = 1.0 - t; 359 q = 1.0 - t; 397 fSqrDist = q*(fA*q + fB*t +2.0*d) + 360 fSqrDist = q*(fA*q + fB*t +2.0*d) + t*(fB*q + fC*t + 2.0*e) + f; 398 } 361 } 399 } 362 } 400 else 363 else 401 { 364 { 402 t = 0.0; 365 t = 0.0; 403 if (tmp1 <= 0.0) {q = 1.0; fSqrDi 366 if (tmp1 <= 0.0) {q = 1.0; fSqrDist = fA + 2.0*d + f;} 404 else if (d >= 0.0) {q = 0.0; fSqrDi 367 else if (d >= 0.0) {q = 0.0; fSqrDist = f;} 405 else {q = -d/fA; fSqr 368 else {q = -d/fA; fSqrDist = d*q + f;} 406 } 369 } 407 } 370 } 408 else 371 else 409 // 372 // 410 // We are in region 1. 373 // We are in region 1. 411 // 374 // 412 { 375 { 413 G4double numer = fC + e - fB - d; 376 G4double numer = fC + e - fB - d; 414 if (numer <= 0.0) 377 if (numer <= 0.0) 415 { 378 { 416 q = 0.0; 379 q = 0.0; 417 t = 1.0; 380 t = 1.0; 418 fSqrDist = fC + 2.0*e + f; 381 fSqrDist = fC + 2.0*e + f; 419 } 382 } 420 else 383 else 421 { 384 { 422 G4double denom = fA - 2.0*fB + fC; 385 G4double denom = fA - 2.0*fB + fC; 423 if (numer >= denom) {q = 1.0; t = 0.0; 386 if (numer >= denom) {q = 1.0; t = 0.0; fSqrDist = fA + 2.0*d + f;} 424 else 387 else 425 { 388 { 426 q = numer/denom; 389 q = numer/denom; 427 t = 1.0 - q; 390 t = 1.0 - q; 428 fSqrDist = q*(fA*q + fB*t + 2.0*d) + 391 fSqrDist = q*(fA*q + fB*t + 2.0*d) + t*(fB*q + fC*t + 2.0*e) + f; 429 } 392 } 430 } 393 } 431 } 394 } 432 } 395 } 433 // 396 // 434 // 397 // 435 // Do fA check for rounding errors in the di 398 // Do fA check for rounding errors in the distance-squared. It appears that 436 // the conventional methods for calculating 399 // the conventional methods for calculating fSqrDist breaks down when very 437 // near to or at the surface (as required by 400 // near to or at the surface (as required by transport). 438 // We'll therefore also use the magnitude-sq 401 // We'll therefore also use the magnitude-squared of the vector displacement. 439 // (Note that I've also tried to get around 402 // (Note that I've also tried to get around this problem by using the 440 // existing equations for 403 // existing equations for 441 // 404 // 442 // fSqrDist = function(fA,fB,fC,d,q,t) 405 // fSqrDist = function(fA,fB,fC,d,q,t) 443 // 406 // 444 // and use fA more accurate addition process 407 // and use fA more accurate addition process which minimises errors and 445 // breakdown of cummutitivity [where (A+B)+C 408 // breakdown of cummutitivity [where (A+B)+C != A+(B+C)] but this still 446 // doesn't work. 409 // doesn't work. 447 // Calculation from u = D + q*fE1 + t*fE2 is 410 // Calculation from u = D + q*fE1 + t*fE2 is less efficient, but appears 448 // more robust. 411 // more robust. 449 // 412 // 450 if (fSqrDist < 0.0) fSqrDist = 0.; 413 if (fSqrDist < 0.0) fSqrDist = 0.; 451 G4ThreeVector u = D + q*fE1 + t*fE2; 414 G4ThreeVector u = D + q*fE1 + t*fE2; 452 G4double u2 = u.mag2(); 415 G4double u2 = u.mag2(); 453 // 416 // 454 // The following (part of the roundoff error 417 // The following (part of the roundoff error check) is from Oliver Merle'q 455 // updates. 418 // updates. 