Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyhedraSide, the face << 27 // one segmented side of a Polyhedra << 28 // 26 // 29 // Author: David C. Williams (davidw@scipp.ucs << 27 // $Id: G4PolyhedraSide.cc 67011 2013-01-29 16:17:41Z gcosmo $ >> 28 // >> 29 // >> 30 // -------------------------------------------------------------------- >> 31 // GEANT 4 class source file >> 32 // >> 33 // >> 34 // G4PolyhedraSide.cc >> 35 // >> 36 // Implementation of the face representing one segmented side of a Polyhedra >> 37 // 30 // ------------------------------------------- 38 // -------------------------------------------------------------------- 31 39 32 #include "G4PolyhedraSide.hh" 40 #include "G4PolyhedraSide.hh" 33 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 34 #include "G4IntersectingCone.hh" 42 #include "G4IntersectingCone.hh" 35 #include "G4ClippablePolygon.hh" 43 #include "G4ClippablePolygon.hh" 36 #include "G4AffineTransform.hh" 44 #include "G4AffineTransform.hh" 37 #include "G4SolidExtentList.hh" 45 #include "G4SolidExtentList.hh" 38 #include "G4GeometryTolerance.hh" 46 #include "G4GeometryTolerance.hh" 39 47 40 #include "Randomize.hh" 48 #include "Randomize.hh" 41 49 42 // This new field helps to use the class G4PhS << 43 // << 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 45 << 46 // This macro changes the references to fields << 47 // in the class G4PhSideData. << 48 // 50 // 49 #define G4MT_phphix ((subInstanceManager.offse << 50 #define G4MT_phphiy ((subInstanceManager.offse << 51 #define G4MT_phphiz ((subInstanceManager.offse << 52 #define G4MT_phphik ((subInstanceManager.offse << 53 << 54 // Returns the private data instance manager. << 55 // << 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 57 { << 58 return subInstanceManager; << 59 } << 60 << 61 // Constructor 51 // Constructor 62 // 52 // 63 // Values for r1,z1 and r2,z2 should be specif 53 // Values for r1,z1 and r2,z2 should be specified in clockwise 64 // order in (r,z). 54 // order in (r,z). 65 // 55 // 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 56 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ, 67 const G4Poly << 57 const G4PolyhedraSideRZ *tail, 68 const G4Poly << 58 const G4PolyhedraSideRZ *head, 69 const G4Poly << 59 const G4PolyhedraSideRZ *nextRZ, 70 G4int 60 G4int theNumSide, 71 G4doub 61 G4double thePhiStart, 72 G4doub 62 G4double thePhiTotal, 73 G4bool 63 G4bool thePhiIsOpen, 74 G4bool 64 G4bool isAllBehind ) 75 { 65 { 76 << 77 instanceID = subInstanceManager.CreateSubIns << 78 << 79 kCarTolerance = G4GeometryTolerance::GetInst 66 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p << 67 fSurfaceArea=0.; 81 G4MT_phphik = 0.0; << 68 fPhi.first = G4ThreeVector(0,0,0); >> 69 fPhi.second= 0.0; 82 70 83 // 71 // 84 // Record values 72 // Record values 85 // 73 // 86 r[0] = tail->r; z[0] = tail->z; 74 r[0] = tail->r; z[0] = tail->z; 87 r[1] = head->r; z[1] = head->z; 75 r[1] = head->r; z[1] = head->z; 88 76 89 G4double phiTotal; 77 G4double phiTotal; 90 78 91 // 79 // 92 // Set phi to our convention 80 // Set phi to our convention 93 // 81 // 94 startPhi = thePhiStart; 82 startPhi = thePhiStart; 95 while (startPhi < 0.0) // Loop checking, << 83 while (startPhi < 0.0) startPhi += twopi; 96 startPhi += twopi; << 97 84 98 phiIsOpen = thePhiIsOpen; 85 phiIsOpen = thePhiIsOpen; 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi 86 phiTotal = (phiIsOpen) ? thePhiTotal : twopi; 100 87 101 allBehind = isAllBehind; 88 allBehind = isAllBehind; 102 89 103 // 90 // 104 // Make our intersecting cone 91 // Make our intersecting cone 105 // 92 // 106 cone = new G4IntersectingCone( r, z ); 93 cone = new G4IntersectingCone( r, z ); 107 94 108 // 95 // 109 // Construct side plane vector set 96 // Construct side plane vector set 110 // 97 // 111 numSide = theNumSide>0 ? theNumSide : 1; << 98 numSide = theNumSide; 112 deltaPhi = phiTotal/numSide; << 99 deltaPhi = phiTotal/theNumSide; 113 endPhi = startPhi+phiTotal; 100 endPhi = startPhi+phiTotal; 114 << 101 115 const std::size_t maxSides = numSide; << 102 vecs = new G4PolyhedraSideVec[numSide]; 116 vecs = new G4PolyhedraSideVec[maxSides]; << 103 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? << 104 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide]; 118 105 119 // 106 // 120 // ...this is where we start 107 // ...this is where we start 121 // 108 // 122 G4double phi = startPhi; 109 G4double phi = startPhi; 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s 110 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ), 124 b1( r[1]*std::cos(phi), r[1]*std::si 111 b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ), 125 c1( prevRZ->r*std::cos(phi), prevRZ- 112 c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ), 126 d1( nextRZ->r*std::cos(phi), nextRZ- 113 d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ), 127 a2, b2, c2, d2; 114 a2, b2, c2, d2; 128 G4PolyhedraSideEdge *edge = edges; 115 G4PolyhedraSideEdge *edge = edges; 129 116 130 G4PolyhedraSideVec *vec = vecs; 117 G4PolyhedraSideVec *vec = vecs; 131 do // Loop checking, 13.08.2015, G.Cosmo << 118 do 132 { 119 { 133 // 120 // 134 // ...this is where we are going 121 // ...this is where we are going 135 // 122 // 136 phi += deltaPhi; 123 phi += deltaPhi; 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[ 124 a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ); 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[ 125 b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ); 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi 126 c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ); 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi 127 d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ); 141 128 142 G4ThreeVector tt; 129 G4ThreeVector tt; 143 130 144 // 131 // 145 // ...build some relevant vectors. 132 // ...build some relevant vectors. 146 // the point is to sacrifice a little m 133 // the point is to sacrifice a little memory with precalcs 147 // to gain speed 134 // to gain speed 148 // 135 // 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 136 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 150 137 151 tt = b2 + b1 - a2 - a1; 138 tt = b2 + b1 - a2 - a1; 152 vec->surfRZ = tt.unit(); 139 vec->surfRZ = tt.unit(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 140 if (vec==vecs) lenRZ = 0.25*tt.mag(); 154 141 155 tt = b2 - b1 + a2 - a1; 142 tt = b2 - b1 + a2 - a1; 156 vec->surfPhi = tt.unit(); 143 vec->surfPhi = tt.unit(); 157 if (vec==vecs) 144 if (vec==vecs) 158 { 145 { 159 lenPhi[0] = 0.25*tt.mag(); 146 lenPhi[0] = 0.25*tt.mag(); 160 tt = b2 - b1; 147 tt = b2 - b1; 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len 148 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ; 162 } 149 } 163 150 164 tt = vec->surfPhi.cross(vec->surfRZ); 151 tt = vec->surfPhi.cross(vec->surfRZ); 165 vec->normal = tt.unit(); 152 vec->normal = tt.unit(); 166 153 167 // 154 // 168 // ...edge normals are the average of the 155 // ...edge normals are the average of the normals of 169 // the two faces they connect. 156 // the two faces they connect. 170 // 157 // 171 // ...edge normals are necessary if we are 158 // ...edge normals are necessary if we are to accurately 172 // decide if a point is "inside" a face 159 // decide if a point is "inside" a face. For non-convex 173 // shapes, it is absolutely necessary t 160 // shapes, it is absolutely necessary to know information 174 // on adjacent faces to accurate determ 161 // on adjacent faces to accurate determine this. 175 // 162 // 176 // ...we don't need them for the phi edges 163 // ...we don't need them for the phi edges, since that 177 // information is taken care of interna 164 // information is taken care of internally. The r/z edges, 178 // however, depend on the adjacent G4Po 165 // however, depend on the adjacent G4PolyhedraSide. 