Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyhedraSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyhedraSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyhedraSide.cc (Version 9.6.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4PolyhedraSide, the face << 
 27 // one segmented side of a Polyhedra           << 
 28 //                                                 26 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  27 // $Id: G4PolyhedraSide.cc 67011 2013-01-29 16:17:41Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // 
                                                   >>  30 // --------------------------------------------------------------------
                                                   >>  31 // GEANT 4 class source file
                                                   >>  32 //
                                                   >>  33 //
                                                   >>  34 // G4PolyhedraSide.cc
                                                   >>  35 //
                                                   >>  36 // Implementation of the face representing one segmented side of a Polyhedra
                                                   >>  37 //
 30 // -------------------------------------------     38 // --------------------------------------------------------------------
 31                                                    39 
 32 #include "G4PolyhedraSide.hh"                      40 #include "G4PolyhedraSide.hh"
 33 #include "G4PhysicalConstants.hh"                  41 #include "G4PhysicalConstants.hh"
 34 #include "G4IntersectingCone.hh"                   42 #include "G4IntersectingCone.hh"
 35 #include "G4ClippablePolygon.hh"                   43 #include "G4ClippablePolygon.hh"
 36 #include "G4AffineTransform.hh"                    44 #include "G4AffineTransform.hh"
 37 #include "G4SolidExtentList.hh"                    45 #include "G4SolidExtentList.hh"
 38 #include "G4GeometryTolerance.hh"                  46 #include "G4GeometryTolerance.hh"
 39                                                    47 
 40 #include "Randomize.hh"                            48 #include "Randomize.hh"
 41                                                    49 
 42 // This new field helps to use the class G4PhS << 
 43 //                                             << 
 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 
 45                                                << 
 46 // This macro changes the references to fields << 
 47 // in the class G4PhSideData.                  << 
 48 //                                                 50 //
 49 #define G4MT_phphix ((subInstanceManager.offse << 
 50 #define G4MT_phphiy ((subInstanceManager.offse << 
 51 #define G4MT_phphiz ((subInstanceManager.offse << 
 52 #define G4MT_phphik ((subInstanceManager.offse << 
 53                                                << 
 54 // Returns the private data instance manager.  << 
 55 //                                             << 
 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 
 57 {                                              << 
 58   return subInstanceManager;                   << 
 59 }                                              << 
 60                                                << 
 61 // Constructor                                     51 // Constructor
 62 //                                                 52 //
 63 // Values for r1,z1 and r2,z2 should be specif     53 // Values for r1,z1 and r2,z2 should be specified in clockwise
 64 // order in (r,z).                                 54 // order in (r,z).
 65 //                                                 55 //
 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly <<  56 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ,
 67                                   const G4Poly <<  57                                   const G4PolyhedraSideRZ *tail,
 68                                   const G4Poly <<  58                                   const G4PolyhedraSideRZ *head,
 69                                   const G4Poly <<  59                                   const G4PolyhedraSideRZ *nextRZ,
 70                                         G4int      60                                         G4int theNumSide, 
 71                                         G4doub     61                                         G4double thePhiStart, 
 72                                         G4doub     62                                         G4double thePhiTotal, 
 73                                         G4bool     63                                         G4bool thePhiIsOpen,
 74                                         G4bool     64                                         G4bool isAllBehind )
 75 {                                                  65 {
 76                                                << 
 77   instanceID = subInstanceManager.CreateSubIns << 
 78                                                << 
 79   kCarTolerance = G4GeometryTolerance::GetInst     66   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 80   G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p <<  67   fSurfaceArea=0.;
 81   G4MT_phphik = 0.0;                           <<  68   fPhi.first = G4ThreeVector(0,0,0);
                                                   >>  69   fPhi.second= 0.0;
 82                                                    70 
 83   //                                               71   //
 84   // Record values                                 72   // Record values
 85   //                                               73   //
 86   r[0] = tail->r; z[0] = tail->z;                  74   r[0] = tail->r; z[0] = tail->z;
 87   r[1] = head->r; z[1] = head->z;                  75   r[1] = head->r; z[1] = head->z;
 88                                                    76   
 89   G4double phiTotal;                               77   G4double phiTotal;
 90                                                    78   
 91   //                                               79   //
 92   // Set phi to our convention                     80   // Set phi to our convention
 93   //                                               81   //
 94   startPhi = thePhiStart;                          82   startPhi = thePhiStart;
 95   while (startPhi < 0.0)    // Loop checking,  <<  83   while (startPhi < 0.0) startPhi += twopi;
 96     startPhi += twopi;                         << 
 97                                                    84   
 98   phiIsOpen = thePhiIsOpen;                        85   phiIsOpen = thePhiIsOpen;
 99   phiTotal = (phiIsOpen) ? thePhiTotal : twopi     86   phiTotal = (phiIsOpen) ? thePhiTotal : twopi;
100                                                    87   
101   allBehind = isAllBehind;                         88   allBehind = isAllBehind;
102                                                    89     
103   //                                               90   //
104   // Make our intersecting cone                    91   // Make our intersecting cone
105   //                                               92   //
106   cone = new G4IntersectingCone( r, z );           93   cone = new G4IntersectingCone( r, z );
107                                                    94   
108   //                                               95   //
109   // Construct side plane vector set               96   // Construct side plane vector set
110   //                                               97   //
111   numSide = theNumSide>0 ? theNumSide : 1;     <<  98   numSide = theNumSide;
112   deltaPhi = phiTotal/numSide;                 <<  99   deltaPhi = phiTotal/theNumSide;
113   endPhi = startPhi+phiTotal;                     100   endPhi = startPhi+phiTotal;
114                                                << 101   
115   const std::size_t maxSides = numSide;        << 102   vecs = new G4PolyhedraSideVec[numSide];
116   vecs = new G4PolyhedraSideVec[maxSides];     << 103   
117   edges = new G4PolyhedraSideEdge[phiIsOpen ?  << 104   edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide];
118                                                   105   
119   //                                              106   //
120   // ...this is where we start                    107   // ...this is where we start
121   //                                              108   //
122   G4double phi = startPhi;                        109   G4double phi = startPhi;
123   G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s    110   G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ),
124           b1( r[1]*std::cos(phi), r[1]*std::si    111           b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ),
125           c1( prevRZ->r*std::cos(phi), prevRZ-    112           c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ),
126           d1( nextRZ->r*std::cos(phi), nextRZ-    113           d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ),
127           a2, b2, c2, d2;                         114           a2, b2, c2, d2;
128   G4PolyhedraSideEdge *edge = edges;              115   G4PolyhedraSideEdge *edge = edges;
129                                                   116           
130   G4PolyhedraSideVec *vec = vecs;                 117   G4PolyhedraSideVec *vec = vecs;
131   do    // Loop checking, 13.08.2015, G.Cosmo  << 118   do
132   {                                               119   {
133     //                                            120     //
134     // ...this is where we are going              121     // ...this is where we are going
135     //                                            122     //
136     phi += deltaPhi;                              123     phi += deltaPhi;
137     a2 = G4ThreeVector( r[0]*std::cos(phi), r[    124     a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] );
138     b2 = G4ThreeVector( r[1]*std::cos(phi), r[    125     b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] );
139     c2 = G4ThreeVector( prevRZ->r*std::cos(phi    126     c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z );
140     d2 = G4ThreeVector( nextRZ->r*std::cos(phi    127     d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z );
141                                                   128     
142     G4ThreeVector tt;                             129     G4ThreeVector tt;  
143                                                   130     
144     //                                            131     //
145     // ...build some relevant vectors.            132     // ...build some relevant vectors.
146     //    the point is to sacrifice a little m    133     //    the point is to sacrifice a little memory with precalcs 
147     //    to gain speed                           134     //    to gain speed
148     //                                            135     //
149     vec->center = 0.25*( a1 + a2 + b1 + b2 );     136     vec->center = 0.25*( a1 + a2 + b1 + b2 );
150                                                   137     
151     tt = b2 + b1 - a2 - a1;                       138     tt = b2 + b1 - a2 - a1;
152     vec->surfRZ = tt.unit();                      139     vec->surfRZ = tt.unit();
153     if (vec==vecs) lenRZ = 0.25*tt.mag();         140     if (vec==vecs) lenRZ = 0.25*tt.mag();
154                                                   141     
155     tt = b2 - b1 + a2 - a1;                       142     tt = b2 - b1 + a2 - a1;
156     vec->surfPhi = tt.unit();                     143     vec->surfPhi = tt.unit();
157     if (vec==vecs)                                144     if (vec==vecs)
158     {                                             145     {
159       lenPhi[0] = 0.25*tt.mag();                  146       lenPhi[0] = 0.25*tt.mag();
160       tt = b2 - b1;                               147       tt = b2 - b1;
161       lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len    148       lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ;
162     }                                             149     }
163                                                   150     
164     tt = vec->surfPhi.cross(vec->surfRZ);         151     tt = vec->surfPhi.cross(vec->surfRZ);
165     vec->normal = tt.unit();                      152     vec->normal = tt.unit();
166                                                   153     
167     //                                            154     //
168     // ...edge normals are the average of the     155     // ...edge normals are the average of the normals of
169     //    the two faces they connect.             156     //    the two faces they connect.
170     //                                            157     //
171     // ...edge normals are necessary if we are    158     // ...edge normals are necessary if we are to accurately
172     //    decide if a point is "inside" a face    159     //    decide if a point is "inside" a face. For non-convex
173     //    shapes, it is absolutely necessary t    160     //    shapes, it is absolutely necessary to know information
174     //    on adjacent faces to accurate determ    161     //    on adjacent faces to accurate determine this.
175     //                                            162     //
176     // ...we don't need them for the phi edges    163     // ...we don't need them for the phi edges, since that
177     //    information is taken care of interna    164     //    information is taken care of internally. The r/z edges,
178     //    however, depend on the adjacent G4Po    165     //    however, depend on the adjacent G4PolyhedraSide.