456 // 419 // 457 if (fSqrDist > u2) fSqrDist = u2; 420 if (fSqrDist > u2) fSqrDist = u2; 458 421 459 return u; 422 return u; 460 } 423 } 461 424 462 ////////////////////////////////////////////// 425 /////////////////////////////////////////////////////////////////////////////// 463 // 426 // 464 // Distance (G4ThreeVector, G4double) 427 // Distance (G4ThreeVector, G4double) 465 // 428 // 466 // Determines the closest distance between poi 429 // Determines the closest distance between point p and the facet. This makes 467 // use of G4ThreeVector G4TriangularFacet::Dis 430 // use of G4ThreeVector G4TriangularFacet::Distance, which stores the 468 // square of the distance in variable fSqrDist 431 // square of the distance in variable fSqrDist. If approximate methods show 469 // the distance is to be greater than minDist, 432 // the distance is to be greater than minDist, then forget about further 470 // computation and return fA very large number 433 // computation and return fA very large number. 471 // 434 // 472 G4double G4TriangularFacet::Distance (const G4 << 435 G4double G4TriangularFacet::Distance (const G4ThreeVector &p, 473 G4 436 G4double minDist) 474 { 437 { 475 // 438 // 476 // Start with quicky test to determine if th 439 // Start with quicky test to determine if the surface of the sphere enclosing 477 // the triangle is any closer to p than minD 440 // the triangle is any closer to p than minDist. If not, then don't bother 478 // about more accurate test. 441 // about more accurate test. 479 // 442 // 480 G4double dist = kInfinity; 443 G4double dist = kInfinity; 481 if ((p-fCircumcentre).mag()-fRadius < minDis 444 if ((p-fCircumcentre).mag()-fRadius < minDist) 482 { 445 { 483 // 446 // 484 // It's possible that the triangle is clos 447 // It's possible that the triangle is closer than minDist, 485 // so do more accurate assessment. 448 // so do more accurate assessment. 486 // 449 // 487 dist = Distance(p).mag(); 450 dist = Distance(p).mag(); 488 } 451 } 489 return dist; 452 return dist; 490 } 453 } 491 454 492 ////////////////////////////////////////////// 455 /////////////////////////////////////////////////////////////////////////////// 493 // 456 // 494 // Distance (G4ThreeVector, G4double, G4bool) 457 // Distance (G4ThreeVector, G4double, G4bool) 495 // 458 // 496 // Determine the distance to point p. kInfini 459 // Determine the distance to point p. kInfinity is returned if either: 497 // (1) outgoing is TRUE and the dot product of 460 // (1) outgoing is TRUE and the dot product of the normal vector to the facet 498 // and the displacement vector from p to t 461 // and the displacement vector from p to the triangle is negative. 499 // (2) outgoing is FALSE and the dot product o 462 // (2) outgoing is FALSE and the dot product of the normal vector to the facet 500 // and the displacement vector from p to t 463 // and the displacement vector from p to the triangle is positive. 501 // If approximate methods show the distance is 464 // If approximate methods show the distance is to be greater than minDist, then 502 // forget about further computation and return 465 // forget about further computation and return fA very large number. 503 // 466 // 504 // This method has been heavily modified thank 467 // This method has been heavily modified thanks to the valuable comments and 505 // corrections of Rickard Holmberg. 468 // corrections of Rickard Holmberg. 506 // 469 // 507 G4double G4TriangularFacet::Distance (const G4 << 470 G4double G4TriangularFacet::Distance (const G4ThreeVector &p, 508 G4 471 G4double minDist, 509 const G4 472 const G4bool outgoing) 510 { 473 { 511 // 474 // 512 // Start with quicky test to determine if th 475 // Start with quicky test to determine if the surface of the sphere enclosing 513 // the triangle is any closer to p than minD 476 // the triangle is any closer to p than minDist. If not, then don't bother 514 // about more accurate test. 477 // about more accurate test. 515 // 478 // 516 G4double dist = kInfinity; 479 G4double dist = kInfinity; 517 if ((p-fCircumcentre).mag()-fRadius < minDis 480 if ((p-fCircumcentre).mag()-fRadius < minDist) 518 { 481 { 519 // 482 // 520 // It's possible that the triangle is clos 483 // It's possible that the triangle is closer than minDist, 521 // so do more accurate assessment. 