179 // 166 // 180 G4ThreeVector a12, adj; 167 G4ThreeVector a12, adj; 181 168 182 a12 = a2-a1; 169 a12 = a2-a1; 183 170 184 adj = 0.5*(c1+c2-a1-a2); 171 adj = 0.5*(c1+c2-a1-a2); 185 adj = adj.cross(a12); 172 adj = adj.cross(a12); 186 adj = adj.unit() + vec->normal; 173 adj = adj.unit() + vec->normal; 187 vec->edgeNorm[0] = adj.unit(); 174 vec->edgeNorm[0] = adj.unit(); 188 175 189 a12 = b1-b2; 176 a12 = b1-b2; 190 adj = 0.5*(d1+d2-b1-b2); 177 adj = 0.5*(d1+d2-b1-b2); 191 adj = adj.cross(a12); 178 adj = adj.cross(a12); 192 adj = adj.unit() + vec->normal; 179 adj = adj.unit() + vec->normal; 193 vec->edgeNorm[1] = adj.unit(); 180 vec->edgeNorm[1] = adj.unit(); 194 181 195 // 182 // 196 // ...the corners are crucial. It is impor 183 // ...the corners are crucial. It is important that 197 // they are calculated consistently for 184 // they are calculated consistently for adjacent 198 // G4PolyhedraSides, to avoid gaps caus 185 // G4PolyhedraSides, to avoid gaps caused by roundoff. 199 // 186 // 200 vec->edges[0] = edge; 187 vec->edges[0] = edge; 201 edge->corner[0] = a1; 188 edge->corner[0] = a1; 202 edge->corner[1] = b1; 189 edge->corner[1] = b1; 203 edge++; 190 edge++; 204 vec->edges[1] = edge; 191 vec->edges[1] = edge; 205 192 206 a1 = a2; 193 a1 = a2; 207 b1 = b2; 194 b1 = b2; 208 c1 = c2; 195 c1 = c2; 209 d1 = d2; 196 d1 = d2; 210 } while( ++vec < vecs+maxSides ); << 197 } while( ++vec < vecs+numSide ); 211 198 212 // 199 // 213 // Clean up hanging edge 200 // Clean up hanging edge 214 // 201 // 215 if (phiIsOpen) 202 if (phiIsOpen) 216 { 203 { 217 edge->corner[0] = a2; 204 edge->corner[0] = a2; 218 edge->corner[1] = b2; 205 edge->corner[1] = b2; 219 } 206 } 220 else 207 else 221 { 208 { 222 vecs[maxSides-1].edges[1] = edges; << 209 vecs[numSide-1].edges[1] = edges; 223 } 210 } 224 211 225 // 212 // 226 // Go back and fill in remaining fields in e 213 // Go back and fill in remaining fields in edges 227 // 214 // 228 vec = vecs; 215 vec = vecs; 229 G4PolyhedraSideVec *prev = vecs+maxSides-1; << 216 G4PolyhedraSideVec *prev = vecs+numSide-1; 230 do // Loop checking, 13.08.2015, G.Cosmo << 217 do 231 { 218 { 232 edge = vec->edges[0]; // The edge betwe 219 edge = vec->edges[0]; // The edge between prev and vec 233 220 234 // 221 // 235 // Okay: edge normal is average of normals 222 // Okay: edge normal is average of normals of adjacent faces 236 // 223 // 237 G4ThreeVector eNorm = vec->normal + prev-> 224 G4ThreeVector eNorm = vec->normal + prev->normal; 238 edge->normal = eNorm.unit(); 225 edge->normal = eNorm.unit(); 239 226 240 // 227 // 241 // Vertex normal is average of norms of ad 228 // Vertex normal is average of norms of adjacent surfaces (all four) 242 // However, vec->edgeNorm is unit vector i 229 // However, vec->edgeNorm is unit vector in some direction 243 // as the sum of normals of adjacent Polyh 230 // as the sum of normals of adjacent PolyhedraSide with vec. 244 // The normalization used for this vector 231 // The normalization used for this vector should be the same 245 // for vec and prev. 232 // for vec and prev. 246 // 233 // 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[ 234 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0]; 248 edge->cornNorm[0] = eNorm.unit(); 235 edge->cornNorm[0] = eNorm.unit(); 249 236 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[ 237 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1]; 251 edge->cornNorm[1] = eNorm.unit(); 238 edge->cornNorm[1] = eNorm.unit(); 252 } while( prev=vec, ++vec < vecs + maxSides ) << 239 } while( prev=vec, ++vec < vecs + numSide ); 253 240 254 if (phiIsOpen) 241 if (phiIsOpen) 255 { 242 { 256 // G4double rFact = std::cos(0.5*deltaPhi) 243 // G4double rFact = std::cos(0.5*deltaPhi); 257 // 244 // 258 // If phi is open, we need to patch up nor 245 // If phi is open, we need to patch up normals of the 259 // first and last edges and their correspo 246 // first and last edges and their corresponding 260 // vertices. 247 // vertices. 261 // 248 // 262 // We use vectors that are in the plane of 249 // We use vectors that are in the plane of the 263 // face. This should be safe. 250 // face. This should be safe. 264 // 251 // 265 vec = vecs; 252 vec = vecs; 266 253 267 G4ThreeVector normvec = vec->edges[0]->cor 254 G4ThreeVector normvec = vec->edges[0]->corner[0] 268 - vec->edges[0]->cor 255 - vec->edges[0]->corner[1]; 269 normvec = normvec.cross(vec->normal); 256 normvec = normvec.cross(vec->normal); 270 if (normvec.dot(vec->surfPhi) > 0) normvec 257 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec; 271 258 272 vec->edges[0]->normal = normvec.unit(); 259 vec->edges[0]->normal = normvec.unit(); 273 260 274 vec->edges[0]->cornNorm[0] = (vec->edges[0 261 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0] 275 - vec->center) 262 - vec->center).unit(); 276 vec->edges[0]->cornNorm[1] = (vec->edges[0 263 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1] 277 - vec->center) 264 - vec->center).unit(); 278 265 279 // 266 // 280 // Repeat for ending phi 267 // Repeat for ending phi 281 // 268 // 282 vec = vecs + maxSides - 1; << 269 vec = vecs + numSide - 1; 283 270 284 normvec = vec->edges[1]->corner[0] - vec-> 271 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1]; 285 normvec = normvec.cross(vec->normal); 272 normvec = normvec.cross(vec->normal); 286 if (normvec.dot(vec->surfPhi) < 0) normvec 273 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec; 287 274 288 vec->edges[1]->normal = normvec.unit(); 275 vec->edges[1]->normal = normvec.unit(); 289 276 290 vec->edges[1]->cornNorm[0] = (vec->edges[1 277 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0] 291 - vec->center) 278 - vec->center).unit(); 292 vec->edges[1]->cornNorm[1] = (vec->edges[1 279 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1] 293 - vec->center) 280 - vec->center).unit(); 294 } 281 } 295 282 296 // 283 // 297 // edgeNorm is the factor one multiplies the 284 // edgeNorm is the factor one multiplies the distance along vector phi 298 // on the surface of one of our sides in ord 285 // on the surface of one of our sides in order to calculate the distance 299 // from the edge. (see routine DistanceAway) 286 // from the edge. (see routine DistanceAway) 300 // 287 // 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le 288 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] ); 302 } 289 } 303 290 >> 291 >> 292 // 304 // Fake default constructor - sets only member 293 // Fake default constructor - sets only member data and allocates memory 305 // for usage restri 294 // for usage restricted to object persistency. 306 // 295 // 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) 296 G4PolyhedraSide::G4PolyhedraSide( __void__&) 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), << 297 : numSide(0), startPhi(0.), deltaPhi(0.), endPhi(0.), 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 298 phiIsOpen(false), allBehind(false), cone(0), vecs(0), edges(0), >> 299 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.), fSurfaceArea(0.) 