179     //                                            166     //
180     G4ThreeVector a12, adj;                       167     G4ThreeVector a12, adj;
181                                                   168     
182     a12 = a2-a1;                                  169     a12 = a2-a1;
183                                                   170 
184     adj = 0.5*(c1+c2-a1-a2);                      171     adj = 0.5*(c1+c2-a1-a2);
185     adj = adj.cross(a12);                         172     adj = adj.cross(a12);  
186     adj = adj.unit() + vec->normal;               173     adj = adj.unit() + vec->normal;       
187     vec->edgeNorm[0] = adj.unit();                174     vec->edgeNorm[0] = adj.unit();
188                                                   175     
189     a12 = b1-b2;                                  176     a12 = b1-b2;
190     adj = 0.5*(d1+d2-b1-b2);                      177     adj = 0.5*(d1+d2-b1-b2);
191     adj = adj.cross(a12);                         178     adj = adj.cross(a12);  
192     adj = adj.unit() + vec->normal;               179     adj = adj.unit() + vec->normal;       
193     vec->edgeNorm[1] = adj.unit();                180     vec->edgeNorm[1] = adj.unit();
194                                                   181     
195     //                                            182     //
196     // ...the corners are crucial. It is impor    183     // ...the corners are crucial. It is important that
197     //    they are calculated consistently for    184     //    they are calculated consistently for adjacent
198     //    G4PolyhedraSides, to avoid gaps caus    185     //    G4PolyhedraSides, to avoid gaps caused by roundoff.
199     //                                            186     //
200     vec->edges[0] = edge;                         187     vec->edges[0] = edge;
201     edge->corner[0] = a1;                         188     edge->corner[0] = a1;
202     edge->corner[1] = b1;                         189     edge->corner[1] = b1;
203     edge++;                                       190     edge++;
204     vec->edges[1] = edge;                         191     vec->edges[1] = edge;
205                                                   192 
206     a1 = a2;                                      193     a1 = a2;
207     b1 = b2;                                      194     b1 = b2;
208     c1 = c2;                                      195     c1 = c2;
209     d1 = d2;                                      196     d1 = d2;
210   } while( ++vec < vecs+maxSides );            << 197   } while( ++vec < vecs+numSide );
211                                                   198   
212   //                                              199   //
213   // Clean up hanging edge                        200   // Clean up hanging edge
214   //                                              201   //
215   if (phiIsOpen)                                  202   if (phiIsOpen)
216   {                                               203   {
217     edge->corner[0] = a2;                         204     edge->corner[0] = a2;
218     edge->corner[1] = b2;                         205     edge->corner[1] = b2;
219   }                                               206   }
220   else                                            207   else
221   {                                               208   {
222     vecs[maxSides-1].edges[1] = edges;         << 209     vecs[numSide-1].edges[1] = edges;
223   }                                               210   }
224                                                   211   
225   //                                              212   //
226   // Go back and fill in remaining fields in e    213   // Go back and fill in remaining fields in edges
227   //                                              214   //
228   vec = vecs;                                     215   vec = vecs;
229   G4PolyhedraSideVec *prev = vecs+maxSides-1;  << 216   G4PolyhedraSideVec *prev = vecs+numSide-1;
230   do    // Loop checking, 13.08.2015, G.Cosmo  << 217   do
231   {                                               218   {
232     edge = vec->edges[0];    // The edge betwe    219     edge = vec->edges[0];    // The edge between prev and vec
233                                                   220     
234     //                                            221     //
235     // Okay: edge normal is average of normals    222     // Okay: edge normal is average of normals of adjacent faces
236     //                                            223     //
237     G4ThreeVector eNorm = vec->normal + prev->    224     G4ThreeVector eNorm = vec->normal + prev->normal;
238     edge->normal = eNorm.unit();                  225     edge->normal = eNorm.unit();  
239                                                   226     
240     //                                            227     //
241     // Vertex normal is average of norms of ad    228     // Vertex normal is average of norms of adjacent surfaces (all four)
242     // However, vec->edgeNorm is unit vector i    229     // However, vec->edgeNorm is unit vector in some direction
243     // as the sum of normals of adjacent Polyh    230     // as the sum of normals of adjacent PolyhedraSide with vec.
244     // The normalization used for this vector     231     // The normalization used for this vector should be the same
245     // for vec and prev.                          232     // for vec and prev.
246     //                                            233     //
247     eNorm = vec->edgeNorm[0] + prev->edgeNorm[    234     eNorm = vec->edgeNorm[0] + prev->edgeNorm[0];
248     edge->cornNorm[0] = eNorm.unit();             235     edge->cornNorm[0] = eNorm.unit();
249                                                   236   
250     eNorm = vec->edgeNorm[1] + prev->edgeNorm[    237     eNorm = vec->edgeNorm[1] + prev->edgeNorm[1];
251     edge->cornNorm[1] = eNorm.unit();             238     edge->cornNorm[1] = eNorm.unit();
252   } while( prev=vec, ++vec < vecs + maxSides ) << 239   } while( prev=vec, ++vec < vecs + numSide );
253                                                   240   
254   if (phiIsOpen)                                  241   if (phiIsOpen)
255   {                                               242   {
256     // G4double rFact = std::cos(0.5*deltaPhi)    243     // G4double rFact = std::cos(0.5*deltaPhi);
257     //                                            244     //
258     // If phi is open, we need to patch up nor    245     // If phi is open, we need to patch up normals of the
259     // first and last edges and their correspo    246     // first and last edges and their corresponding
260     // vertices.                                  247     // vertices.
261     //                                            248     //
262     // We use vectors that are in the plane of    249     // We use vectors that are in the plane of the
263     // face. This should be safe.                 250     // face. This should be safe.
264     //                                            251     //
265     vec = vecs;                                   252     vec = vecs;
266                                                   253     
267     G4ThreeVector normvec = vec->edges[0]->cor    254     G4ThreeVector normvec = vec->edges[0]->corner[0]
268                           - vec->edges[0]->cor    255                           - vec->edges[0]->corner[1];
269     normvec = normvec.cross(vec->normal);         256     normvec = normvec.cross(vec->normal);
270     if (normvec.dot(vec->surfPhi) > 0) normvec    257     if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec;
271                                                   258 
272     vec->edges[0]->normal = normvec.unit();       259     vec->edges[0]->normal = normvec.unit();
273                                                   260     
274     vec->edges[0]->cornNorm[0] = (vec->edges[0    261     vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0]
275                                 - vec->center)    262                                 - vec->center).unit();
276     vec->edges[0]->cornNorm[1] = (vec->edges[0    263     vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1]
277                                 - vec->center)    264                                 - vec->center).unit();
278                                                   265     
279     //                                            266     //
280     // Repeat for ending phi                      267     // Repeat for ending phi
281     //                                            268     //
282     vec = vecs + maxSides - 1;                 << 269     vec = vecs + numSide - 1;
283                                                   270     
284     normvec = vec->edges[1]->corner[0] - vec->    271     normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1];
285     normvec = normvec.cross(vec->normal);         272     normvec = normvec.cross(vec->normal);
286     if (normvec.dot(vec->surfPhi) < 0) normvec    273     if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec;
287                                                   274 
288     vec->edges[1]->normal = normvec.unit();       275     vec->edges[1]->normal = normvec.unit();
289                                                   276     
290     vec->edges[1]->cornNorm[0] = (vec->edges[1    277     vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0]
291                                 - vec->center)    278                                 - vec->center).unit();
292     vec->edges[1]->cornNorm[1] = (vec->edges[1    279     vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1]
293                                 - vec->center)    280                                 - vec->center).unit();
294   }                                               281   }
295                                                   282   
296   //                                              283   //
297   // edgeNorm is the factor one multiplies the    284   // edgeNorm is the factor one multiplies the distance along vector phi
298   // on the surface of one of our sides in ord    285   // on the surface of one of our sides in order to calculate the distance
299   // from the edge. (see routine DistanceAway)    286   // from the edge. (see routine DistanceAway)
300   //                                              287   //
301   edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le    288   edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] );
302 }                                                 289 }
303                                                   290 
                                                   >> 291 
                                                   >> 292 //
304 // Fake default constructor - sets only member    293 // Fake default constructor - sets only member data and allocates memory
305 //                            for usage restri    294 //                            for usage restricted to object persistency.
306 //                                                295 //
307 G4PolyhedraSide::G4PolyhedraSide( __void__&)      296 G4PolyhedraSide::G4PolyhedraSide( __void__&)
308   : startPhi(0.), deltaPhi(0.), endPhi(0.),    << 297   : numSide(0), startPhi(0.), deltaPhi(0.), endPhi(0.),
309     lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 298     phiIsOpen(false), allBehind(false), cone(0), vecs(0), edges(0),
                                                   >> 299     lenRZ(0.), edgeNorm(0.), kCarTolerance(0.), fSurfaceArea(0.)