484 // so do more accurate assessment. 522 // 485 // 523 G4ThreeVector v = Distance(p); 486 G4ThreeVector v = Distance(p); 524 G4double dist1 = sqrt(fSqrDist); 487 G4double dist1 = sqrt(fSqrDist); 525 G4double dir = v.dot(fSurfaceNormal); 488 G4double dir = v.dot(fSurfaceNormal); 526 G4bool wrongSide = (dir > 0.0 && !outgoing 489 G4bool wrongSide = (dir > 0.0 && !outgoing) || (dir < 0.0 && outgoing); 527 if (dist1 <= kCarTolerance) 490 if (dist1 <= kCarTolerance) 528 { 491 { 529 // 492 // 530 // Point p is very close to triangle. C 493 // Point p is very close to triangle. Check if it's on the wrong side, 531 // in which case return distance of 0.0 494 // in which case return distance of 0.0 otherwise . 532 // 495 // 533 if (wrongSide) dist = 0.0; 496 if (wrongSide) dist = 0.0; 534 else dist = dist1; 497 else dist = dist1; 535 } 498 } 536 else if (!wrongSide) dist = dist1; 499 else if (!wrongSide) dist = dist1; 537 } 500 } 538 return dist; 501 return dist; 539 } 502 } 540 503 541 ////////////////////////////////////////////// 504 /////////////////////////////////////////////////////////////////////////////// 542 // 505 // 543 // Extent 506 // Extent 544 // 507 // 545 // Calculates the furthest the triangle extend 508 // Calculates the furthest the triangle extends in fA particular direction 546 // defined by the vector axis. 509 // defined by the vector axis. 547 // 510 // 548 G4double G4TriangularFacet::Extent (const G4Th 511 G4double G4TriangularFacet::Extent (const G4ThreeVector axis) 549 { 512 { 550 G4double ss = GetVertex(0).dot(axis); 513 G4double ss = GetVertex(0).dot(axis); 551 G4double sp = GetVertex(1).dot(axis); 514 G4double sp = GetVertex(1).dot(axis); 552 if (sp > ss) ss = sp; 515 if (sp > ss) ss = sp; 553 sp = GetVertex(2).dot(axis); 516 sp = GetVertex(2).dot(axis); 554 if (sp > ss) ss = sp; 517 if (sp > ss) ss = sp; 555 return ss; 518 return ss; 556 } 519 } 557 520 558 ////////////////////////////////////////////// 521 /////////////////////////////////////////////////////////////////////////////// 559 // 522 // 560 // Intersect 523 // Intersect 561 // 524 // 562 // Member function to find the next intersecti 525 // Member function to find the next intersection when going from p in the 563 // direction of v. If: 526 // direction of v. If: 564 // (1) "outgoing" is TRUE, only consider the f 527 // (1) "outgoing" is TRUE, only consider the face if we are going out through 565 // the face. 528 // the face. 566 // (2) "outgoing" is FALSE, only consider the 529 // (2) "outgoing" is FALSE, only consider the face if we are going in through 567 // the face. 530 // the face. 568 // Member functions returns TRUE if there is a 531 // Member functions returns TRUE if there is an intersection, FALSE otherwise. 569 // Sets the distance (distance along w), distF 532 // Sets the distance (distance along w), distFromSurface (orthogonal distance) 570 // and normal. 533 // and normal. 571 // 534 // 572 // Also considers intersections that happen wi 535 // Also considers intersections that happen with negative distance for small 573 // distances of distFromSurface = 0.5*kCarTole 536 // distances of distFromSurface = 0.5*kCarTolerance in the wrong direction. 