310 { 300 { 311 r[0] = r[1] = 0.; 301 r[0] = r[1] = 0.; 312 z[0] = z[1] = 0.; 302 z[0] = z[1] = 0.; 313 lenPhi[0] = lenPhi[1] = 0.; 303 lenPhi[0] = lenPhi[1] = 0.; 314 } 304 } 315 305 316 306 >> 307 // 317 // Destructor 308 // Destructor 318 // 309 // 319 G4PolyhedraSide::~G4PolyhedraSide() 310 G4PolyhedraSide::~G4PolyhedraSide() 320 { 311 { 321 delete cone; 312 delete cone; 322 delete [] vecs; 313 delete [] vecs; 323 delete [] edges; 314 delete [] edges; 324 } 315 } 325 316 >> 317 >> 318 // 326 // Copy constructor 319 // Copy constructor 327 // 320 // 328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 321 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source ) >> 322 : G4VCSGface() 329 { 323 { 330 instanceID = subInstanceManager.CreateSubIns << 331 << 332 CopyStuff( source ); 324 CopyStuff( source ); 333 } 325 } 334 326 335 327 336 // 328 // 337 // Assignment operator 329 // Assignment operator 338 // 330 // 339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 331 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source ) 340 { 332 { 341 if (this == &source) return *this; 333 if (this == &source) return *this; 342 334 343 delete cone; 335 delete cone; 344 delete [] vecs; 336 delete [] vecs; 345 delete [] edges; 337 delete [] edges; 346 338 347 CopyStuff( source ); 339 CopyStuff( source ); 348 340 349 return *this; 341 return *this; 350 } 342 } 351 343 >> 344 >> 345 // 352 // CopyStuff 346 // CopyStuff 353 // 347 // 354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 348 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source ) 355 { 349 { 356 // 350 // 357 // The simple stuff 351 // The simple stuff 358 // 352 // >> 353 numSide = source.numSide; 359 r[0] = source.r[0]; 354 r[0] = source.r[0]; 360 r[1] = source.r[1]; 355 r[1] = source.r[1]; 361 z[0] = source.z[0]; 356 z[0] = source.z[0]; 362 z[1] = source.z[1]; 357 z[1] = source.z[1]; 363 numSide = source.numSide; << 364 startPhi = source.startPhi; 358 startPhi = source.startPhi; 365 deltaPhi = source.deltaPhi; 359 deltaPhi = source.deltaPhi; 366 endPhi = source.endPhi; 360 endPhi = source.endPhi; 367 phiIsOpen = source.phiIsOpen; 361 phiIsOpen = source.phiIsOpen; 368 allBehind = source.allBehind; 362 allBehind = source.allBehind; 369 363 370 lenRZ = source.lenRZ; 364 lenRZ = source.lenRZ; 371 lenPhi[0] = source.lenPhi[0]; 365 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[1] = source.lenPhi[1]; 366 lenPhi[1] = source.lenPhi[1]; 373 edgeNorm = source.edgeNorm; 367 edgeNorm = source.edgeNorm; 374 368 375 kCarTolerance = source.kCarTolerance; 369 kCarTolerance = source.kCarTolerance; 376 fSurfaceArea = source.fSurfaceArea; 370 fSurfaceArea = source.fSurfaceArea; 377 371 378 cone = new G4IntersectingCone( *source.cone 372 cone = new G4IntersectingCone( *source.cone ); 379 373 380 // 374 // 381 // Duplicate edges 375 // Duplicate edges 382 // 376 // 383 const std::size_t numSides = (numSide > 0) ? << 377 G4int numEdges = phiIsOpen ? numSide+1 : numSide; 384 const std::size_t numEdges = phiIsOpen ? num << 385 edges = new G4PolyhedraSideEdge[numEdges]; 378 edges = new G4PolyhedraSideEdge[numEdges]; 386 379 387 G4PolyhedraSideEdge *edge = edges, 380 G4PolyhedraSideEdge *edge = edges, 388 *sourceEdge = source.edges; 381 *sourceEdge = source.edges; 389 do // Loop checking, 13.08.2015, G.Cosmo << 382 do 390 { 383 { 391 *edge = *sourceEdge; 384 *edge = *sourceEdge; 392 } while( ++sourceEdge, ++edge < edges + numE 385 } while( ++sourceEdge, ++edge < edges + numEdges); 393 386 394 // 387 // 395 // Duplicate vecs 388 // Duplicate vecs 396 // 389 // 397 vecs = new G4PolyhedraSideVec[numSides]; << 390 vecs = new G4PolyhedraSideVec[numSide]; 398 391 399 G4PolyhedraSideVec *vec = vecs, 392 G4PolyhedraSideVec *vec = vecs, 400 *sourceVec = source.vecs; 393 *sourceVec = source.vecs; 401 do // Loop checking, 13.08.2015, G.Cosmo << 394 do 402 { 395 { 403 *vec = *sourceVec; 396 *vec = *sourceVec; 404 vec->edges[0] = edges + (sourceVec->edges[ 397 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges); 405 vec->edges[1] = edges + (sourceVec->edges[ 398 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges); 406 } while( ++sourceVec, ++vec < vecs + numSide << 399 } while( ++sourceVec, ++vec < vecs + numSide ); 407 } 400 } 408 401 >> 402 >> 403 // 409 // Intersect 404 // Intersect 410 // 405 // 411 // Decide if a line intersects the face. 406 // Decide if a line intersects the face. 412 // 407 // 413 // Arguments: 408 // Arguments: 414 // p = (in) starting point of line segment 409 // p = (in) starting point of line segment 415 // v = (in) direction of line segment (ass 410 // v = (in) direction of line segment (assumed a unit vector) 416 // A, B = (in) 2d transform variables (see 411 // A, B = (in) 2d transform variables (see note top of file) 417 // normSign = (in) desired sign for dot prod 412 // normSign = (in) desired sign for dot product with normal (see below) 418 // surfTolerance = (in) minimum distance fro 413 // surfTolerance = (in) minimum distance from the surface 419 // vecs = (in) Vector set array 414 // vecs = (in) Vector set array 420 // distance = (out) distance to surface furf 415 // distance = (out) distance to surface furfilling all requirements 421 // distFromSurface = (out) distance from the 416 // distFromSurface = (out) distance from the surface 422 // thisNormal = (out) normal vector of the i 417 // thisNormal = (out) normal vector of the intersecting surface 423 // 418 // 424 // Return value: 419 // Return value: 425 // true if an intersection is found. Otherwis 420 // true if an intersection is found. Otherwise, output parameters are 426 // undefined. 421 // undefined. 427 // 422 // 428 // Notes: 423 // Notes: 429 // * normSign: if we are "inside" the shape an 424 // * normSign: if we are "inside" the shape and only want to find out how far 430 // to leave the shape, we only want to consi 425 // to leave the shape, we only want to consider intersections with surfaces in 431 // which the trajectory is leaving the shape 426 // which the trajectory is leaving the shape. Since the normal vectors to the 432 // surface always point outwards from the in 427 // surface always point outwards from the inside, this means we want the dot 433 // product of the trajectory direction v and 428 // product of the trajectory direction v and the normal of the side normals[i] 434 // to be positive. Thus, we should specify n 429 // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if 435 // we are outside and want to go in, normSig 430 // we are outside and want to go in, normSign should be set to -1.0. 436 // Don't set normSign to zero, or you will g 431 // Don't set normSign to zero, or you will get no intersections! 437 // 432 // 438 // * surfTolerance: see notes on argument "sur 433 // * surfTolerance: see notes on argument "surfTolerance" in routine 439 // "IntersectSidePlane". 434 // "IntersectSidePlane". 440 // ----HOWEVER---- We should *not* apply thi 435 // ----HOWEVER---- We should *not* apply this surface tolerance if the 441 // starting point is not within phi or z of 436 // starting point is not within phi or z of the surface. Specifically, 442 // if the starting point p angle in x/y plac 437 // if the starting point p angle in x/y places it on a separate side from the 443 // intersection or if the starting point p i 438 // intersection or if the starting point p is outside the z bounds of the 444 // segment, surfTolerance must be ignored or 439 // segment, surfTolerance must be ignored or we should *always* accept the 445 // intersection! 440 // intersection! 446 // This is simply because the sides do not h 441 // This is simply because the sides do not have infinite extent. 447 // 442 // 448 // 443 // 449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 444 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p, 450 const G4Thr << 445 const G4ThreeVector &v, 451 G4boo 446 G4bool outgoing, 452 G4dou 447 G4double surfTolerance, 453 G4dou << 448 G4double &distance, 454 G4dou << 449 G4double &distFromSurface, 455 G4Thr << 450 G4ThreeVector &normal, 456 G4boo << 451 G4bool &isAllBehind ) 457 { 452 { 458 G4double normSign = outgoing ? +1 : -1; 453 G4double normSign = outgoing ? +1 : -1; 459 454 460 // 455 // 461 // ------------------TO BE IMPLEMENTED------ 456 // ------------------TO BE IMPLEMENTED--------------------- 462 // Testing the intersection of individual ph 457 // Testing the intersection of individual phi faces is 463 // pretty straight forward. The simple thing 458 // pretty straight forward. The simple thing therefore is to 464 // form a loop and check them all in sequenc 459 // form a loop and check them all in sequence. 465 // 460 // 466 // But, I worry about one day someone making 461 // But, I worry about one day someone making 467 // a polygon with a thousands sides. A linea 462 // a polygon with a thousands sides. A linear search 468 // would not be ideal in such a case. 463 // would not be ideal in such a case. 469 // 464 // 470 // So, it would be nice to be able to quickl 465 // So, it would be nice to be able to quickly decide 471 // which face would be intersected. One can 466 // which face would be intersected. One can make a very 472 // good guess by using the intersection with 467 // good guess by using the intersection with a cone. 473 // However, this is only reliable in 99% of 468 // However, this is only reliable in 99% of the cases. 