310 {                                                 300 {
311   r[0] = r[1] = 0.;                               301   r[0] = r[1] = 0.;
312   z[0] = z[1] = 0.;                               302   z[0] = z[1] = 0.;
313   lenPhi[0] = lenPhi[1] = 0.;                     303   lenPhi[0] = lenPhi[1] = 0.;
314 }                                                 304 }
315                                                   305 
316                                                   306 
                                                   >> 307 //
317 // Destructor                                     308 // Destructor
318 //                                                309 //  
319 G4PolyhedraSide::~G4PolyhedraSide()               310 G4PolyhedraSide::~G4PolyhedraSide()
320 {                                                 311 {
321   delete cone;                                    312   delete cone;
322   delete [] vecs;                                 313   delete [] vecs;
323   delete [] edges;                                314   delete [] edges;
324 }                                                 315 }
325                                                   316 
                                                   >> 317 
                                                   >> 318 //
326 // Copy constructor                               319 // Copy constructor
327 //                                                320 //
328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 321 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source )
                                                   >> 322   : G4VCSGface()
329 {                                                 323 {
330   instanceID = subInstanceManager.CreateSubIns << 
331                                                << 
332   CopyStuff( source );                            324   CopyStuff( source );
333 }                                                 325 }
334                                                   326 
335                                                   327 
336 //                                                328 //
337 // Assignment operator                            329 // Assignment operator
338 //                                                330 //
339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 331 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source )
340 {                                                 332 {
341   if (this == &source) return *this;              333   if (this == &source) return *this;
342                                                   334   
343   delete cone;                                    335   delete cone;
344   delete [] vecs;                                 336   delete [] vecs;
345   delete [] edges;                                337   delete [] edges;
346                                                   338   
347   CopyStuff( source );                            339   CopyStuff( source );
348                                                   340 
349   return *this;                                   341   return *this;
350 }                                                 342 }
351                                                   343 
                                                   >> 344 
                                                   >> 345 //
352 // CopyStuff                                      346 // CopyStuff
353 //                                                347 //
354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 348 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source )
355 {                                                 349 {
356   //                                              350   //
357   // The simple stuff                             351   // The simple stuff
358   //                                              352   //
                                                   >> 353   numSide    = source.numSide;
359   r[0]    = source.r[0];                          354   r[0]    = source.r[0];
360   r[1]    = source.r[1];                          355   r[1]    = source.r[1];
361   z[0]    = source.z[0];                          356   z[0]    = source.z[0];
362   z[1]    = source.z[1];                          357   z[1]    = source.z[1];
363   numSide   = source.numSide;                  << 
364   startPhi  = source.startPhi;                    358   startPhi  = source.startPhi;
365   deltaPhi  = source.deltaPhi;                    359   deltaPhi  = source.deltaPhi;
366   endPhi    = source.endPhi;                      360   endPhi    = source.endPhi;
367   phiIsOpen = source.phiIsOpen;                   361   phiIsOpen = source.phiIsOpen;
368   allBehind = source.allBehind;                   362   allBehind = source.allBehind;
369                                                   363   
370   lenRZ     = source.lenRZ;                       364   lenRZ     = source.lenRZ;
371   lenPhi[0] = source.lenPhi[0];                   365   lenPhi[0] = source.lenPhi[0];
372   lenPhi[1] = source.lenPhi[1];                   366   lenPhi[1] = source.lenPhi[1];
373   edgeNorm  = source.edgeNorm;                    367   edgeNorm  = source.edgeNorm;
374                                                   368 
375   kCarTolerance = source.kCarTolerance;           369   kCarTolerance = source.kCarTolerance;
376   fSurfaceArea = source.fSurfaceArea;             370   fSurfaceArea = source.fSurfaceArea;
377                                                   371 
378   cone = new G4IntersectingCone( *source.cone     372   cone = new G4IntersectingCone( *source.cone );
379                                                   373 
380   //                                              374   //
381   // Duplicate edges                              375   // Duplicate edges
382   //                                              376   //
383   const std::size_t numSides = (numSide > 0) ? << 377   G4int  numEdges = phiIsOpen ? numSide+1 : numSide;
384   const std::size_t numEdges = phiIsOpen ? num << 
385   edges = new G4PolyhedraSideEdge[numEdges];      378   edges = new G4PolyhedraSideEdge[numEdges];
386                                                   379   
387   G4PolyhedraSideEdge *edge = edges,              380   G4PolyhedraSideEdge *edge = edges,
388           *sourceEdge = source.edges;             381           *sourceEdge = source.edges;
389   do    // Loop checking, 13.08.2015, G.Cosmo  << 382   do
390   {                                               383   {
391     *edge = *sourceEdge;                          384     *edge = *sourceEdge;
392   } while( ++sourceEdge, ++edge < edges + numE    385   } while( ++sourceEdge, ++edge < edges + numEdges);
393                                                   386 
394   //                                              387   //
395   // Duplicate vecs                               388   // Duplicate vecs
396   //                                              389   //
397   vecs = new G4PolyhedraSideVec[numSides];     << 390   vecs = new G4PolyhedraSideVec[numSide];
398                                                   391   
399   G4PolyhedraSideVec *vec = vecs,                 392   G4PolyhedraSideVec *vec = vecs,
400          *sourceVec = source.vecs;                393          *sourceVec = source.vecs;
401   do    // Loop checking, 13.08.2015, G.Cosmo  << 394   do
402   {                                               395   {
403     *vec = *sourceVec;                            396     *vec = *sourceVec;
404     vec->edges[0] = edges + (sourceVec->edges[    397     vec->edges[0] = edges + (sourceVec->edges[0] - source.edges);
405     vec->edges[1] = edges + (sourceVec->edges[    398     vec->edges[1] = edges + (sourceVec->edges[1] - source.edges);
406   } while( ++sourceVec, ++vec < vecs + numSide << 399   } while( ++sourceVec, ++vec < vecs + numSide );
407 }                                                 400 }
408                                                   401   
                                                   >> 402 
                                                   >> 403 //
409 // Intersect                                      404 // Intersect
410 //                                                405 //
411 // Decide if a line intersects the face.          406 // Decide if a line intersects the face.
412 //                                                407 //
413 // Arguments:                                     408 // Arguments:
414 //  p    = (in) starting point of line segment    409 //  p    = (in) starting point of line segment
415 //  v    = (in) direction of line segment (ass    410 //  v    = (in) direction of line segment (assumed a unit vector)
416 //  A, B    = (in) 2d transform variables (see    411 //  A, B    = (in) 2d transform variables (see note top of file)
417 //  normSign  = (in) desired sign for dot prod    412 //  normSign  = (in) desired sign for dot product with normal (see below)
418 //  surfTolerance  = (in) minimum distance fro    413 //  surfTolerance  = (in) minimum distance from the surface
419 //  vecs    = (in) Vector set array               414 //  vecs    = (in) Vector set array
420 //  distance  = (out) distance to surface furf    415 //  distance  = (out) distance to surface furfilling all requirements
421 //  distFromSurface = (out) distance from the     416 //  distFromSurface = (out) distance from the surface
422 //  thisNormal  = (out) normal vector of the i    417 //  thisNormal  = (out) normal vector of the intersecting surface
423 //                                                418 //
424 // Return value:                                  419 // Return value:
425 //  true if an intersection is found. Otherwis    420 //  true if an intersection is found. Otherwise, output parameters are
426 //  undefined.                                    421 //  undefined.
427 //                                                422 //
428 // Notes:                                         423 // Notes:
429 // * normSign: if we are "inside" the shape an    424 // * normSign: if we are "inside" the shape and only want to find out how far
430 //   to leave the shape, we only want to consi    425 //   to leave the shape, we only want to consider intersections with surfaces in
431 //   which the trajectory is leaving the shape    426 //   which the trajectory is leaving the shape. Since the normal vectors to the
432 //   surface always point outwards from the in    427 //   surface always point outwards from the inside, this means we want the dot
433 //   product of the trajectory direction v and    428 //   product of the trajectory direction v and the normal of the side normals[i]
434 //   to be positive. Thus, we should specify n    429 //   to be positive. Thus, we should specify normSign as +1.0. Otherwise, if
435 //   we are outside and want to go in, normSig    430 //   we are outside and want to go in, normSign should be set to -1.0.
436 //   Don't set normSign to zero, or you will g    431 //   Don't set normSign to zero, or you will get no intersections!
437 //                                                432 //
438 // * surfTolerance: see notes on argument "sur    433 // * surfTolerance: see notes on argument "surfTolerance" in routine
439 //   "IntersectSidePlane".                        434 //   "IntersectSidePlane".
440 //   ----HOWEVER---- We should *not* apply thi    435 //   ----HOWEVER---- We should *not* apply this surface tolerance if the
441 //   starting point is not within phi or z of     436 //   starting point is not within phi or z of the surface. Specifically,
442 //   if the starting point p angle in x/y plac    437 //   if the starting point p angle in x/y places it on a separate side from the
443 //   intersection or if the starting point p i    438 //   intersection or if the starting point p is outside the z bounds of the
444 //   segment, surfTolerance must be ignored or    439 //   segment, surfTolerance must be ignored or we should *always* accept the
445 //   intersection!                                440 //   intersection! 
446 //   This is simply because the sides do not h    441 //   This is simply because the sides do not have infinite extent.
447 //                                                442 //      
448 //                                                443 //
449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 444 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p,
450                                    const G4Thr << 445                                    const G4ThreeVector &v,  
451                                          G4boo    446                                          G4bool outgoing,
452                                          G4dou    447                                          G4double surfTolerance,
453                                          G4dou << 448                                          G4double &distance,
454                                          G4dou << 449                                          G4double &distFromSurface,
455                                          G4Thr << 450                                          G4ThreeVector &normal,
456                                          G4boo << 451                                          G4bool &isAllBehind )
457 {                                                 452 {
458   G4double normSign = outgoing ? +1 : -1;         453   G4double normSign = outgoing ? +1 : -1;
459                                                   454   
460   //                                              455   //
461   // ------------------TO BE IMPLEMENTED------    456   // ------------------TO BE IMPLEMENTED---------------------
462   // Testing the intersection of individual ph    457   // Testing the intersection of individual phi faces is
463   // pretty straight forward. The simple thing    458   // pretty straight forward. The simple thing therefore is to
464   // form a loop and check them all in sequenc    459   // form a loop and check them all in sequence.
465   //                                              460   //
466   // But, I worry about one day someone making    461   // But, I worry about one day someone making
467   // a polygon with a thousands sides. A linea    462   // a polygon with a thousands sides. A linear search
468   // would not be ideal in such a case.           463   // would not be ideal in such a case.
469   //                                              464   //
470   // So, it would be nice to be able to quickl    465   // So, it would be nice to be able to quickly decide
471   // which face would be intersected. One can     466   // which face would be intersected. One can make a very
472   // good guess by using the intersection with    467   // good guess by using the intersection with a cone.
473   // However, this is only reliable in 99% of     468   // However, this is only reliable in 99% of the cases.
474   //                                              469   //
475   // My solution: make a decent guess as to th    470   // My solution: make a decent guess as to the one or
476   // two potential faces might get intersected    471   // two potential faces might get intersected, and then
477   // test them. If we have the wrong face, use    472   // test them. If we have the wrong face, use the test
478   // to make a better guess.                      473   // to make a better guess.
479   //                                              474   //
480   // Since we might have two guesses, form a q    475   // Since we might have two guesses, form a queue of
481   // potential intersecting faces. Keep an arr    476   // potential intersecting faces. Keep an array of 
482   // already tested faces to avoid doing one m    477   // already tested faces to avoid doing one more than
483   // once.                                        478   // once.
484   //                                              479   //
485   // Result: at worst, an iterative search. On    480   // Result: at worst, an iterative search. On average,
486   // a little more than two tests would be req    481   // a little more than two tests would be required.