574 // This is to detect kSurface without doing fA 537 // This is to detect kSurface without doing fA full Inside(p) in 575 // G4TessellatedSolid::Distance(p,v) calculati 538 // G4TessellatedSolid::Distance(p,v) calculation. 576 // 539 // 577 // This member function is thanks the valuable 540 // This member function is thanks the valuable work of Rickard Holmberg. PT. 578 // However, "gotos" are the Work of the Devil 541 // However, "gotos" are the Work of the Devil have been exorcised with 579 // extreme prejudice!! 542 // extreme prejudice!! 580 // 543 // 581 // IMPORTANT NOTE: These calculations are pre 544 // IMPORTANT NOTE: These calculations are predicated on v being fA unit 582 // vector. If G4TessellatedSolid or other cla 545 // vector. If G4TessellatedSolid or other classes call this member function 583 // with |v| != 1 then there will be errors. 546 // with |v| != 1 then there will be errors. 584 // 547 // 585 G4bool G4TriangularFacet::Intersect (const G4T << 548 G4bool G4TriangularFacet::Intersect (const G4ThreeVector &p, 586 const G4T << 549 const G4ThreeVector &v, 587 G4b 550 G4bool outgoing, 588 G4d << 551 G4double &distance, 589 G4d << 552 G4double &distFromSurface, 590 G4T << 553 G4ThreeVector &normal) 591 { 554 { 592 // 555 // 593 // Check whether the direction of the facet 556 // Check whether the direction of the facet is consistent with the vector v 594 // and the need to be outgoing or ingoing. 557 // and the need to be outgoing or ingoing. If inconsistent, disregard and 595 // return false. 558 // return false. 596 // 559 // 597 G4double w = v.dot(fSurfaceNormal); 560 G4double w = v.dot(fSurfaceNormal); 598 if ((outgoing && w < -dirTolerance) || (!out 561 if ((outgoing && w < -dirTolerance) || (!outgoing && w > dirTolerance)) 599 { 562 { 600 distance = kInfinity; 563 distance = kInfinity; 601 distFromSurface = kInfinity; 564 distFromSurface = kInfinity; 602 normal.set(0,0,0); 565 normal.set(0,0,0); 603 return false; 566 return false; 604 } 567 } 605 // 568 // 606 // Calculate the orthogonal distance from p 569 // Calculate the orthogonal distance from p to the surface containing the 607 // triangle. Then determine if we're on the 570 // triangle. Then determine if we're on the right or wrong side of the 608 // surface (at fA distance greater than kCar 571 // surface (at fA distance greater than kCarTolerance to be consistent with 609 // "outgoing". 572 // "outgoing". 610 // 573 // 611 const G4ThreeVector& p0 = GetVertex(0); << 574 const G4ThreeVector &p0 = GetVertex(0); 612 G4ThreeVector D = p0 - p; 575 G4ThreeVector D = p0 - p; 613 distFromSurface = D.dot(fSurfaceNormal); 576 distFromSurface = D.dot(fSurfaceNormal); 614 G4bool wrongSide = (outgoing && distFromSurf 577 G4bool wrongSide = (outgoing && distFromSurface < -0.5*kCarTolerance) || 615 (!outgoing && distFromSurface > 0.5*kCarT 578 (!outgoing && distFromSurface > 0.5*kCarTolerance); 616 << 617 if (wrongSide) 579 if (wrongSide) 618 { 580 { 619 distance = kInfinity; 581 distance = kInfinity; 620 distFromSurface = kInfinity; 582 distFromSurface = kInfinity; 621 normal.set(0,0,0); 583 normal.set(0,0,0); 622 return false; 584 return false; 623 } 585 } 624 586 625 wrongSide = (outgoing && distFromSurface < 0 587 wrongSide = (outgoing && distFromSurface < 0.0) 626 || (!outgoing && distFromSurface > 588 || (!outgoing && distFromSurface > 0.0); 627 if (wrongSide) 589 if (wrongSide) 628 { 590 { 629 // 591 // 630 // We're slightly on the wrong side of the 592 // We're slightly on the wrong side of the surface. Check if we're close 631 // enough using fA precise distance calcul 593 // enough using fA precise distance calculation. 