474 // 469 // 475 // My solution: make a decent guess as to th 470 // My solution: make a decent guess as to the one or 476 // two potential faces might get intersected 471 // two potential faces might get intersected, and then 477 // test them. If we have the wrong face, use 472 // test them. If we have the wrong face, use the test 478 // to make a better guess. 473 // to make a better guess. 479 // 474 // 480 // Since we might have two guesses, form a q 475 // Since we might have two guesses, form a queue of 481 // potential intersecting faces. Keep an arr 476 // potential intersecting faces. Keep an array of 482 // already tested faces to avoid doing one m 477 // already tested faces to avoid doing one more than 483 // once. 478 // once. 484 // 479 // 485 // Result: at worst, an iterative search. On 480 // Result: at worst, an iterative search. On average, 486 // a little more than two tests would be req 481 // a little more than two tests would be required. 487 // 482 // 488 G4ThreeVector q = p + v; 483 G4ThreeVector q = p + v; 489 484 490 G4int face = 0; 485 G4int face = 0; 491 G4PolyhedraSideVec* vec = vecs; << 486 G4PolyhedraSideVec *vec = vecs; 492 do // Loop checking, 13.08.2015, G.Cosmo << 487 do 493 { 488 { 494 // 489 // 495 // Correct normal? 490 // Correct normal? 496 // 491 // 497 G4double dotProd = normSign*v.dot(vec->nor 492 G4double dotProd = normSign*v.dot(vec->normal); 498 if (dotProd <= 0) continue; 493 if (dotProd <= 0) continue; 499 494 500 // 495 // 501 // Is this face in front of the point alon 496 // Is this face in front of the point along the trajectory? 502 // 497 // 503 G4ThreeVector delta = p - vec->center; 498 G4ThreeVector delta = p - vec->center; 504 distFromSurface = -normSign*delta.dot(vec- 499 distFromSurface = -normSign*delta.dot(vec->normal); 505 500 506 if (distFromSurface < -surfTolerance) cont 501 if (distFromSurface < -surfTolerance) continue; 507 502 508 // 503 // 509 // phi 504 // phi 510 // c -------- d ^ 505 // c -------- d ^ 511 // | | | 506 // | | | 512 // a -------- b +---> r/z 507 // a -------- b +---> r/z 513 // 508 // 514 // 509 // 515 // Do we remain on this particular segment 510 // Do we remain on this particular segment? 516 // 511 // 517 G4ThreeVector qc = q - vec->edges[1]->corn 512 G4ThreeVector qc = q - vec->edges[1]->corner[0]; 518 G4ThreeVector qd = q - vec->edges[1]->corn 513 G4ThreeVector qd = q - vec->edges[1]->corner[1]; 519 514 520 if (normSign*qc.cross(qd).dot(v) < 0) cont 515 if (normSign*qc.cross(qd).dot(v) < 0) continue; 521 516 522 G4ThreeVector qa = q - vec->edges[0]->corn 517 G4ThreeVector qa = q - vec->edges[0]->corner[0]; 523 G4ThreeVector qb = q - vec->edges[0]->corn 518 G4ThreeVector qb = q - vec->edges[0]->corner[1]; 524 519 525 if (normSign*qa.cross(qb).dot(v) > 0) cont 520 if (normSign*qa.cross(qb).dot(v) > 0) continue; 526 521 527 // 522 // 528 // We found the one and only segment we mi 523 // We found the one and only segment we might be intersecting. 529 // Do we remain within r/z bounds? 524 // Do we remain within r/z bounds? 530 // 525 // 531 526 532 if (r[0] > 1/kInfinity && normSign*qa.cros 527 if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false; 533 if (r[1] > 1/kInfinity && normSign*qb.cros 528 if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false; 534 529 535 // 530 // 536 // We allow the face to be slightly behind 531 // We allow the face to be slightly behind the trajectory 537 // (surface tolerance) only if the point p 532 // (surface tolerance) only if the point p is within 538 // the vicinity of the face 533 // the vicinity of the face 539 // 534 // 540 if (distFromSurface < 0) 535 if (distFromSurface < 0) 541 { 536 { 542 G4ThreeVector ps = p - vec->center; 537 G4ThreeVector ps = p - vec->center; 543 538 544 G4double rz = ps.dot(vec->surfRZ); 539 G4double rz = ps.dot(vec->surfRZ); 545 if (std::fabs(rz) > lenRZ+surfTolerance) 540 if (std::fabs(rz) > lenRZ+surfTolerance) return false; 546 541 547 G4double pp = ps.dot(vec->surfPhi); 542 G4double pp = ps.dot(vec->surfPhi); 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 543 if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false; 549 } 544 } 550 545 551 546 552 // 547 // 553 // Intersection found. Return answer. 548 // Intersection found. Return answer. 554 // 549 // 555 distance = distFromSurface/dotProd; 550 distance = distFromSurface/dotProd; 556 normal = vec->normal; 551 normal = vec->normal; 557 isAllBehind = allBehind; 552 isAllBehind = allBehind; 558 return true; 553 return true; 559 } while( ++vec, ++face < numSide ); 554 } while( ++vec, ++face < numSide ); 560 555 561 // 556 // 562 // Oh well. Better luck next time. 557 // Oh well. Better luck next time. 563 // 558 // 564 return false; 559 return false; 565 } 560 } 566 561 567 // Distance << 562 568 // << 563 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 569 G4double G4PolyhedraSide::Distance( const G4Th << 570 { 564 { 571 G4double normSign = outgoing ? -1 : +1; 565 G4double normSign = outgoing ? -1 : +1; 572 566 573 // 567 // 574 // Try the closest phi segment first 568 // Try the closest phi segment first 575 // 569 // 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 570 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 577 571 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 572 G4ThreeVector pdotc = p - vecs[iPhi].center; 579 G4double normDist = pdotc.dot(vecs[iPhi].nor 573 G4double normDist = pdotc.dot(vecs[iPhi].normal); 580 574 581 if (normSign*normDist > -0.5*kCarTolerance) 575 if (normSign*normDist > -0.5*kCarTolerance) 582 { 576 { 583 return DistanceAway( p, vecs[iPhi], &normD 577 return DistanceAway( p, vecs[iPhi], &normDist ); 584 } 578 } 585 579 586 // 580 // 587 // Now we have an interesting problem... do 581 // Now we have an interesting problem... do we try to find the 588 // closest facing side?? 582 // closest facing side?? 589 // 583 // 590 // Considered carefully, the answer is no. W 584 // Considered carefully, the answer is no. We know that if we 591 // are asking for the distance out, we are s 585 // are asking for the distance out, we are supposed to be inside, 592 // and vice versa. 586 // and vice versa. 593 // 587 // 594 588 595 return kInfinity; 589 return kInfinity; 596 } 590 } 597 591 >> 592 >> 593 // 598 // Inside 594 // Inside 599 // 595 // 600 EInside G4PolyhedraSide::Inside( const G4Three << 596 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p, 601 G4doubl 597 G4double tolerance, 602 G4doubl << 598 G4double *bestDistance ) 603 { 599 { 604 // 600 // 605 // Which phi segment is closest to this poin 601 // Which phi segment is closest to this point? 606 // 602 // 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 603 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 608 604 609 G4double norm; 605 G4double norm; 610 606 611 // 607 // 612 // Get distance to this segment 608 // Get distance to this segment 613 // 609 // 614 *bestDistance = DistanceToOneSide( p, vecs[i 610 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 615 611 616 // 612 // 617 // Use distance along normal to decide retur 613 // Use distance along normal to decide return value 618 // 614 // 619 if ( (std::fabs(norm) > tolerance) || (*best << 615 if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) ) 620 return (norm < 0) ? kInside : kOutside; << 621 else << 622 return kSurface; 616 return kSurface; >> 617 else if (norm < 0) >> 618 return kInside; >> 619 else >> 620 return kOutside; 623 } 621 } 624 622 >> 623 >> 624 // 625 // Normal 625 // Normal 626 // 626 // 627 G4ThreeVector G4PolyhedraSide::Normal( const G << 627 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p, 628 G << 628 G4double *bestDistance ) 629 { 629 { 630 // 630 // 631 // Which phi segment is closest to this poin 631 // Which phi segment is closest to this point? 