487   //                                              482   //
488   G4ThreeVector q = p + v;                        483   G4ThreeVector q = p + v;
489                                                   484   
490   G4int face = 0;                                 485   G4int face = 0;
491   G4PolyhedraSideVec* vec = vecs;              << 486   G4PolyhedraSideVec *vec = vecs;
492   do    // Loop checking, 13.08.2015, G.Cosmo  << 487   do
493   {                                               488   {
494     //                                            489     //
495     // Correct normal?                            490     // Correct normal?
496     //                                            491     //
497     G4double dotProd = normSign*v.dot(vec->nor    492     G4double dotProd = normSign*v.dot(vec->normal);
498     if (dotProd <= 0) continue;                   493     if (dotProd <= 0) continue;
499                                                   494   
500     //                                            495     //
501     // Is this face in front of the point alon    496     // Is this face in front of the point along the trajectory?
502     //                                            497     //
503     G4ThreeVector delta = p - vec->center;        498     G4ThreeVector delta = p - vec->center;
504     distFromSurface = -normSign*delta.dot(vec-    499     distFromSurface = -normSign*delta.dot(vec->normal);
505                                                   500     
506     if (distFromSurface < -surfTolerance) cont    501     if (distFromSurface < -surfTolerance) continue;
507                                                   502     
508     //                                            503     //
509     //                            phi             504     //                            phi
510     //      c -------- d           ^              505     //      c -------- d           ^
511     //      |          |           |              506     //      |          |           |
512     //      a -------- b           +---> r/z      507     //      a -------- b           +---> r/z
513     //                                            508     //
514     //                                            509     //
515     // Do we remain on this particular segment    510     // Do we remain on this particular segment?
516     //                                            511     //
517     G4ThreeVector qc = q - vec->edges[1]->corn    512     G4ThreeVector qc = q - vec->edges[1]->corner[0];
518     G4ThreeVector qd = q - vec->edges[1]->corn    513     G4ThreeVector qd = q - vec->edges[1]->corner[1];
519                                                   514     
520     if (normSign*qc.cross(qd).dot(v) < 0) cont    515     if (normSign*qc.cross(qd).dot(v) < 0) continue;
521                                                   516     
522     G4ThreeVector qa = q - vec->edges[0]->corn    517     G4ThreeVector qa = q - vec->edges[0]->corner[0];
523     G4ThreeVector qb = q - vec->edges[0]->corn    518     G4ThreeVector qb = q - vec->edges[0]->corner[1];
524                                                   519     
525     if (normSign*qa.cross(qb).dot(v) > 0) cont    520     if (normSign*qa.cross(qb).dot(v) > 0) continue;
526                                                   521     
527     //                                            522     //
528     // We found the one and only segment we mi    523     // We found the one and only segment we might be intersecting.
529     // Do we remain within r/z bounds?            524     // Do we remain within r/z bounds?
530     //                                            525     //
531                                                   526     
532     if (r[0] > 1/kInfinity && normSign*qa.cros    527     if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false;
533     if (r[1] > 1/kInfinity && normSign*qb.cros    528     if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false;
534                                                   529     
535     //                                            530     //
536     // We allow the face to be slightly behind    531     // We allow the face to be slightly behind the trajectory
537     // (surface tolerance) only if the point p    532     // (surface tolerance) only if the point p is within
538     // the vicinity of the face                   533     // the vicinity of the face
539     //                                            534     //
540     if (distFromSurface < 0)                      535     if (distFromSurface < 0)
541     {                                             536     {
542       G4ThreeVector ps = p - vec->center;         537       G4ThreeVector ps = p - vec->center; 
543                                                   538       
544       G4double rz = ps.dot(vec->surfRZ);          539       G4double rz = ps.dot(vec->surfRZ);
545       if (std::fabs(rz) > lenRZ+surfTolerance)    540       if (std::fabs(rz) > lenRZ+surfTolerance) return false; 
546                                                   541 
547       G4double pp = ps.dot(vec->surfPhi);         542       G4double pp = ps.dot(vec->surfPhi);
548       if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 543       if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false;
549     }                                             544     }
550                                                   545       
551                                                   546 
552     //                                            547     //
553     // Intersection found. Return answer.         548     // Intersection found. Return answer.
554     //                                            549     //
555     distance = distFromSurface/dotProd;           550     distance = distFromSurface/dotProd;
556     normal = vec->normal;                         551     normal = vec->normal;
557     isAllBehind = allBehind;                      552     isAllBehind = allBehind;
558     return true;                                  553     return true;
559   } while( ++vec, ++face < numSide );             554   } while( ++vec, ++face < numSide );
560                                                   555 
561   //                                              556   //
562   // Oh well. Better luck next time.              557   // Oh well. Better luck next time.
563   //                                              558   //
564   return false;                                   559   return false;
565 }                                                 560 }
566                                                   561 
567 // Distance                                    << 562 
568 //                                             << 563 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing )
569 G4double G4PolyhedraSide::Distance( const G4Th << 
570 {                                                 564 {
571   G4double normSign = outgoing ? -1 : +1;         565   G4double normSign = outgoing ? -1 : +1;
572                                                   566   
573   //                                              567   //
574   // Try the closest phi segment first            568   // Try the closest phi segment first
575   //                                              569   //
576   G4int iPhi = ClosestPhiSegment( GetPhi(p) );    570   G4int iPhi = ClosestPhiSegment( GetPhi(p) );
577                                                   571   
578   G4ThreeVector pdotc = p - vecs[iPhi].center;    572   G4ThreeVector pdotc = p - vecs[iPhi].center;
579   G4double normDist = pdotc.dot(vecs[iPhi].nor    573   G4double normDist = pdotc.dot(vecs[iPhi].normal);
580                                                   574   
581   if (normSign*normDist > -0.5*kCarTolerance)     575   if (normSign*normDist > -0.5*kCarTolerance)
582   {                                               576   {
583     return DistanceAway( p, vecs[iPhi], &normD    577     return DistanceAway( p, vecs[iPhi], &normDist );
584   }                                               578   }
585                                                   579 
586   //                                              580   //
587   // Now we have an interesting problem... do     581   // Now we have an interesting problem... do we try to find the
588   // closest facing side??                        582   // closest facing side??
589   //                                              583   //
590   // Considered carefully, the answer is no. W    584   // Considered carefully, the answer is no. We know that if we
591   // are asking for the distance out, we are s    585   // are asking for the distance out, we are supposed to be inside,
592   // and vice versa.                              586   // and vice versa.
593   //                                              587   //
594                                                   588   
595   return kInfinity;                               589   return kInfinity;
596 }                                                 590 }
597                                                   591 
                                                   >> 592 
                                                   >> 593 //
598 // Inside                                         594 // Inside
599 //                                                595 //
600 EInside G4PolyhedraSide::Inside( const G4Three << 596 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p,
601                                        G4doubl    597                                        G4double tolerance, 
602                                        G4doubl << 598                                        G4double *bestDistance )
603 {                                                 599 {
604   //                                              600   //
605   // Which phi segment is closest to this poin    601   // Which phi segment is closest to this point?
606   //                                              602   //
607   G4int iPhi = ClosestPhiSegment( GetPhi(p) );    603   G4int iPhi = ClosestPhiSegment( GetPhi(p) );
608                                                   604   
609   G4double norm;                                  605   G4double norm;
610                                                   606   
611   //                                              607   //
612   // Get distance to this segment                 608   // Get distance to this segment
613   //                                              609   //
614   *bestDistance = DistanceToOneSide( p, vecs[i    610   *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
615                                                   611   
616   //                                              612   //
617   // Use distance along normal to decide retur    613   // Use distance along normal to decide return value
618   //                                              614   //
619   if ( (std::fabs(norm) > tolerance) || (*best << 615   if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) )
620     return (norm < 0) ? kInside : kOutside;    << 
621   else                                         << 
622     return kSurface;                              616     return kSurface;
                                                   >> 617   else if (norm < 0)
                                                   >> 618     return kInside;
                                                   >> 619   else  
                                                   >> 620     return kOutside;
623 }                                                 621 }
624                                                   622 
                                                   >> 623 
                                                   >> 624 //
625 // Normal                                         625 // Normal
626 //                                                626 //
627 G4ThreeVector G4PolyhedraSide::Normal( const G << 627 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p,
628                                              G << 628                                              G4double *bestDistance )
629 {                                                 629 {
630   //                                              630   //
631   // Which phi segment is closest to this poin    631   // Which phi segment is closest to this point?
632   //                                              632   //
633   G4int iPhi = ClosestPhiSegment( GetPhi(p) );    633   G4int iPhi = ClosestPhiSegment( GetPhi(p) );
634                                                   634 
635   //                                              635   //
636   // Get distance to this segment                 636   // Get distance to this segment
637   //                                              637   //
638   G4double norm;                                  638   G4double norm;
639   *bestDistance = DistanceToOneSide( p, vecs[i    639   *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
640                                                   640 
641   return vecs[iPhi].normal;                       641   return vecs[iPhi].normal;
642 }                                                 642 }
643                                                   643 
                                                   >> 644 
                                                   >> 645 //
644 // Extent                                         646 // Extent
645 //                                                647 //
646 G4double G4PolyhedraSide::Extent( const G4Thre    648 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis )
647 {                                                 649 {
648   if (axis.perp2() < DBL_MIN)                     650   if (axis.perp2() < DBL_MIN)
649   {                                               651   {
650     //                                            652     //
651     // Special case                               653     // Special case
652     //                                            654     //
653     return axis.z() < 0 ? -cone->ZLo() : cone-    655     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
654   }                                               656   }
655                                                   657 
656   G4int iPhi, i1, i2;                             658   G4int iPhi, i1, i2;
657   G4double best;                                  659   G4double best;
658   G4ThreeVector* list[4];                      << 660   G4ThreeVector *list[4];
659                                                   661   
660   //                                              662   //
661   // Which phi segment, if any, does the axis     663   // Which phi segment, if any, does the axis belong to
662   //                                              664   //
663   iPhi = PhiSegment( GetPhi(axis) );              665   iPhi = PhiSegment( GetPhi(axis) );
664                                                   666   
665   if (iPhi < 0)                                   667   if (iPhi < 0)
666   {                                               668   {
667     //                                            669     //
668     // No phi segment? Check front edge of fir    670     // No phi segment? Check front edge of first side and
669     // last edge of second side                   671     // last edge of second side
670     //                                            672     //
671     i1 = 0; i2 = numSide-1;                       673     i1 = 0; i2 = numSide-1;
672   }                                               674   }
673   else                                            675   else
674   {                                               676   {
675     //                                            677     //
676     // Check all corners of matching phi side     678     // Check all corners of matching phi side
677     //                                            679     //
678     i1 = iPhi; i2 = iPhi;                         680     i1 = iPhi; i2 = iPhi;
679   }                                               681   }
680                                                   682   
681   list[0] = vecs[i1].edges[0]->corner;            683   list[0] = vecs[i1].edges[0]->corner;
682   list[1] = vecs[i1].edges[0]->corner+1;          684   list[1] = vecs[i1].edges[0]->corner+1;
683   list[2] = vecs[i2].edges[1]->corner;            685   list[2] = vecs[i2].edges[1]->corner;
684   list[3] = vecs[i2].edges[1]->corner+1;          686   list[3] = vecs[i2].edges[1]->corner+1;
685                                                   687         
686   //                                              688   //
687   // Who's biggest?                               689   // Who's biggest?