632 // 594 // 633 G4ThreeVector u = Distance(p); 595 G4ThreeVector u = Distance(p); 634 if (fSqrDist <= kCarTolerance*kCarToleranc 596 if (fSqrDist <= kCarTolerance*kCarTolerance) 635 { 597 { 636 // 598 // 637 // We're very close. Therefore return f 599 // We're very close. Therefore return fA small negative number 638 // to pretend we intersect. 600 // to pretend we intersect. 639 // 601 // 640 // distance = -0.5*kCarTolerance 602 // distance = -0.5*kCarTolerance 641 distance = 0.0; 603 distance = 0.0; 642 normal = fSurfaceNormal; 604 normal = fSurfaceNormal; 643 return true; 605 return true; 644 } 606 } 645 else 607 else 646 { 608 { 647 // 609 // 648 // We're close to the surface containing 610 // We're close to the surface containing the triangle, but sufficiently 649 // far from the triangle, and on the wro 611 // far from the triangle, and on the wrong side compared to the directions 650 // of the surface normal and v. There i 612 // of the surface normal and v. There is no intersection. 651 // 613 // 652 distance = kInfinity; 614 distance = kInfinity; 653 distFromSurface = kInfinity; 615 distFromSurface = kInfinity; 654 normal.set(0,0,0); 616 normal.set(0,0,0); 655 return false; 617 return false; 656 } 618 } 657 } 619 } 658 if (w < dirTolerance && w > -dirTolerance) 620 if (w < dirTolerance && w > -dirTolerance) 659 { 621 { 660 // 622 // 661 // The ray is within the plane of the tria 623 // The ray is within the plane of the triangle. Project the problem into 2D 662 // in the plane of the triangle. First try 624 // in the plane of the triangle. First try to create orthogonal unit vectors 663 // mu and nu, where mu is fE1/|fE1|. This 625 // mu and nu, where mu is fE1/|fE1|. This is kinda like 664 // the original algorithm due to Rickard H 626 // the original algorithm due to Rickard Holmberg, but with better 665 // mathematical justification than the ori 627 // mathematical justification than the original method ... however, 666 // beware Rickard's was less time-consumin 628 // beware Rickard's was less time-consuming. 667 // 629 // 668 // Note that vprime is not fA unit vector. 630 // Note that vprime is not fA unit vector. We need to keep it unnormalised 669 // since the values of distance along vpri 631 // since the values of distance along vprime (s0 and s1) for intersection 670 // with the triangle will be used to deter 632 // with the triangle will be used to determine if we cut the plane at the 671 // same time. 633 // same time. 672 // 634 // 673 G4ThreeVector mu = fE1.unit(); 635 G4ThreeVector mu = fE1.unit(); 674 G4ThreeVector nu = fSurfaceNormal.cross(mu 636 G4ThreeVector nu = fSurfaceNormal.cross(mu); 675 G4TwoVector pprime(p.dot(mu), p.dot(nu)); 637 G4TwoVector pprime(p.dot(mu), p.dot(nu)); 676 G4TwoVector vprime(v.dot(mu), v.dot(nu)); 638 G4TwoVector vprime(v.dot(mu), v.dot(nu)); 677 G4TwoVector P0prime(p0.dot(mu), p0.dot(nu) 639 G4TwoVector P0prime(p0.dot(mu), p0.dot(nu)); 678 G4TwoVector E0prime(fE1.mag(), 0.0); 640 G4TwoVector E0prime(fE1.mag(), 0.0); 679 G4TwoVector E1prime(fE2.dot(mu), fE2.dot(n 641 G4TwoVector E1prime(fE2.dot(mu), fE2.dot(nu)); 680 G4TwoVector loc[2]; 642 G4TwoVector loc[2]; 681 if (G4TessellatedGeometryAlgorithms::Inter 643 if (G4TessellatedGeometryAlgorithms::IntersectLineAndTriangle2D(pprime, 682 vprime, P0 644 vprime, P0prime, E0prime, E1prime, loc)) 683 { 645 { 684 // 646 // 685 // There is an intersection between the 647 // There is an intersection between the line and triangle in 2D. 686 // Now check which part of the line inte 648 // Now check which part of the line intersects with the plane 687 // containing the triangle in 3D. 649 // containing the triangle in 3D. 688 // 650 // 689 G4double vprimemag = vprime.mag(); 651 G4double vprimemag = vprime.mag(); 690 G4double s0 = (loc[0] - pprime).m 652 G4double s0 = (loc[0] - pprime).mag()/vprimemag; 691 G4double s1 = (loc[1] - pprime).m 653 G4double s1 = (loc[1] - pprime).mag()/vprimemag; 692 G4double normDist0 = fSurfaceNormal.dot( 654 G4double normDist0 = fSurfaceNormal.dot(s0*v) - distFromSurface; 693 G4double normDist1 = fSurfaceNormal.dot( 655 G4double normDist1 = fSurfaceNormal.dot(s1*v) - distFromSurface; 694 656 695 if ((normDist0 < 0.0 && normDist1 < 0.0) 657 if ((normDist0 < 0.0 && normDist1 < 0.0) 696 || (normDist0 > 0.0 && normDist1 > 0.0) 658 || (normDist0 > 0.0 && normDist1 > 0.0) 697 || (normDist0 == 0.0 && normDist1 == 0. 659 || (normDist0 == 0.0 && normDist1 == 0.0) ) 698 { 660 { 699 distance = kInfinity; 661 distance = kInfinity; 700 distFromSurface = kInfinity; 662 distFromSurface = kInfinity; 701 normal.set(0,0,0); 663 normal.set(0,0,0); 702 return false; 664 return false; 703 } 665 } 704 else 666 else 705 { 667 { 706 G4double dnormDist = normDist1 - normD 668 G4double dnormDist = normDist1 - normDist0; 707 if (fabs(dnormDist) < DBL_EPSILON) 669 if (fabs(dnormDist) < DBL_EPSILON) 708 { 670 { 709 distance = s0; 671 distance = s0; 710 normal = fSurfaceNormal; 672 normal = fSurfaceNormal; 711 if (!outgoing) distFromSurface = -di 673 if (!outgoing) distFromSurface = -distFromSurface; 712 return true; 674 return true; 713 } 675 } 714 else 676 else 715 { 677 { 716 distance = s0 - normDist0*(s1-s0)/dn 678 distance = s0 - normDist0*(s1-s0)/dnormDist; 717 normal = fSurfaceNormal; 679 normal = fSurfaceNormal; 718 if (!outgoing) distFromSurface = -di 680 if (!outgoing) distFromSurface = -distFromSurface; 719 return true; 681 return true; 720 } 682 } 721 } 683 } 722 } 684 } 723 else 685 else 724 { 686 { 725 distance = kInfinity; 687 distance = kInfinity; 726 distFromSurface = kInfinity; 688 distFromSurface = kInfinity; 727 normal.set(0,0,0); 689 normal.set(0,0,0); 728 return false; 690 return false; 729 } 691 } 730 } 692 } 731 // 693 // 732 // 694 // 733 // Use conventional algorithm to determine t 695 // Use conventional algorithm to determine the whether there is an 734 // intersection. This involves determining 696 // intersection. This involves determining the point of intersection of the 735 // line with the plane containing the triang 697 // line with the plane containing the triangle, and then calculating if the 736 // point is within the triangle. 698 // point is within the triangle. 737 // 699 // 738 distance = distFromSurface / w; 700 distance = distFromSurface / w; 739 G4ThreeVector pp = p + v*distance; 701 G4ThreeVector pp = p + v*distance; 740 G4ThreeVector DD = p0 - pp; 702 G4ThreeVector DD = p0 - pp; 741 G4double d = fE1.dot(DD); 703 G4double d = fE1.dot(DD); 742 G4double e = fE2.dot(DD); 704 G4double e = fE2.dot(DD); 743 G4double ss = fB*e - fC*d; 705 G4double ss = fB*e - fC*d; 744 G4double t = fB*d - fA*e; 706 G4double t = fB*d - fA*e; 745 707 746 G4double sTolerance = (fabs(fB)+ fabs(fC) + 708 G4double sTolerance = (fabs(fB)+ fabs(fC) + fabs(d) + fabs(e))*kCarTolerance; 747 G4double tTolerance = (fabs(fA)+ fabs(fB) + 709 G4double tTolerance = (fabs(fA)+ fabs(fB) + fabs(d) + fabs(e))*kCarTolerance; 748 G4double detTolerance = (fabs(fA)+ fabs(fC) 710 G4double detTolerance = (fabs(fA)+ fabs(fC) + 2*fabs(fB) )*kCarTolerance; 749 711 750 //if (ss < 0.0 || t < 0.0 || ss+t > fDet) 712 //if (ss < 0.0 || t < 0.0 || ss+t > fDet) 751 if (ss < -sTolerance || t < -tTolerance || ( 713 if (ss < -sTolerance || t < -tTolerance || ( ss+t - fDet ) > detTolerance) 752 { 714 { 753 // 715 // 754 // The intersection is outside of the tria 716 // The intersection is outside of the triangle. 755 // 717 // 756 distance = distFromSurface = kInfinity; 718 distance = distFromSurface = kInfinity; 757 normal.set(0,0,0); 719 normal.set(0,0,0); 758 return false; 720 return false; 759 } 721 } 760 else 722 else 761 { 723 { 762 // 724 // 763 // There is an intersection. Now we only 725 // There is an intersection. Now we only need to set the surface normal. 764 // 726 // 765 normal = fSurfaceNormal; 727 normal = fSurfaceNormal; 766 if (!outgoing) distFromSurface = -distFrom 728 if (!outgoing) distFromSurface = -distFromSurface; 767 return true; 729 return true; 768 } 730 } 769 } 731 } 770 732 771 ////////////////////////////////////////////// 733 //////////////////////////////////////////////////////////////////////// 772 // 734 // 773 // GetPointOnFace 735 // GetPointOnFace 774 // 736 // 775 // Auxiliary method, returns a uniform random << 737 // Auxiliary method for get fA random point on surface 776 // 738 // 777 G4ThreeVector G4TriangularFacet::GetPointOnFac 739 G4ThreeVector G4TriangularFacet::GetPointOnFace() const 778 { 740 { 779 G4double u = G4UniformRand(); << 741 G4double alpha = G4RandFlat::shoot(0., 1.); 780 G4double v = G4UniformRand(); << 742 G4double beta = G4RandFlat::shoot(0., 1.); 781 if (u+v > 1.) { u = 1. - u; v = 1. - v; } << 743 G4double lambda1 = alpha*beta; 782 return GetVertex(0) + u*fE1 + v*fE2; << 744 G4double lambda0 = alpha-lambda1; >> 745 >> 746 return GetVertex(0) + lambda0*fE1 + lambda1*fE2; 783 } 747 } 784 748 785 ////////////////////////////////////////////// 749 //////////////////////////////////////////////////////////////////////// 786 // 750 // 787 // GetArea 751 // GetArea 788 // 752 // 789 // Auxiliary method for returning the surface 753 // Auxiliary method for returning the surface fArea 790 // 754 // 791 G4double G4TriangularFacet::GetArea() const << 755 G4double G4TriangularFacet::GetArea() 792 { 756 { 793 return fArea; 757 return fArea; 794 } 758 } 795 759 796 ////////////////////////////////////////////// 760 //////////////////////////////////////////////////////////////////////// 797 // 761 // 798 G4GeometryType G4TriangularFacet::GetEntityTyp 762 G4GeometryType G4TriangularFacet::GetEntityType () const 799 { 763 { 800 return "G4TriangularFacet"; 764 return "G4TriangularFacet"; 801 } 765 } 802 766 803 ////////////////////////////////////////////// 767 //////////////////////////////////////////////////////////////////////// 804 // 768 // 805 G4ThreeVector G4TriangularFacet::GetSurfaceNor 769 G4ThreeVector G4TriangularFacet::GetSurfaceNormal () const 806 { 770 { 807 return fSurfaceNormal; 771 return fSurfaceNormal; 808 } 772 } 809 773 810 ////////////////////////////////////////////// 774 //////////////////////////////////////////////////////////////////////// 811 // 775 // 812 void G4TriangularFacet::SetSurfaceNormal (cons << 776 void G4TriangularFacet::SetSurfaceNormal (G4ThreeVector normal) 813 { 777 { 814 fSurfaceNormal = normal; 778 fSurfaceNormal = normal; 815 } 779 } 816 780