632 // 632 // 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 634 634 635 // 635 // 636 // Get distance to this segment 636 // Get distance to this segment 637 // 637 // 638 G4double norm; 638 G4double norm; 639 *bestDistance = DistanceToOneSide( p, vecs[i 639 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 640 640 641 return vecs[iPhi].normal; 641 return vecs[iPhi].normal; 642 } 642 } 643 643 >> 644 >> 645 // 644 // Extent 646 // Extent 645 // 647 // 646 G4double G4PolyhedraSide::Extent( const G4Thre 648 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis ) 647 { 649 { 648 if (axis.perp2() < DBL_MIN) 650 if (axis.perp2() < DBL_MIN) 649 { 651 { 650 // 652 // 651 // Special case 653 // Special case 652 // 654 // 653 return axis.z() < 0 ? -cone->ZLo() : cone- 655 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 654 } 656 } 655 657 656 G4int iPhi, i1, i2; 658 G4int iPhi, i1, i2; 657 G4double best; 659 G4double best; 658 G4ThreeVector* list[4]; << 660 G4ThreeVector *list[4]; 659 661 660 // 662 // 661 // Which phi segment, if any, does the axis 663 // Which phi segment, if any, does the axis belong to 662 // 664 // 663 iPhi = PhiSegment( GetPhi(axis) ); 665 iPhi = PhiSegment( GetPhi(axis) ); 664 666 665 if (iPhi < 0) 667 if (iPhi < 0) 666 { 668 { 667 // 669 // 668 // No phi segment? Check front edge of fir 670 // No phi segment? Check front edge of first side and 669 // last edge of second side 671 // last edge of second side 670 // 672 // 671 i1 = 0; i2 = numSide-1; 673 i1 = 0; i2 = numSide-1; 672 } 674 } 673 else 675 else 674 { 676 { 675 // 677 // 676 // Check all corners of matching phi side 678 // Check all corners of matching phi side 677 // 679 // 678 i1 = iPhi; i2 = iPhi; 680 i1 = iPhi; i2 = iPhi; 679 } 681 } 680 682 681 list[0] = vecs[i1].edges[0]->corner; 683 list[0] = vecs[i1].edges[0]->corner; 682 list[1] = vecs[i1].edges[0]->corner+1; 684 list[1] = vecs[i1].edges[0]->corner+1; 683 list[2] = vecs[i2].edges[1]->corner; 685 list[2] = vecs[i2].edges[1]->corner; 684 list[3] = vecs[i2].edges[1]->corner+1; 686 list[3] = vecs[i2].edges[1]->corner+1; 685 687 686 // 688 // 687 // Who's biggest? 689 // Who's biggest? 688 // 690 // 689 best = -kInfinity; 691 best = -kInfinity; 690 G4ThreeVector** vec = list; << 692 G4ThreeVector **vec = list; 691 do // Loop checking, 13.08.2015, G.Cosmo << 693 do 692 { 694 { 693 G4double answer = (*vec)->dot(axis); 695 G4double answer = (*vec)->dot(axis); 694 if (answer > best) best = answer; 696 if (answer > best) best = answer; 695 } while( ++vec < list+4 ); 697 } while( ++vec < list+4 ); 696 698 697 return best; 699 return best; 698 } 700 } 699 701 >> 702 >> 703 // 700 // CalculateExtent 704 // CalculateExtent 701 // 705 // 702 // See notes in G4VCSGface 706 // See notes in G4VCSGface 703 // 707 // 704 void G4PolyhedraSide::CalculateExtent( const E 708 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 705 const G << 709 const G4VoxelLimits &voxelLimit, 706 const G << 710 const G4AffineTransform &transform, 707 G << 711 G4SolidExtentList &extentList ) 708 { 712 { 709 // 713 // 710 // Loop over all sides 714 // Loop over all sides 711 // 715 // 712 G4PolyhedraSideVec *vec = vecs; 716 G4PolyhedraSideVec *vec = vecs; 713 do // Loop checking, 13.08.2015, G.Cosmo << 717 do 714 { 718 { 715 // 719 // 716 // Fill our polygon with the four corners 720 // Fill our polygon with the four corners of 717 // this side, after the specified transfor 721 // this side, after the specified transformation 718 // 722 // 719 G4ClippablePolygon polygon; 723 G4ClippablePolygon polygon; 720 724 721 polygon.AddVertexInOrder(transform. 725 polygon.AddVertexInOrder(transform. 722 TransformPoint(ve 726 TransformPoint(vec->edges[0]->corner[0])); 723 polygon.AddVertexInOrder(transform. 727 polygon.AddVertexInOrder(transform. 724 TransformPoint(ve 728 TransformPoint(vec->edges[0]->corner[1])); 725 polygon.AddVertexInOrder(transform. 729 polygon.AddVertexInOrder(transform. 726 TransformPoint(ve 730 TransformPoint(vec->edges[1]->corner[1])); 727 polygon.AddVertexInOrder(transform. 731 polygon.AddVertexInOrder(transform. 728 TransformPoint(ve 732 TransformPoint(vec->edges[1]->corner[0])); 729 733 730 // 734 // 731 // Get extent 735 // Get extent 732 // 736 // 733 if (polygon.PartialClip( voxelLimit, axis 737 if (polygon.PartialClip( voxelLimit, axis )) 734 { 738 { 735 // 739 // 736 // Get dot product of normal along targe 740 // Get dot product of normal along target axis 737 // 741 // 738 polygon.SetNormal( transform.TransformAx 742 polygon.SetNormal( transform.TransformAxis(vec->normal) ); 739 743 740 extentList.AddSurface( polygon ); 744 extentList.AddSurface( polygon ); 741 } 745 } 742 } while( ++vec < vecs+numSide ); 746 } while( ++vec < vecs+numSide ); 743 747 744 return; 748 return; 745 } 749 } 746 750 >> 751 >> 752 // 747 // IntersectSidePlane 753 // IntersectSidePlane 748 // 754 // 749 // Decide if a line correctly intersects one s 755 // Decide if a line correctly intersects one side plane of our segment. 750 // It is assumed that the correct side has bee 756 // It is assumed that the correct side has been chosen, and thus only 751 // the z bounds (of the entire segment) are ch 757 // the z bounds (of the entire segment) are checked. 752 // 758 // 753 // normSign - To be multiplied against normal: 759 // normSign - To be multiplied against normal: 754 // = +1.0 normal is unchanged 760 // = +1.0 normal is unchanged 755 // = -1.0 normal is reversed (now p 761 // = -1.0 normal is reversed (now points inward) 756 // 762 // 757 // Arguments: 763 // Arguments: 758 // p - (in) Point 764 // p - (in) Point 759 // v - (in) Direction 765 // v - (in) Direction 760 // vec - (in) Description record of the si 766 // vec - (in) Description record of the side plane 761 // normSign - (in) Sign (+/- 1) to apply to 767 // normSign - (in) Sign (+/- 1) to apply to normal 762 // surfTolerance - (in) Surface tolerance (g 768 // surfTolerance - (in) Surface tolerance (generally > 0, see below) 763 // distance - (out) Distance along v to inte 769 // distance - (out) Distance along v to intersection 764 // distFromSurface - (out) Distance from surf 770 // distFromSurface - (out) Distance from surface normal 765 // 771 // 766 // Notes: 772 // Notes: 767 // surfTolerance - Used to decide if a poin 773 // surfTolerance - Used to decide if a point is behind the surface, 768 // a point is allow to be -surfToleranc 774 // a point is allow to be -surfTolerance behind the 769 // surface (as measured along the norma 775 // surface (as measured along the normal), but *only* 770 // if the point is within the r/z bound 776 // if the point is within the r/z bounds + surfTolerance 771 // of the segment. 777 // of the segment. 772 // 778 // 773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 779 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p, 774 co << 780 const G4ThreeVector &v, 775 co 781 const G4PolyhedraSideVec& vec, 776 782 G4double normSign, 777 783 G4double surfTolerance, 778 << 784 G4double &distance, 779 << 785 G4double &distFromSurface ) 780 { 786 { 781 // 787 // 782 // Correct normal? Here we have straight sid 788 // Correct normal? Here we have straight sides, and can safely ignore 783 // intersections where the dot product with 789 // intersections where the dot product with the normal is zero. 784 // 790 // 785 G4double dotProd = normSign*v.dot(vec.normal 791 G4double dotProd = normSign*v.dot(vec.normal); 786 792 787 if (dotProd <= 0) return false; 793 if (dotProd <= 0) return false; 788 794 789 // 795 // 790 // Calculate distance to surface. If the sid 796 // Calculate distance to surface. If the side is too far 791 // behind the point, we must reject it. 797 // behind the point, we must reject it. 792 // 798 // 793 G4ThreeVector delta = p - vec.center; 799 G4ThreeVector delta = p - vec.center; 794 distFromSurface = -normSign*delta.dot(vec.no 800 distFromSurface = -normSign*delta.dot(vec.normal); 795 801 796 if (distFromSurface < -surfTolerance) return 802 if (distFromSurface < -surfTolerance) return false; 797 803 798 // 804 // 799 // Calculate precise distance to intersectio 805 // Calculate precise distance to intersection with the side 800 // (along the trajectory, not normal to the 806 // (along the trajectory, not normal to the surface) 801 // 807 // 802 distance = distFromSurface/dotProd; 808 distance = distFromSurface/dotProd; 803 809 804 // 810 // 805 // Do we fall off the r/z extent of the segm 811 // Do we fall off the r/z extent of the segment? 