688   //                                              690   //
689   best = -kInfinity;                              691   best = -kInfinity;
690   G4ThreeVector** vec = list;                  << 692   G4ThreeVector **vec = list;
691   do    // Loop checking, 13.08.2015, G.Cosmo  << 693   do
692   {                                               694   {
693     G4double answer = (*vec)->dot(axis);          695     G4double answer = (*vec)->dot(axis);
694     if (answer > best) best = answer;             696     if (answer > best) best = answer;
695   } while( ++vec < list+4 );                      697   } while( ++vec < list+4 );
696                                                   698   
697   return best;                                    699   return best;
698 }                                                 700 }
699                                                   701 
                                                   >> 702 
                                                   >> 703 //
700 // CalculateExtent                                704 // CalculateExtent
701 //                                                705 //
702 // See notes in G4VCSGface                        706 // See notes in G4VCSGface
703 //                                                707 //
704 void G4PolyhedraSide::CalculateExtent( const E    708 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 
705                                        const G << 709                                        const G4VoxelLimits &voxelLimit,
706                                        const G << 710                                        const G4AffineTransform &transform,
707                                              G << 711                                              G4SolidExtentList &extentList )
708 {                                                 712 {
709   //                                              713   //
710   // Loop over all sides                          714   // Loop over all sides
711   //                                              715   //
712   G4PolyhedraSideVec *vec = vecs;                 716   G4PolyhedraSideVec *vec = vecs;
713   do    // Loop checking, 13.08.2015, G.Cosmo  << 717   do
714   {                                               718   {
715     //                                            719     //
716     // Fill our polygon with the four corners     720     // Fill our polygon with the four corners of
717     // this side, after the specified transfor    721     // this side, after the specified transformation
718     //                                            722     //
719     G4ClippablePolygon polygon;                   723     G4ClippablePolygon polygon;
720                                                   724     
721     polygon.AddVertexInOrder(transform.           725     polygon.AddVertexInOrder(transform.
722                              TransformPoint(ve    726                              TransformPoint(vec->edges[0]->corner[0]));
723     polygon.AddVertexInOrder(transform.           727     polygon.AddVertexInOrder(transform.
724                              TransformPoint(ve    728                              TransformPoint(vec->edges[0]->corner[1]));
725     polygon.AddVertexInOrder(transform.           729     polygon.AddVertexInOrder(transform.
726                              TransformPoint(ve    730                              TransformPoint(vec->edges[1]->corner[1]));
727     polygon.AddVertexInOrder(transform.           731     polygon.AddVertexInOrder(transform.
728                              TransformPoint(ve    732                              TransformPoint(vec->edges[1]->corner[0]));
729                                                   733     
730     //                                            734     //
731     // Get extent                                 735     // Get extent
732     //                                            736     //  
733     if (polygon.PartialClip( voxelLimit, axis     737     if (polygon.PartialClip( voxelLimit, axis ))
734     {                                             738     {
735       //                                          739       //
736       // Get dot product of normal along targe    740       // Get dot product of normal along target axis
737       //                                          741       //
738       polygon.SetNormal( transform.TransformAx    742       polygon.SetNormal( transform.TransformAxis(vec->normal) );
739                                                   743 
740       extentList.AddSurface( polygon );           744       extentList.AddSurface( polygon );
741     }                                             745     }
742   } while( ++vec < vecs+numSide );                746   } while( ++vec < vecs+numSide );
743                                                   747   
744   return;                                         748   return;
745 }                                                 749 }
746                                                   750 
                                                   >> 751 
                                                   >> 752 //
747 // IntersectSidePlane                             753 // IntersectSidePlane
748 //                                                754 //
749 // Decide if a line correctly intersects one s    755 // Decide if a line correctly intersects one side plane of our segment.
750 // It is assumed that the correct side has bee    756 // It is assumed that the correct side has been chosen, and thus only 
751 // the z bounds (of the entire segment) are ch    757 // the z bounds (of the entire segment) are checked.
752 //                                                758 //
753 // normSign - To be multiplied against normal:    759 // normSign - To be multiplied against normal:
754 //            = +1.0 normal is unchanged          760 //            = +1.0 normal is unchanged
755 //            = -1.0 normal is reversed (now p    761 //            = -1.0 normal is reversed (now points inward)
756 //                                                762 //
757 // Arguments:                                     763 // Arguments:
758 //  p    - (in) Point                             764 //  p    - (in) Point
759 //  v    - (in) Direction                         765 //  v    - (in) Direction
760 //  vec    - (in) Description record of the si    766 //  vec    - (in) Description record of the side plane
761 //  normSign  - (in) Sign (+/- 1) to apply to     767 //  normSign  - (in) Sign (+/- 1) to apply to normal
762 //  surfTolerance  - (in) Surface tolerance (g    768 //  surfTolerance  - (in) Surface tolerance (generally > 0, see below)
763 //  distance  - (out) Distance along v to inte    769 //  distance  - (out) Distance along v to intersection
764 //  distFromSurface - (out) Distance from surf    770 //  distFromSurface - (out) Distance from surface normal
765 //                                                771 //
766 // Notes:                                         772 // Notes:
767 //   surfTolerance  - Used to decide if a poin    773 //   surfTolerance  - Used to decide if a point is behind the surface,
768 //        a point is allow to be -surfToleranc    774 //        a point is allow to be -surfTolerance behind the
769 //        surface (as measured along the norma    775 //        surface (as measured along the normal), but *only*
770 //        if the point is within the r/z bound    776 //        if the point is within the r/z bounds + surfTolerance
771 //        of the segment.                         777 //        of the segment.
772 //                                                778 //
773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 779 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p,
774                                             co << 780                                             const G4ThreeVector &v,
775                                             co    781                                             const G4PolyhedraSideVec& vec,
776                                                   782                                                   G4double normSign, 
777                                                   783                                                   G4double surfTolerance,
778                                                << 784                                                   G4double &distance,
779                                                << 785                                                   G4double &distFromSurface )
780 {                                                 786 {
781   //                                              787   //
782   // Correct normal? Here we have straight sid    788   // Correct normal? Here we have straight sides, and can safely ignore
783   // intersections where the dot product with     789   // intersections where the dot product with the normal is zero.
784   //                                              790   //
785   G4double dotProd = normSign*v.dot(vec.normal    791   G4double dotProd = normSign*v.dot(vec.normal);
786                                                   792   
787   if (dotProd <= 0) return false;                 793   if (dotProd <= 0) return false;
788                                                   794   
789   //                                              795   //
790   // Calculate distance to surface. If the sid    796   // Calculate distance to surface. If the side is too far
791   // behind the point, we must reject it.         797   // behind the point, we must reject it.
792   //                                              798   //
793   G4ThreeVector delta = p - vec.center;           799   G4ThreeVector delta = p - vec.center;
794   distFromSurface = -normSign*delta.dot(vec.no    800   distFromSurface = -normSign*delta.dot(vec.normal);
795                                                   801     
796   if (distFromSurface < -surfTolerance) return    802   if (distFromSurface < -surfTolerance) return false;
797                                                   803 
798   //                                              804   //
799   // Calculate precise distance to intersectio    805   // Calculate precise distance to intersection with the side
800   // (along the trajectory, not normal to the     806   // (along the trajectory, not normal to the surface)
801   //                                              807   //
802   distance = distFromSurface/dotProd;             808   distance = distFromSurface/dotProd;
803                                                   809   
804   //                                              810   //
805   // Do we fall off the r/z extent of the segm    811   // Do we fall off the r/z extent of the segment?
806   //                                              812   //
807   // Calculate this very, very carefully! Why?    813   // Calculate this very, very carefully! Why?
808   //         1. If a RZ end is at R=0, you can    814   //         1. If a RZ end is at R=0, you can't miss!
809   //         2. If you just fall off in RZ, th    815   //         2. If you just fall off in RZ, the answer must
810   //            be consistent with adjacent G4    816   //            be consistent with adjacent G4PolyhedraSide faces.
811   // (2) implies that only variables used by o    817   // (2) implies that only variables used by other G4PolyhedraSide
812   // faces may be used, which includes only: p    818   // faces may be used, which includes only: p, v, and the edge corners.
813   // It also means that one side is a ">" or "    819   // It also means that one side is a ">" or "<", which the other
814   // must be ">=" or "<=". Fortunately, this i    820   // must be ">=" or "<=". Fortunately, this isn't a new problem.
815   // The solution below I borrowed from Joseph    821   // The solution below I borrowed from Joseph O'Rourke,
816   // "Computational Geometry in C (Second Edit    822   // "Computational Geometry in C (Second Edition)"
817   // See: http://cs.smith.edu/~orourke/           823   // See: http://cs.smith.edu/~orourke/
818   //                                              824   //
819   G4ThreeVector ic = p + distance*v - vec.cent    825   G4ThreeVector ic = p + distance*v - vec.center;
820   G4double atRZ = vec.surfRZ.dot(ic);             826   G4double atRZ = vec.surfRZ.dot(ic);
821                                                   827   
822   if (atRZ < 0)                                   828   if (atRZ < 0)
823   {                                               829   {
824     if (r[0]==0) return true;    // Can't miss    830     if (r[0]==0) return true;    // Can't miss!
825                                                   831     
826     if (atRZ < -lenRZ*1.2) return false;  // F    832     if (atRZ < -lenRZ*1.2) return false;  // Forget it! Missed by a mile.
827                                                   833     
828     G4ThreeVector q = p + v;                      834     G4ThreeVector q = p + v;    
829     G4ThreeVector qa = q - vec.edges[0]->corne    835     G4ThreeVector qa = q - vec.edges[0]->corner[0],
830                   qb = q - vec.edges[1]->corne    836                   qb = q - vec.edges[1]->corner[0];
831     G4ThreeVector qacb = qa.cross(qb);            837     G4ThreeVector qacb = qa.cross(qb);
832     if (normSign*qacb.dot(v) < 0) return false    838     if (normSign*qacb.dot(v) < 0) return false;
833                                                   839     
834     if (distFromSurface < 0)                      840     if (distFromSurface < 0)
835     {                                             841     {
836       if (atRZ < -lenRZ-surfTolerance) return     842       if (atRZ < -lenRZ-surfTolerance) return false;
837     }                                             843     }
838   }                                               844   }
839   else if (atRZ > 0)                              845   else if (atRZ > 0)
840   {                                               846   {
841     if (r[1]==0) return true;    // Can't miss    847     if (r[1]==0) return true;    // Can't miss!
842                                                   848     
843     if (atRZ > lenRZ*1.2) return false;  // Mi    849     if (atRZ > lenRZ*1.2) return false;  // Missed by a mile
844                                                   850     
845     G4ThreeVector q = p + v;                      851     G4ThreeVector q = p + v;    
846     G4ThreeVector qa = q - vec.edges[0]->corne    852     G4ThreeVector qa = q - vec.edges[0]->corner[1],
847                   qb = q - vec.edges[1]->corne    853                   qb = q - vec.edges[1]->corner[1];
848     G4ThreeVector qacb = qa.cross(qb);            854     G4ThreeVector qacb = qa.cross(qb);
849     if (normSign*qacb.dot(v) >= 0) return fals    855     if (normSign*qacb.dot(v) >= 0) return false;
850                                                   856     
851     if (distFromSurface < 0)                      857     if (distFromSurface < 0)
852     {                                             858     {
853       if (atRZ > lenRZ+surfTolerance) return f    859       if (atRZ > lenRZ+surfTolerance) return false;
854     }                                             860     }
855   }                                               861   }
856                                                   862 
857   return true;                                    863   return true;
858 }                                                 864 }
859                                                   865 
                                                   >> 866 
                                                   >> 867 //
860 // LineHitsSegments                               868 // LineHitsSegments
861 //                                                869 //
862 // Calculate which phi segments a line interse    870 // Calculate which phi segments a line intersects in three dimensions.
863 // No check is made as to whether the intersec    871 // No check is made as to whether the intersections are within the z bounds of
864 // the segment.                                   872 // the segment.
865 //                                                873 //
866 G4int G4PolyhedraSide::LineHitsSegments( const << 874 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p,
867                                          const << 875                                          const G4ThreeVector &v,
868                                                << 876                                                G4int *i1, G4int *i2 )
869 {                                                 877 {
870   G4double s1, s2;                                878   G4double s1, s2;
871   //                                              879   //
872   // First, decide if and where the line inter    880   // First, decide if and where the line intersects the cone
873   //                                              881   //
874   G4int n = cone->LineHitsCone( p, v, &s1, &s2    882   G4int n = cone->LineHitsCone( p, v, &s1, &s2 );
875                                                   883   
876   if (n==0) return 0;                             884   if (n==0) return 0;
877                                                   885   
878   //                                              886   //
879   // Try first intersection.                      887   // Try first intersection.
880   //                                              888   //
881   *i1 = PhiSegment( std::atan2( p.y() + s1*v.y    889   *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) );
882   if (n==1)                                       890   if (n==1)
883   {                                               891   {
884     return (*i1 < 0) ? 0 : 1;                     892     return (*i1 < 0) ? 0 : 1;
885   }                                               893   }
886                                                   894   
887   //                                              895   //
888   // Try second intersection                      896   // Try second intersection
889   //                                              897   //
890   *i2 = PhiSegment( std::atan2( p.y() + s2*v.y    898   *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) );
891   if (*i1 == *i2) return 0;                       899   if (*i1 == *i2) return 0;
892                                                   900   
893   if (*i1 < 0)                                    901   if (*i1 < 0)
894   {                                               902   {
895     if (*i2 < 0) return 0;                        903     if (*i2 < 0) return 0;
896     *i1 = *i2;                                    904     *i1 = *i2;
897     return 1;                                     905     return 1;
898   }                                               906   }
899                                                   907 
900   if (*i2 < 0) return 1;                          908   if (*i2 < 0) return 1;
901                                                   909   
902   return 2;                                       910   return 2;
903 }                                                 911 }
904                                                   912 
                                                   >> 913 
                                                   >> 914 //
905 // ClosestPhiSegment                              915 // ClosestPhiSegment
906 //                                                916 //
907 // Decide which phi segment is closest in phi     917 // Decide which phi segment is closest in phi to the point.
908 // The result is the same as PhiSegment if the    918 // The result is the same as PhiSegment if there is no phi opening.
909 //                                                919 //
910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do    920 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 )
911 {                                                 921 {
912   G4int iPhi = PhiSegment( phi0 );                922   G4int iPhi = PhiSegment( phi0 );
913   if (iPhi >= 0) return iPhi;                     923   if (iPhi >= 0) return iPhi;
914                                                   924   
915   //                                              925   //
916   // Boogers! The points falls inside the phi     926   // Boogers! The points falls inside the phi segment.
917   // Look for the closest point: the start, or    927   // Look for the closest point: the start, or  end
918   //                                              928   //
919   G4double phi = phi0;                            929   G4double phi = phi0;
920                                                   930   
921   while( phi < startPhi )    // Loop checking, << 931   while( phi < startPhi ) phi += twopi;
922     phi += twopi;                              << 
923   G4double d1 = phi-endPhi;                       932   G4double d1 = phi-endPhi;
924                                                   933 
925   while( phi > startPhi )    // Loop checking, << 934   while( phi > startPhi ) phi -= twopi;
926     phi -= twopi;                              << 
927   G4double d2 = startPhi-phi;                     935   G4double d2 = startPhi-phi;
928                                                   936   
929   return (d2 < d1) ? 0 : numSide-1;               937   return (d2 < d1) ? 0 : numSide-1;
930 }                                                 938 }
931                                                   939 
                                                   >> 940 
                                                   >> 941 //
932 // PhiSegment                                     942 // PhiSegment
933 //                                                943 //
934 // Decide which phi segment an angle belongs t    944 // Decide which phi segment an angle belongs to, counting from zero.
935 // A value of -1 indicates that the phi value     945 // A value of -1 indicates that the phi value is outside the shape
936 // (only possible if phiTotal < 360 degrees).     946 // (only possible if phiTotal < 360 degrees).
937 //                                                947 //
938 G4int G4PolyhedraSide::PhiSegment( G4double ph    948 G4int G4PolyhedraSide::PhiSegment( G4double phi0 )
939 {                                                 949 {
940   //                                              950   //
941   // How far are we from phiStart? Come up wit    951   // How far are we from phiStart? Come up with a positive answer
942   // that is less than 2*PI                       952   // that is less than 2*PI
943   //                                              953   //
944   G4double phi = phi0 - startPhi;                 954   G4double phi = phi0 - startPhi;
945   while( phi < 0 )    // Loop checking, 13.08. << 955   while( phi < 0      ) phi += twopi;
946     phi += twopi;                              << 956   while( phi > twopi ) phi -= twopi;
947   while( phi > twopi )    // Loop checking, 13 << 
948     phi -= twopi;                              << 
949                                                   957 
950   //                                              958   //
951   // Divide                                       959   // Divide
952   //                                              960   //
953   auto answer = (G4int)(phi/deltaPhi);         << 961   G4int answer = (G4int)(phi/deltaPhi);
954                                                   962   
955   if (answer >= numSide)                          963   if (answer >= numSide)
956   {                                               964   {
957     if (phiIsOpen)                                965     if (phiIsOpen)
958     {                                             966     {
959       return -1;  // Looks like we missed         967       return -1;  // Looks like we missed
960     }                                             968     }
961     else                                          969     else
962     {                                             970     {
963       answer = numSide-1;  // Probably just ro    971       answer = numSide-1;  // Probably just roundoff
964     }                                             972     }
965   }                                               973   }
966                                                   974   
967   return answer;                                  975   return answer;
968 }                                                 976 }
969                                                   977 
                                                   >> 978 
                                                   >> 979 //
970 // GetPhi                                         980 // GetPhi
971 //                                                981 //
972 // Calculate Phi for a given 3-vector (point),    982 // Calculate Phi for a given 3-vector (point), if not already cached for the
973 // same point, in the attempt to avoid consecu    983 // same point, in the attempt to avoid consecutive computation of the same
974 // quantity                                       984 // quantity
975 //                                                985 //
976 G4double G4PolyhedraSide::GetPhi( const G4Thre    986 G4double G4PolyhedraSide::GetPhi( const G4ThreeVector& p )
977 {                                                 987 {
978   G4double val=0.;                                988   G4double val=0.;
979   G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 
980                                                   989 
981   if (vphi != p)                               << 990   if (fPhi.first != p)
982   {                                               991   {
983     val = p.phi();                                992     val = p.phi();
984     G4MT_phphix = p.x(); G4MT_phphiy = p.y();  << 993     fPhi.first = p;
985     G4MT_phphik = val;                         << 994     fPhi.second = val;
986   }                                               995   }
987   else                                            996   else
988   {                                               997   {
989     val = G4MT_phphik;                         << 998     val = fPhi.second;
990   }                                               999   }
991   return val;                                     1000   return val;
992 }                                                 1001 }
993                                                   1002 
                                                   >> 1003 
                                                   >> 1004 //
994 // DistanceToOneSide                              1005 // DistanceToOneSide
995 //                                                1006 //
996 // Arguments:                                     1007 // Arguments:
997 //  p   - (in) Point to check                     1008 //  p   - (in) Point to check
998 //  vec   - (in) vector set of this side          1009 //  vec   - (in) vector set of this side
999 //  normDist - (out) distance normal to the si    1010 //  normDist - (out) distance normal to the side or edge, as appropriate, signed
1000 // Return value = total distance from the sid    1011 // Return value = total distance from the side
1001 //                                               1012 //
1002 G4double G4PolyhedraSide::DistanceToOneSide(  << 1013 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p,
1003                                               << 1014                                              const G4PolyhedraSideVec &vec,
1004                                               << 1015                                                    G4double *normDist )
1005 {                                                1016 {
1006   G4ThreeVector pct = p - vec.center;            1017   G4ThreeVector pct = p - vec.center;
1007                                                  1018   
1008   //                                             1019   //
1009   // Get normal distance                         1020   // Get normal distance
1010   //                                             1021   //
1011   *normDist = vec.normal.dot(pct);               1022   *normDist = vec.normal.dot(pct);
1012                                                  1023 
1013   //                                             1024   //
1014   // Add edge penalty                            1025   // Add edge penalty
1015   //                                             1026   //
1016   return DistanceAway( p, vec, normDist );       1027   return DistanceAway( p, vec, normDist );
1017 }                                                1028 }
1018                                                  1029 
                                                   >> 1030 
                                                   >> 1031 //
1019 // DistanceAway                                  1032 // DistanceAway
1020 //                                               1033 //
1021 // Add distance from side edges, if necessary << 1034 // Add distance from side edges, if necesssary, to total distance,
1022 // and updates normDist appropriate depending    1035 // and updates normDist appropriate depending on edge normals.