806 // 812 // 807 // Calculate this very, very carefully! Why? 813 // Calculate this very, very carefully! Why? 808 // 1. If a RZ end is at R=0, you can 814 // 1. If a RZ end is at R=0, you can't miss! 809 // 2. If you just fall off in RZ, th 815 // 2. If you just fall off in RZ, the answer must 810 // be consistent with adjacent G4 816 // be consistent with adjacent G4PolyhedraSide faces. 811 // (2) implies that only variables used by o 817 // (2) implies that only variables used by other G4PolyhedraSide 812 // faces may be used, which includes only: p 818 // faces may be used, which includes only: p, v, and the edge corners. 813 // It also means that one side is a ">" or " 819 // It also means that one side is a ">" or "<", which the other 814 // must be ">=" or "<=". Fortunately, this i 820 // must be ">=" or "<=". Fortunately, this isn't a new problem. 815 // The solution below I borrowed from Joseph 821 // The solution below I borrowed from Joseph O'Rourke, 816 // "Computational Geometry in C (Second Edit 822 // "Computational Geometry in C (Second Edition)" 817 // See: http://cs.smith.edu/~orourke/ 823 // See: http://cs.smith.edu/~orourke/ 818 // 824 // 819 G4ThreeVector ic = p + distance*v - vec.cent 825 G4ThreeVector ic = p + distance*v - vec.center; 820 G4double atRZ = vec.surfRZ.dot(ic); 826 G4double atRZ = vec.surfRZ.dot(ic); 821 827 822 if (atRZ < 0) 828 if (atRZ < 0) 823 { 829 { 824 if (r[0]==0) return true; // Can't miss 830 if (r[0]==0) return true; // Can't miss! 825 831 826 if (atRZ < -lenRZ*1.2) return false; // F 832 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile. 827 833 828 G4ThreeVector q = p + v; 834 G4ThreeVector q = p + v; 829 G4ThreeVector qa = q - vec.edges[0]->corne 835 G4ThreeVector qa = q - vec.edges[0]->corner[0], 830 qb = q - vec.edges[1]->corne 836 qb = q - vec.edges[1]->corner[0]; 831 G4ThreeVector qacb = qa.cross(qb); 837 G4ThreeVector qacb = qa.cross(qb); 832 if (normSign*qacb.dot(v) < 0) return false 838 if (normSign*qacb.dot(v) < 0) return false; 833 839 834 if (distFromSurface < 0) 840 if (distFromSurface < 0) 835 { 841 { 836 if (atRZ < -lenRZ-surfTolerance) return 842 if (atRZ < -lenRZ-surfTolerance) return false; 837 } 843 } 838 } 844 } 839 else if (atRZ > 0) 845 else if (atRZ > 0) 840 { 846 { 841 if (r[1]==0) return true; // Can't miss 847 if (r[1]==0) return true; // Can't miss! 842 848 843 if (atRZ > lenRZ*1.2) return false; // Mi 849 if (atRZ > lenRZ*1.2) return false; // Missed by a mile 844 850 845 G4ThreeVector q = p + v; 851 G4ThreeVector q = p + v; 846 G4ThreeVector qa = q - vec.edges[0]->corne 852 G4ThreeVector qa = q - vec.edges[0]->corner[1], 847 qb = q - vec.edges[1]->corne 853 qb = q - vec.edges[1]->corner[1]; 848 G4ThreeVector qacb = qa.cross(qb); 854 G4ThreeVector qacb = qa.cross(qb); 849 if (normSign*qacb.dot(v) >= 0) return fals 855 if (normSign*qacb.dot(v) >= 0) return false; 850 856 851 if (distFromSurface < 0) 857 if (distFromSurface < 0) 852 { 858 { 853 if (atRZ > lenRZ+surfTolerance) return f 859 if (atRZ > lenRZ+surfTolerance) return false; 854 } 860 } 855 } 861 } 856 862 857 return true; 863 return true; 858 } 864 } 859 865 >> 866 >> 867 // 860 // LineHitsSegments 868 // LineHitsSegments 861 // 869 // 862 // Calculate which phi segments a line interse 870 // Calculate which phi segments a line intersects in three dimensions. 863 // No check is made as to whether the intersec 871 // No check is made as to whether the intersections are within the z bounds of 864 // the segment. 872 // the segment. 865 // 873 // 866 G4int G4PolyhedraSide::LineHitsSegments( const << 874 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p, 867 const << 875 const G4ThreeVector &v, 868 << 876 G4int *i1, G4int *i2 ) 869 { 877 { 870 G4double s1, s2; 878 G4double s1, s2; 871 // 879 // 872 // First, decide if and where the line inter 880 // First, decide if and where the line intersects the cone 873 // 881 // 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 882 G4int n = cone->LineHitsCone( p, v, &s1, &s2 ); 875 883 876 if (n==0) return 0; 884 if (n==0) return 0; 877 885 878 // 886 // 879 // Try first intersection. 887 // Try first intersection. 880 // 888 // 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y 889 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) ); 882 if (n==1) 890 if (n==1) 883 { 891 { 884 return (*i1 < 0) ? 0 : 1; 892 return (*i1 < 0) ? 0 : 1; 885 } 893 } 886 894 887 // 895 // 888 // Try second intersection 896 // Try second intersection 889 // 897 // 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y 898 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) ); 891 if (*i1 == *i2) return 0; 899 if (*i1 == *i2) return 0; 892 900 893 if (*i1 < 0) 901 if (*i1 < 0) 894 { 902 { 895 if (*i2 < 0) return 0; 903 if (*i2 < 0) return 0; 896 *i1 = *i2; 904 *i1 = *i2; 897 return 1; 905 return 1; 898 } 906 } 899 907 900 if (*i2 < 0) return 1; 908 if (*i2 < 0) return 1; 901 909 902 return 2; 910 return 2; 903 } 911 } 904 912 >> 913 >> 914 // 905 // ClosestPhiSegment 915 // ClosestPhiSegment 906 // 916 // 907 // Decide which phi segment is closest in phi 917 // Decide which phi segment is closest in phi to the point. 908 // The result is the same as PhiSegment if the 918 // The result is the same as PhiSegment if there is no phi opening. 909 // 919 // 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do 920 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 ) 911 { 921 { 912 G4int iPhi = PhiSegment( phi0 ); 922 G4int iPhi = PhiSegment( phi0 ); 913 if (iPhi >= 0) return iPhi; 923 if (iPhi >= 0) return iPhi; 914 924 915 // 925 // 916 // Boogers! The points falls inside the phi 926 // Boogers! The points falls inside the phi segment. 917 // Look for the closest point: the start, or 927 // Look for the closest point: the start, or end 918 // 928 // 919 G4double phi = phi0; 929 G4double phi = phi0; 920 930 921 while( phi < startPhi ) // Loop checking, << 931 while( phi < startPhi ) phi += twopi; 922 phi += twopi; << 923 G4double d1 = phi-endPhi; 932 G4double d1 = phi-endPhi; 924 933 925 while( phi > startPhi ) // Loop checking, << 934 while( phi > startPhi ) phi -= twopi; 926 phi -= twopi; << 927 G4double d2 = startPhi-phi; 935 G4double d2 = startPhi-phi; 928 936 929 return (d2 < d1) ? 0 : numSide-1; 937 return (d2 < d1) ? 0 : numSide-1; 930 } 938 } 931 939 >> 940 >> 941 // 932 // PhiSegment 942 // PhiSegment 933 // 943 // 934 // Decide which phi segment an angle belongs t 944 // Decide which phi segment an angle belongs to, counting from zero. 935 // A value of -1 indicates that the phi value 945 // A value of -1 indicates that the phi value is outside the shape 936 // (only possible if phiTotal < 360 degrees). 946 // (only possible if phiTotal < 360 degrees). 