1023 //                                               1036 //
1024 G4double G4PolyhedraSide::DistanceAway( const << 1037 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p,
1025                                         const << 1038                                         const G4PolyhedraSideVec &vec,
1026                                               << 1039                                               G4double *normDist )
1027 {                                                1040 {
1028   G4double distOut2;                             1041   G4double distOut2;
1029   G4ThreeVector pct = p - vec.center;            1042   G4ThreeVector pct = p - vec.center;
1030   G4double distFaceNorm = *normDist;             1043   G4double distFaceNorm = *normDist;
1031                                                  1044   
1032   //                                             1045   //
1033   // Okay, are we inside bounds?                 1046   // Okay, are we inside bounds?
1034   //                                             1047   //
1035   G4double pcDotRZ  = pct.dot(vec.surfRZ);       1048   G4double pcDotRZ  = pct.dot(vec.surfRZ);
1036   G4double pcDotPhi = pct.dot(vec.surfPhi);      1049   G4double pcDotPhi = pct.dot(vec.surfPhi);
1037                                                  1050   
1038   //                                             1051   //
1039   // Go through all permutations.                1052   // Go through all permutations.
1040   //                                             1053   //                                                   Phi
1041   //               |              |              1054   //               |              |                     ^
1042   //           B   |      H       |   E          1055   //           B   |      H       |   E                 |
1043   //        ------[1]------------[3]-----        1056   //        ------[1]------------[3]-----               |
1044   //               |XXXXXXXXXXXXXX|              1057   //               |XXXXXXXXXXXXXX|                     +----> RZ
1045   //           C   |XXXXXXXXXXXXXX|   F          1058   //           C   |XXXXXXXXXXXXXX|   F
1046   //               |XXXXXXXXXXXXXX|              1059   //               |XXXXXXXXXXXXXX|
1047   //        ------[0]------------[2]----         1060   //        ------[0]------------[2]----
1048   //           A   |      G       |   D          1061   //           A   |      G       |   D
1049   //               |              |              1062   //               |              |
1050   //                                             1063   //
1051   // It's real messy, but at least it's quick    1064   // It's real messy, but at least it's quick
1052   //                                             1065   //
1053                                                  1066   
1054   if (pcDotRZ < -lenRZ)                          1067   if (pcDotRZ < -lenRZ)
1055   {                                              1068   {
1056     G4double lenPhiZ = lenPhi[0] - lenRZ*lenP    1069     G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1];
1057     G4double distOutZ = pcDotRZ+lenRZ;           1070     G4double distOutZ = pcDotRZ+lenRZ;
1058     //                                           1071     //
1059     // Below in RZ                               1072     // Below in RZ
1060     //                                           1073     //
1061     if (pcDotPhi < -lenPhiZ)                     1074     if (pcDotPhi < -lenPhiZ)
1062     {                                            1075     {
1063       //                                         1076       //
1064       // ...and below in phi. Find distance t    1077       // ...and below in phi. Find distance to point (A)
1065       //                                         1078       //
1066       G4double distOutPhi = pcDotPhi+lenPhiZ;    1079       G4double distOutPhi = pcDotPhi+lenPhiZ;
1067       distOut2 = distOutPhi*distOutPhi + dist    1080       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1068       G4ThreeVector pa = p - vec.edges[0]->co    1081       G4ThreeVector pa = p - vec.edges[0]->corner[0];
1069       *normDist = pa.dot(vec.edges[0]->cornNo    1082       *normDist = pa.dot(vec.edges[0]->cornNorm[0]);
1070     }                                            1083     }
1071     else if (pcDotPhi > lenPhiZ)                 1084     else if (pcDotPhi > lenPhiZ)
1072     {                                            1085     {
1073       //                                         1086       //
1074       // ...and above in phi. Find distance t    1087       // ...and above in phi. Find distance to point (B)
1075       //                                         1088       //
1076       G4double distOutPhi = pcDotPhi-lenPhiZ;    1089       G4double distOutPhi = pcDotPhi-lenPhiZ;
1077       distOut2 = distOutPhi*distOutPhi + dist    1090       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1078       G4ThreeVector pb = p - vec.edges[1]->co    1091       G4ThreeVector pb = p - vec.edges[1]->corner[0];
1079       *normDist = pb.dot(vec.edges[1]->cornNo    1092       *normDist = pb.dot(vec.edges[1]->cornNorm[0]);
1080     }                                            1093     }
1081     else                                         1094     else
1082     {                                            1095     {
1083       //                                         1096       //
1084       // ...and inside in phi. Find distance     1097       // ...and inside in phi. Find distance to line (C)
1085       //                                         1098       //
1086       G4ThreeVector pa = p - vec.edges[0]->co    1099       G4ThreeVector pa = p - vec.edges[0]->corner[0];
1087       distOut2 = distOutZ*distOutZ;              1100       distOut2 = distOutZ*distOutZ;
1088       *normDist = pa.dot(vec.edgeNorm[0]);       1101       *normDist = pa.dot(vec.edgeNorm[0]);
1089     }                                            1102     }
1090   }                                              1103   }
1091   else if (pcDotRZ > lenRZ)                      1104   else if (pcDotRZ > lenRZ)
1092   {                                              1105   {
1093     G4double lenPhiZ = lenPhi[0] + lenRZ*lenP    1106     G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1];
1094     G4double distOutZ = pcDotRZ-lenRZ;           1107     G4double distOutZ = pcDotRZ-lenRZ;
1095     //                                           1108     //
1096     // Above in RZ                               1109     // Above in RZ
1097     //                                           1110     //
1098     if (pcDotPhi < -lenPhiZ)                     1111     if (pcDotPhi < -lenPhiZ)
1099     {                                            1112     {
1100       //                                         1113       //
1101       // ...and below in phi. Find distance t    1114       // ...and below in phi. Find distance to point (D)
1102       //                                         1115       //
1103       G4double distOutPhi = pcDotPhi+lenPhiZ;    1116       G4double distOutPhi = pcDotPhi+lenPhiZ;
1104       distOut2 = distOutPhi*distOutPhi + dist    1117       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1105       G4ThreeVector pd = p - vec.edges[0]->co    1118       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1106       *normDist = pd.dot(vec.edges[0]->cornNo    1119       *normDist = pd.dot(vec.edges[0]->cornNorm[1]);
1107     }                                            1120     }
1108     else if (pcDotPhi > lenPhiZ)                 1121     else if (pcDotPhi > lenPhiZ)
1109     {                                            1122     {
1110       //                                         1123       //
1111       // ...and above in phi. Find distance t    1124       // ...and above in phi. Find distance to point (E)
1112       //                                         1125       //
1113       G4double distOutPhi = pcDotPhi-lenPhiZ;    1126       G4double distOutPhi = pcDotPhi-lenPhiZ;
1114       distOut2 = distOutPhi*distOutPhi + dist    1127       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1115       G4ThreeVector pe = p - vec.edges[1]->co    1128       G4ThreeVector pe = p - vec.edges[1]->corner[1];
1116       *normDist = pe.dot(vec.edges[1]->cornNo    1129       *normDist = pe.dot(vec.edges[1]->cornNorm[1]);
1117     }                                            1130     }
1118     else                                         1131     else
1119     {                                            1132     {
1120       //                                         1133       //
1121       // ...and inside in phi. Find distance     1134       // ...and inside in phi. Find distance to line (F)
1122       //                                         1135       //
1123       distOut2 = distOutZ*distOutZ;              1136       distOut2 = distOutZ*distOutZ;
1124       G4ThreeVector pd = p - vec.edges[0]->co    1137       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1125       *normDist = pd.dot(vec.edgeNorm[1]);       1138       *normDist = pd.dot(vec.edgeNorm[1]);
1126     }                                            1139     }
1127   }                                              1140   }
1128   else                                           1141   else
1129   {                                              1142   {
1130     G4double lenPhiZ = lenPhi[0] + pcDotRZ*le    1143     G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1];
1131     //                                           1144     //
1132     // We are inside RZ bounds                   1145     // We are inside RZ bounds
1133     //                                           1146     // 
1134     if (pcDotPhi < -lenPhiZ)                     1147     if (pcDotPhi < -lenPhiZ)
1135     {                                            1148     {
1136       //                                         1149       //
1137       // ...and below in phi. Find distance t    1150       // ...and below in phi. Find distance to line (G)
1138       //                                         1151       //
1139       G4double distOut = edgeNorm*(pcDotPhi+l    1152       G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ);
1140       distOut2 = distOut*distOut;                1153       distOut2 = distOut*distOut;
1141       G4ThreeVector pd = p - vec.edges[0]->co    1154       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1142       *normDist = pd.dot(vec.edges[0]->normal    1155       *normDist = pd.dot(vec.edges[0]->normal);
1143     }                                            1156     }
1144     else if (pcDotPhi > lenPhiZ)                 1157     else if (pcDotPhi > lenPhiZ)
1145     {                                            1158     {
1146       //                                         1159       //
1147       // ...and above in phi. Find distance t    1160       // ...and above in phi. Find distance to line (H)
1148       //                                         1161       //
1149       G4double distOut = edgeNorm*(pcDotPhi-l    1162       G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ);
1150       distOut2 = distOut*distOut;                1163       distOut2 = distOut*distOut;
1151       G4ThreeVector pe = p - vec.edges[1]->co    1164       G4ThreeVector pe = p - vec.edges[1]->corner[1];
1152       *normDist = pe.dot(vec.edges[1]->normal    1165       *normDist = pe.dot(vec.edges[1]->normal);
1153     }                                            1166     }
1154     else                                         1167     else
1155     {                                            1168     {
1156       //                                         1169       //
1157       // Inside bounds! No penalty.              1170       // Inside bounds! No penalty.