937 // 947 // 938 G4int G4PolyhedraSide::PhiSegment( G4double ph 948 G4int G4PolyhedraSide::PhiSegment( G4double phi0 ) 939 { 949 { 940 // 950 // 941 // How far are we from phiStart? Come up wit 951 // How far are we from phiStart? Come up with a positive answer 942 // that is less than 2*PI 952 // that is less than 2*PI 943 // 953 // 944 G4double phi = phi0 - startPhi; 954 G4double phi = phi0 - startPhi; 945 while( phi < 0 ) // Loop checking, 13.08. << 955 while( phi < 0 ) phi += twopi; 946 phi += twopi; << 956 while( phi > twopi ) phi -= twopi; 947 while( phi > twopi ) // Loop checking, 13 << 948 phi -= twopi; << 949 957 950 // 958 // 951 // Divide 959 // Divide 952 // 960 // 953 auto answer = (G4int)(phi/deltaPhi); << 961 G4int answer = (G4int)(phi/deltaPhi); 954 962 955 if (answer >= numSide) 963 if (answer >= numSide) 956 { 964 { 957 if (phiIsOpen) 965 if (phiIsOpen) 958 { 966 { 959 return -1; // Looks like we missed 967 return -1; // Looks like we missed 960 } 968 } 961 else 969 else 962 { 970 { 963 answer = numSide-1; // Probably just ro 971 answer = numSide-1; // Probably just roundoff 964 } 972 } 965 } 973 } 966 974 967 return answer; 975 return answer; 968 } 976 } 969 977 >> 978 >> 979 // 970 // GetPhi 980 // GetPhi 971 // 981 // 972 // Calculate Phi for a given 3-vector (point), 982 // Calculate Phi for a given 3-vector (point), if not already cached for the 973 // same point, in the attempt to avoid consecu 983 // same point, in the attempt to avoid consecutive computation of the same 974 // quantity 984 // quantity 975 // 985 // 976 G4double G4PolyhedraSide::GetPhi( const G4Thre 986 G4double G4PolyhedraSide::GetPhi( const G4ThreeVector& p ) 977 { 987 { 978 G4double val=0.; 988 G4double val=0.; 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 980 989 981 if (vphi != p) << 990 if (fPhi.first != p) 982 { 991 { 983 val = p.phi(); 992 val = p.phi(); 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); << 993 fPhi.first = p; 985 G4MT_phphik = val; << 994 fPhi.second = val; 986 } 995 } 987 else 996 else 988 { 997 { 989 val = G4MT_phphik; << 998 val = fPhi.second; 990 } 999 } 991 return val; 1000 return val; 992 } 1001 } 993 1002 >> 1003 >> 1004 // 994 // DistanceToOneSide 1005 // DistanceToOneSide 995 // 1006 // 996 // Arguments: 1007 // Arguments: 997 // p - (in) Point to check 1008 // p - (in) Point to check 998 // vec - (in) vector set of this side 1009 // vec - (in) vector set of this side 999 // normDist - (out) distance normal to the si 1010 // normDist - (out) distance normal to the side or edge, as appropriate, signed 1000 // Return value = total distance from the sid 1011 // Return value = total distance from the side 1001 // 1012 // 1002 G4double G4PolyhedraSide::DistanceToOneSide( << 1013 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p, 1003 << 1014 const G4PolyhedraSideVec &vec, 1004 << 1015 G4double *normDist ) 1005 { 1016 { 1006 G4ThreeVector pct = p - vec.center; 1017 G4ThreeVector pct = p - vec.center; 1007 1018 1008 // 1019 // 1009 // Get normal distance 1020 // Get normal distance 1010 // 1021 // 1011 *normDist = vec.normal.dot(pct); 1022 *normDist = vec.normal.dot(pct); 1012 1023 1013 // 1024 // 1014 // Add edge penalty 1025 // Add edge penalty 1015 // 1026 // 1016 return DistanceAway( p, vec, normDist ); 1027 return DistanceAway( p, vec, normDist ); 1017 } 1028 } 1018 1029 >> 1030 >> 1031 // 1019 // DistanceAway 1032 // DistanceAway 1020 // 1033 // 1021 // Add distance from side edges, if necessary << 1034 // Add distance from side edges, if necesssary, to total distance, 1022 // and updates normDist appropriate depending 1035 // and updates normDist appropriate depending on edge normals. 1023 // 1036 // 1024 G4double G4PolyhedraSide::DistanceAway( const << 1037 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p, 1025 const << 1038 const G4PolyhedraSideVec &vec, 1026 << 1039 G4double *normDist ) 1027 { 1040 { 1028 G4double distOut2; 1041 G4double distOut2; 1029 G4ThreeVector pct = p - vec.center; 1042 G4ThreeVector pct = p - vec.center; 1030 G4double distFaceNorm = *normDist; 1043 G4double distFaceNorm = *normDist; 1031 1044 1032 // 1045 // 1033 // Okay, are we inside bounds? 1046 // Okay, are we inside bounds? 1034 // 1047 // 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); 1048 G4double pcDotRZ = pct.dot(vec.surfRZ); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); 1049 G4double pcDotPhi = pct.dot(vec.surfPhi); 1037 1050 1038 // 1051 // 1039 // Go through all permutations. 1052 // Go through all permutations. 1040 // 1053 // Phi 1041 // | | 1054 // | | ^ 1042 // B | H | E 1055 // B | H | E | 1043 // ------[1]------------[3]----- 1056 // ------[1]------------[3]----- | 1044 // |XXXXXXXXXXXXXX| 1057 // |XXXXXXXXXXXXXX| +----> RZ 1045 // C |XXXXXXXXXXXXXX| F 1058 // C |XXXXXXXXXXXXXX| F 1046 // |XXXXXXXXXXXXXX| 1059 // |XXXXXXXXXXXXXX| 1047 // ------[0]------------[2]---- 1060 // ------[0]------------[2]---- 1048 // A | G | D 1061 // A | G | D 1049 // | | 1062 // | | 1050 // 1063 // 1051 // It's real messy, but at least it's quick 1064 // It's real messy, but at least it's quick 1052 // 1065 // 1053 1066 1054 if (pcDotRZ < -lenRZ) 1067 if (pcDotRZ < -lenRZ) 1055 { 1068 { 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenP 1069 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1]; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1070 G4double distOutZ = pcDotRZ+lenRZ; 1058 // 1071 // 1059 // Below in RZ 1072 // Below in RZ 1060 // 1073 // 1061 if (pcDotPhi < -lenPhiZ) 1074 if (pcDotPhi < -lenPhiZ) 1062 { 1075 { 1063 // 1076 // 1064 // ...and below in phi. Find distance t 1077 // ...and below in phi. Find distance to point (A) 1065 // 1078 // 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1079 G4double distOutPhi = pcDotPhi+lenPhiZ; 1067 distOut2 = distOutPhi*distOutPhi + dist 1080 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1068 G4ThreeVector pa = p - vec.edges[0]->co 1081 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1069 *normDist = pa.dot(vec.edges[0]->cornNo 1082 *normDist = pa.dot(vec.edges[0]->cornNorm[0]); 1070 } 1083 } 1071 else if (pcDotPhi > lenPhiZ) 1084 else if (pcDotPhi > lenPhiZ) 1072 { 1085 { 1073 // 1086 // 1074 // ...and above in phi. Find distance t 1087 // ...and above in phi. Find distance to point (B) 1075 // 1088 // 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1089 G4double distOutPhi = pcDotPhi-lenPhiZ; 1077 distOut2 = distOutPhi*distOutPhi + dist 1090 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1078 G4ThreeVector pb = p - vec.edges[1]->co 1091 G4ThreeVector pb = p - vec.edges[1]->corner[0]; 1079 *normDist = pb.dot(vec.edges[1]->cornNo 1092 *normDist = pb.dot(vec.edges[1]->cornNorm[0]); 1080 } 1093 } 1081 else 1094 else 1082 { 1095 { 1083 // 1096 // 1084 // ...and inside in phi. Find distance 1097 // ...and inside in phi. Find distance to line (C) 1085 // 1098 // 1086 G4ThreeVector pa = p - vec.edges[0]->co 1099 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1087 distOut2 = distOutZ*distOutZ; 1100 distOut2 = distOutZ*distOutZ; 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1101 *normDist = pa.dot(vec.edgeNorm[0]); 1089 } 1102 } 1090 } 1103 } 1091 else if (pcDotRZ > lenRZ) 1104 else if (pcDotRZ > lenRZ) 1092 { 1105 { 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenP 1106 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1]; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1107 G4double distOutZ = pcDotRZ-lenRZ; 1095 // 1108 // 1096 // Above in RZ 1109 // Above in RZ 1097 // 1110 // 1098 if (pcDotPhi < -lenPhiZ) 1111 if (pcDotPhi < -lenPhiZ) 1099 { 1112 { 1100 // 1113 // 1101 // ...and below in phi. Find distance t 1114 // ...and below in phi. Find distance to point (D) 1102 // 1115 // 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1116 G4double distOutPhi = pcDotPhi+lenPhiZ; 1104 distOut2 = distOutPhi*distOutPhi + dist 1117 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1105 G4ThreeVector pd = p - vec.edges[0]->co 1118 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1106 *normDist = pd.dot(vec.edges[0]->cornNo 1119 *normDist = pd.dot(vec.edges[0]->cornNorm[1]); 1107 } 1120 } 1108 else if (pcDotPhi > lenPhiZ) 1121 else if (pcDotPhi > lenPhiZ) 1109 { 1122 { 1110 // 1123 // 1111 // ...and above in phi. Find distance t 1124 // ...and above in phi. Find distance to point (E) 1112 // 1125 // 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1126 G4double distOutPhi = pcDotPhi-lenPhiZ; 1114 distOut2 = distOutPhi*distOutPhi + dist 1127 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1115 G4ThreeVector pe = p - vec.edges[1]->co 1128 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1116 *normDist = pe.dot(vec.edges[1]->cornNo 1129 *normDist = pe.dot(vec.edges[1]->cornNorm[1]); 1117 } 1130 } 1118 else 1131 else 1119 { 1132 { 1120 // 1133 // 1121 // ...and inside in phi. Find distance 1134 // ...and inside in phi. Find distance to line (F) 1122 // 1135 // 1123 distOut2 = distOutZ*distOutZ; 1136 