1158       //                                         1171       //
1159       return std::fabs(distFaceNorm);            1172       return std::fabs(distFaceNorm);
1160     }                                            1173     }
1161   }                                              1174   }
1162   return std::sqrt( distFaceNorm*distFaceNorm    1175   return std::sqrt( distFaceNorm*distFaceNorm + distOut2 );
1163 }                                                1176 }
1164                                                  1177 
                                                   >> 1178 
                                                   >> 1179 //
1165 // Calculation of surface area of a triangle.    1180 // Calculation of surface area of a triangle. 
1166 // At the same time a random point in the tri    1181 // At the same time a random point in the triangle is given
1167 //                                               1182 //
1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1183 G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1,
1169                                            co << 1184                                            G4ThreeVector p2,
1170                                            co << 1185                                            G4ThreeVector p3,
1171                                            G4 << 1186                                            G4ThreeVector *p4 )
1172 {                                                1187 {
1173   G4ThreeVector v, w;                            1188   G4ThreeVector v, w;
1174                                                  1189   
1175   v = p3 - p1;                                   1190   v = p3 - p1;
1176   w = p1 - p2;                                   1191   w = p1 - p2;
1177   G4double lambda1 = G4UniformRand();            1192   G4double lambda1 = G4UniformRand();
1178   G4double lambda2 = lambda1*G4UniformRand();    1193   G4double lambda2 = lambda1*G4UniformRand();
1179                                                  1194  
1180   *p4=p2 + lambda1*w + lambda2*v;                1195   *p4=p2 + lambda1*w + lambda2*v;
1181   return 0.5*(v.cross(w)).mag();                 1196   return 0.5*(v.cross(w)).mag();
1182 }                                                1197 }
1183                                                  1198 
                                                   >> 1199 
                                                   >> 1200 //
1184 // GetPointOnPlane                               1201 // GetPointOnPlane
1185 //                                               1202 //
1186 // Auxiliary method for GetPointOnSurface()      1203 // Auxiliary method for GetPointOnSurface()
1187 //                                               1204 //
1188 G4ThreeVector                                    1205 G4ThreeVector
1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1206 G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1, 
1190                                   const G4Thr << 1207                                   G4ThreeVector p2, G4ThreeVector p3,
1191                                   G4double* A << 1208                                   G4double *Area )
1192 {                                                1209 {
1193   G4double chose,aOne,aTwo;                      1210   G4double chose,aOne,aTwo;
1194   G4ThreeVector point1,point2;                   1211   G4ThreeVector point1,point2;
1195   aOne = SurfaceTriangle(p0,p1,p2,&point1);      1212   aOne = SurfaceTriangle(p0,p1,p2,&point1);
1196   aTwo = SurfaceTriangle(p2,p3,p0,&point2);      1213   aTwo = SurfaceTriangle(p2,p3,p0,&point2);
1197   *Area= aOne+aTwo;                              1214   *Area= aOne+aTwo;
1198                                                  1215 
1199   chose = G4UniformRand()*(aOne+aTwo);           1216   chose = G4UniformRand()*(aOne+aTwo);
1200   if( (chose>=0.) && (chose < aOne) )            1217   if( (chose>=0.) && (chose < aOne) )
1201   {                                              1218   {
1202    return (point1);                              1219    return (point1);    
1203   }                                              1220   }
1204   return (point2);                               1221   return (point2);
1205 }                                                1222 }
1206                                                  1223 
                                                   >> 1224 
                                                   >> 1225 //
1207 // SurfaceArea()                                 1226 // SurfaceArea()
1208 //                                               1227 //
1209 G4double G4PolyhedraSide::SurfaceArea()          1228 G4double G4PolyhedraSide::SurfaceArea()
1210 {                                                1229 {
1211   if( fSurfaceArea==0. )                         1230   if( fSurfaceArea==0. )
1212   {                                              1231   { 
1213     // Define the variables                      1232     // Define the variables
1214     //                                           1233     //
1215     G4double area,areas;                         1234     G4double area,areas;
1216     G4ThreeVector point1;                        1235     G4ThreeVector point1;
1217     G4ThreeVector v1,v2,v3,v4;                   1236     G4ThreeVector v1,v2,v3,v4; 
1218     G4PolyhedraSideVec* vec = vecs;           << 1237     G4PolyhedraSideVec *vec = vecs;
1219     areas=0.;                                    1238     areas=0.;
1220                                                  1239 
1221     // Do a loop on all SideEdge                 1240     // Do a loop on all SideEdge
1222     //                                           1241     //
1223     do    // Loop checking, 13.08.2015, G.Cos << 1242     do
1224     {                                            1243     {
1225       // Define 4points for a Plane or Triang    1244       // Define 4points for a Plane or Triangle
1226       //                                         1245       //
1227       v1=vec->edges[0]->corner[0];               1246       v1=vec->edges[0]->corner[0];
1228       v2=vec->edges[0]->corner[1];               1247       v2=vec->edges[0]->corner[1];
1229       v3=vec->edges[1]->corner[1];               1248       v3=vec->edges[1]->corner[1];
1230       v4=vec->edges[1]->corner[0];               1249       v4=vec->edges[1]->corner[0];
1231       point1=GetPointOnPlane(v1,v2,v3,v4,&are    1250       point1=GetPointOnPlane(v1,v2,v3,v4,&area);
1232       areas+=area;                               1251       areas+=area;
1233     } while( ++vec < vecs + numSide);            1252     } while( ++vec < vecs + numSide);
1234                                                  1253 
1235     fSurfaceArea=areas;                          1254     fSurfaceArea=areas;
1236   }                                              1255   }
1237   return fSurfaceArea;                           1256   return fSurfaceArea;
1238 }                                                1257 }
1239                                                  1258 
                                                   >> 1259 
                                                   >> 1260 //
1240 // GetPointOnFace()                              1261 // GetPointOnFace()
1241 //                                               1262 //
1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace    1263 G4ThreeVector G4PolyhedraSide::GetPointOnFace()
1243 {                                                1264 {
1244   // Define the variables                        1265   // Define the variables
1245   //                                             1266   //
1246   std::vector<G4double>areas;                    1267   std::vector<G4double>areas;
1247   std::vector<G4ThreeVector>points;              1268   std::vector<G4ThreeVector>points;
1248   G4double area=0.;                           << 1269   G4double area=0;
1249   G4double result1;                              1270   G4double result1;
1250   G4ThreeVector point1;                          1271   G4ThreeVector point1;
1251   G4ThreeVector v1,v2,v3,v4;                     1272   G4ThreeVector v1,v2,v3,v4; 
1252   G4PolyhedraSideVec* vec = vecs;             << 1273   G4PolyhedraSideVec *vec = vecs;
1253                                                  1274 
1254   // Do a loop on all SideEdge                   1275   // Do a loop on all SideEdge
1255   //                                             1276   //
1256   do    // Loop checking, 13.08.2015, G.Cosmo << 1277   do
1257   {                                              1278   {
1258     // Define 4points for a Plane or Triangle    1279     // Define 4points for a Plane or Triangle
1259     //                                           1280     //
1260     v1=vec->edges[0]->corner[0];                 1281     v1=vec->edges[0]->corner[0];
1261     v2=vec->edges[0]->corner[1];                 1282     v2=vec->edges[0]->corner[1];
1262     v3=vec->edges[1]->corner[1];                 1283     v3=vec->edges[1]->corner[1];
1263     v4=vec->edges[1]->corner[0];                 1284     v4=vec->edges[1]->corner[0];
1264     point1=GetPointOnPlane(v1,v2,v3,v4,&resul    1285     point1=GetPointOnPlane(v1,v2,v3,v4,&result1);
1265     points.push_back(point1);                    1286     points.push_back(point1);
1266     areas.push_back(result1);                    1287     areas.push_back(result1);
1267     area+=result1;                               1288     area+=result1;
1268   } while( ++vec < vecs+numSide );               1289   } while( ++vec < vecs+numSide );
1269                                                  1290 
1270   // Choose randomly one of the surfaces and     1291   // Choose randomly one of the surfaces and point on it
1271   //                                             1292   //
1272   G4double chose = area*G4UniformRand();         1293   G4double chose = area*G4UniformRand();
1273   G4double Achose1=0., Achose2=0.;            << 1294   G4double Achose1,Achose2;
                                                   >> 1295   Achose1=0;Achose2=0.; 
1274   G4int i=0;                                     1296   G4int i=0;
1275   do    // Loop checking, 13.08.2015, G.Cosmo << 1297   do 
1276   {                                              1298   {
1277     Achose2+=areas[i];                           1299     Achose2+=areas[i];
1278     if(chose>=Achose1 && chose<Achose2)          1300     if(chose>=Achose1 && chose<Achose2)
1279     {                                            1301     {
1280       point1=points[i] ; break;                  1302       point1=points[i] ; break;     
1281     }                                            1303     }
1282     ++i; Achose1=Achose2;                     << 1304     i++; Achose1=Achose2;
1283   } while( i<numSide );                          1305   } while( i<numSide );
1284                                                  1306  
1285   return point1;                                 1307   return point1;
1286 }                                                1308 }
1287                                                  1309