distOut2 = distOutZ*distOutZ; 1124 G4ThreeVector pd = p - vec.edges[0]->co 1137 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1138 *normDist = pd.dot(vec.edgeNorm[1]); 1126 } 1139 } 1127 } 1140 } 1128 else 1141 else 1129 { 1142 { 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*le 1143 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1]; 1131 // 1144 // 1132 // We are inside RZ bounds 1145 // We are inside RZ bounds 1133 // 1146 // 1134 if (pcDotPhi < -lenPhiZ) 1147 if (pcDotPhi < -lenPhiZ) 1135 { 1148 { 1136 // 1149 // 1137 // ...and below in phi. Find distance t 1150 // ...and below in phi. Find distance to line (G) 1138 // 1151 // 1139 G4double distOut = edgeNorm*(pcDotPhi+l 1152 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ); 1140 distOut2 = distOut*distOut; 1153 distOut2 = distOut*distOut; 1141 G4ThreeVector pd = p - vec.edges[0]->co 1154 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1142 *normDist = pd.dot(vec.edges[0]->normal 1155 *normDist = pd.dot(vec.edges[0]->normal); 1143 } 1156 } 1144 else if (pcDotPhi > lenPhiZ) 1157 else if (pcDotPhi > lenPhiZ) 1145 { 1158 { 1146 // 1159 // 1147 // ...and above in phi. Find distance t 1160 // ...and above in phi. Find distance to line (H) 1148 // 1161 // 1149 G4double distOut = edgeNorm*(pcDotPhi-l 1162 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ); 1150 distOut2 = distOut*distOut; 1163 distOut2 = distOut*distOut; 1151 G4ThreeVector pe = p - vec.edges[1]->co 1164 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1152 *normDist = pe.dot(vec.edges[1]->normal 1165 *normDist = pe.dot(vec.edges[1]->normal); 1153 } 1166 } 1154 else 1167 else 1155 { 1168 { 1156 // 1169 // 1157 // Inside bounds! No penalty. 1170 // Inside bounds! No penalty. 1158 // 1171 // 1159 return std::fabs(distFaceNorm); 1172 return std::fabs(distFaceNorm); 1160 } 1173 } 1161 } 1174 } 1162 return std::sqrt( distFaceNorm*distFaceNorm 1175 return std::sqrt( distFaceNorm*distFaceNorm + distOut2 ); 1163 } 1176 } 1164 1177 >> 1178 >> 1179 // 1165 // Calculation of surface area of a triangle. 1180 // Calculation of surface area of a triangle. 1166 // At the same time a random point in the tri 1181 // At the same time a random point in the triangle is given 1167 // 1182 // 1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1183 G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1, 1169 co << 1184 G4ThreeVector p2, 1170 co << 1185 G4ThreeVector p3, 1171 G4 << 1186 G4ThreeVector *p4 ) 1172 { 1187 { 1173 G4ThreeVector v, w; 1188 G4ThreeVector v, w; 1174 1189 1175 v = p3 - p1; 1190 v = p3 - p1; 1176 w = p1 - p2; 1191 w = p1 - p2; 1177 G4double lambda1 = G4UniformRand(); 1192 G4double lambda1 = G4UniformRand(); 1178 G4double lambda2 = lambda1*G4UniformRand(); 1193 G4double lambda2 = lambda1*G4UniformRand(); 1179 1194 1180 *p4=p2 + lambda1*w + lambda2*v; 1195 *p4=p2 + lambda1*w + lambda2*v; 1181 return 0.5*(v.cross(w)).mag(); 1196 return 0.5*(v.cross(w)).mag(); 1182 } 1197 } 1183 1198 >> 1199 >> 1200 // 1184 // GetPointOnPlane 1201 // GetPointOnPlane 1185 // 1202 // 1186 // Auxiliary method for GetPointOnSurface() 1203 // Auxiliary method for GetPointOnSurface() 1187 // 1204 // 1188 G4ThreeVector 1205 G4ThreeVector 1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1206 G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1, 1190 const G4Thr << 1207 G4ThreeVector p2, G4ThreeVector p3, 1191 G4double* A << 1208 G4double *Area ) 1192 { 1209 { 1193 G4double chose,aOne,aTwo; 1210 G4double chose,aOne,aTwo; 1194 G4ThreeVector point1,point2; 1211 G4ThreeVector point1,point2; 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1212 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1213 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1197 *Area= aOne+aTwo; 1214 *Area= aOne+aTwo; 1198 1215 1199 chose = G4UniformRand()*(aOne+aTwo); 1216 chose = G4UniformRand()*(aOne+aTwo); 1200 if( (chose>=0.) && (chose < aOne) ) 1217 if( (chose>=0.) && (chose < aOne) ) 1201 { 1218 { 1202 return (point1); 1219 return (point1); 1203 } 1220 } 1204 return (point2); 1221 return (point2); 1205 } 1222 } 1206 1223 >> 1224 >> 1225 // 1207 // SurfaceArea() 1226 // SurfaceArea() 1208 // 1227 // 1209 G4double G4PolyhedraSide::SurfaceArea() 1228 G4double G4PolyhedraSide::SurfaceArea() 1210 { 1229 { 1211 if( fSurfaceArea==0. ) 1230 if( fSurfaceArea==0. ) 1212 { 1231 { 1213 // Define the variables 1232 // Define the variables 1214 // 1233 // 1215 G4double area,areas; 1234 G4double area,areas; 1216 G4ThreeVector point1; 1235 G4ThreeVector point1; 1217 G4ThreeVector v1,v2,v3,v4; 1236 G4ThreeVector v1,v2,v3,v4; 1218 G4PolyhedraSideVec* vec = vecs; << 1237 G4PolyhedraSideVec *vec = vecs; 1219 areas=0.; 1238 areas=0.; 1220 1239 1221 // Do a loop on all SideEdge 1240 // Do a loop on all SideEdge 1222 // 1241 // 1223 do // Loop checking, 13.08.2015, G.Cos << 1242 do 1224 { 1243 { 1225 // Define 4points for a Plane or Triang 1244 // Define 4points for a Plane or Triangle 1226 // 1245 // 1227 v1=vec->edges[0]->corner[0]; 1246 v1=vec->edges[0]->corner[0]; 1228 v2=vec->edges[0]->corner[1]; 1247 v2=vec->edges[0]->corner[1]; 1229 v3=vec->edges[1]->corner[1]; 1248 v3=vec->edges[1]->corner[1]; 1230 v4=vec->edges[1]->corner[0]; 1249 v4=vec->edges[1]->corner[0]; 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&are 1250 point1=GetPointOnPlane(v1,v2,v3,v4,&area); 1232 areas+=area; 1251 areas+=area; 1233 } while( ++vec < vecs + numSide); 1252 } while( ++vec < vecs + numSide); 1234 1253 1235 fSurfaceArea=areas; 1254 fSurfaceArea=areas; 1236 } 1255 } 1237 return fSurfaceArea; 1256 return fSurfaceArea; 1238 } 1257 } 1239 1258 >> 1259 >> 1260 // 1240 // GetPointOnFace() 1261 // GetPointOnFace() 1241 // 1262 // 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace 1263 G4ThreeVector G4PolyhedraSide::GetPointOnFace() 1243 { 1264 { 1244 // Define the variables 1265 // Define the variables 1245 // 1266 // 1246 std::vector<G4double>areas; 1267 std::vector<G4double>areas; 1247 std::vector<G4ThreeVector>points; 1268 std::vector<G4ThreeVector>points; 1248 G4double area=0.; << 1269 G4double area=0; 1249 G4double result1; 1270 G4double result1; 1250 G4ThreeVector point1; 1271 G4ThreeVector point1; 1251 G4ThreeVector v1,v2,v3,v4; 1272 G4ThreeVector v1,v2,v3,v4; 1252 G4PolyhedraSideVec* vec = vecs; << 1273 G4PolyhedraSideVec *vec = vecs; 1253 1274 1254 // Do a loop on all SideEdge 1275 // Do a loop on all SideEdge 1255 // 1276 // 1256 do // Loop checking, 13.08.2015, G.Cosmo << 1277 do 1257 { 1278 { 1258 // Define 4points for a Plane or Triangle 1279 // Define 4points for a Plane or Triangle 1259 // 1280 // 1260 v1=vec->edges[0]->corner[0]; 1281 v1=vec->edges[0]->corner[0]; 1261 v2=vec->edges[0]->corner[1]; 1282 v2=vec->edges[0]->corner[1]; 1262 v3=vec->edges[1]->corner[1]; 1283 v3=vec->edges[1]->corner[1]; 1263 v4=vec->edges[1]->corner[0]; 1284 v4=vec->edges[1]->corner[0]; 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&resul 1285 point1=GetPointOnPlane(v1,v2,v3,v4,&result1); 1265 points.push_back(point1); 1286 points.push_back(point1); 1266 areas.push_back(result1); 1287 areas.push_back(result1); 1267 area+=result1; 1288 area+=result1; 1268 } while( ++vec < vecs+numSide ); 1289 } while( ++vec < vecs+numSide ); 1269 1290 1270 // Choose randomly one of the surfaces and 1291 // Choose randomly one of the surfaces and point on it 1271 // 1292 // 1272 G4double chose = area*G4UniformRand(); 1293 G4double chose = area*G4UniformRand(); 1273 G4double Achose1=0., Achose2=0.; << 1294 G4double Achose1,Achose2; >> 1295 Achose1=0;Achose2=0.; 1274 G4int i=0; 1296 G4int i=0; 1275 do // Loop checking, 13.08.2015, G.Cosmo << 1297 do 1276 { 1298 { 1277 Achose2+=areas[i]; 1299 Achose2+=areas[i]; 1278 if(chose>=Achose1 && chose<Achose2) 1300 if(chose>=Achose1 && chose<Achose2) 1279 { 1301 { 1280 point1=points[i] ; break; 1302 point1=points[i] ; break; 1281 } 1303 } 1282 ++i; Achose1=Achose2; << 1304 i++; Achose1=Achose2; 1283 } while( i<numSide ); 1305 } while( i<numSide ); 1284 1306 1285 return point1; 1307 return point1; 1286 } 1308 } 1287 1309