Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyhedraSide, the face << 27 // one segmented side of a Polyhedra << 28 // 26 // 29 // Author: David C. Williams (davidw@scipp.ucs << 27 // $Id: G4PolyhedraSide.cc,v 1.15 2008/05/15 11:41:59 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02-patch-04 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4PolyhedraSide.cc >> 36 // >> 37 // Implementation of the face representing one segmented side of a Polyhedra >> 38 // 30 // ------------------------------------------- 39 // -------------------------------------------------------------------- 31 40 32 #include "G4PolyhedraSide.hh" 41 #include "G4PolyhedraSide.hh" 33 #include "G4PhysicalConstants.hh" << 34 #include "G4IntersectingCone.hh" 42 #include "G4IntersectingCone.hh" 35 #include "G4ClippablePolygon.hh" 43 #include "G4ClippablePolygon.hh" 36 #include "G4AffineTransform.hh" 44 #include "G4AffineTransform.hh" 37 #include "G4SolidExtentList.hh" 45 #include "G4SolidExtentList.hh" 38 #include "G4GeometryTolerance.hh" 46 #include "G4GeometryTolerance.hh" 39 47 40 #include "Randomize.hh" 48 #include "Randomize.hh" 41 49 42 // This new field helps to use the class G4PhS << 43 // << 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 45 << 46 // This macro changes the references to fields << 47 // in the class G4PhSideData. << 48 // << 49 #define G4MT_phphix ((subInstanceManager.offse << 50 #define G4MT_phphiy ((subInstanceManager.offse << 51 #define G4MT_phphiz ((subInstanceManager.offse << 52 #define G4MT_phphik ((subInstanceManager.offse << 53 << 54 // Returns the private data instance manager. << 55 // 50 // 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 57 { << 58 return subInstanceManager; << 59 } << 60 << 61 // Constructor 51 // Constructor 62 // 52 // 63 // Values for r1,z1 and r2,z2 should be specif 53 // Values for r1,z1 and r2,z2 should be specified in clockwise 64 // order in (r,z). 54 // order in (r,z). 65 // 55 // 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 56 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ, 67 const G4Poly << 57 const G4PolyhedraSideRZ *tail, 68 const G4Poly << 58 const G4PolyhedraSideRZ *head, 69 const G4Poly << 59 const G4PolyhedraSideRZ *nextRZ, 70 G4int 60 G4int theNumSide, 71 G4doub 61 G4double thePhiStart, 72 G4doub 62 G4double thePhiTotal, 73 G4bool 63 G4bool thePhiIsOpen, 74 G4bool 64 G4bool isAllBehind ) 75 { 65 { 76 66 77 instanceID = subInstanceManager.CreateSubIns << 78 << 79 kCarTolerance = G4GeometryTolerance::GetInst 67 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p << 68 fSurfaceArea=0.; 81 G4MT_phphik = 0.0; << 82 << 83 // 69 // 84 // Record values 70 // Record values 85 // 71 // 86 r[0] = tail->r; z[0] = tail->z; 72 r[0] = tail->r; z[0] = tail->z; 87 r[1] = head->r; z[1] = head->z; 73 r[1] = head->r; z[1] = head->z; 88 74 89 G4double phiTotal; 75 G4double phiTotal; 90 76 91 // 77 // 92 // Set phi to our convention 78 // Set phi to our convention 93 // 79 // 94 startPhi = thePhiStart; 80 startPhi = thePhiStart; 95 while (startPhi < 0.0) // Loop checking, << 81 while (startPhi < 0.0) startPhi += twopi; 96 startPhi += twopi; << 97 82 98 phiIsOpen = thePhiIsOpen; 83 phiIsOpen = thePhiIsOpen; 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi 84 phiTotal = (phiIsOpen) ? thePhiTotal : twopi; 100 85 101 allBehind = isAllBehind; 86 allBehind = isAllBehind; 102 87 103 // 88 // 104 // Make our intersecting cone 89 // Make our intersecting cone 105 // 90 // 106 cone = new G4IntersectingCone( r, z ); 91 cone = new G4IntersectingCone( r, z ); 107 92 108 // 93 // 109 // Construct side plane vector set 94 // Construct side plane vector set 110 // 95 // 111 numSide = theNumSide>0 ? theNumSide : 1; << 96 numSide = theNumSide; 112 deltaPhi = phiTotal/numSide; << 97 deltaPhi = phiTotal/theNumSide; 113 endPhi = startPhi+phiTotal; 98 endPhi = startPhi+phiTotal; 114 << 99 115 const std::size_t maxSides = numSide; << 100 vecs = new G4PolyhedraSideVec[numSide]; 116 vecs = new G4PolyhedraSideVec[maxSides]; << 101 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? << 102 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide]; 118 103 119 // 104 // 120 // ...this is where we start 105 // ...this is where we start 121 // 106 // 122 G4double phi = startPhi; 107 G4double phi = startPhi; 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s 108 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ), 124 b1( r[1]*std::cos(phi), r[1]*std::si 109 b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ), 125 c1( prevRZ->r*std::cos(phi), prevRZ- 110 c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ), 126 d1( nextRZ->r*std::cos(phi), nextRZ- 111 d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ), 127 a2, b2, c2, d2; 112 a2, b2, c2, d2; 128 G4PolyhedraSideEdge *edge = edges; 113 G4PolyhedraSideEdge *edge = edges; 129 114 130 G4PolyhedraSideVec *vec = vecs; 115 G4PolyhedraSideVec *vec = vecs; 131 do // Loop checking, 13.08.2015, G.Cosmo << 116 do 132 { 117 { 133 // 118 // 134 // ...this is where we are going 119 // ...this is where we are going 135 // 120 // 136 phi += deltaPhi; 121 phi += deltaPhi; 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[ 122 a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ); 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[ 123 b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ); 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi 124 c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ); 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi 125 d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ); 141 126 142 G4ThreeVector tt; 127 G4ThreeVector tt; 143 128 144 // 129 // 145 // ...build some relevant vectors. 130 // ...build some relevant vectors. 146 // the point is to sacrifice a little m 131 // the point is to sacrifice a little memory with precalcs 147 // to gain speed 132 // to gain speed 148 // 133 // 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 134 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 150 135 151 tt = b2 + b1 - a2 - a1; 136 tt = b2 + b1 - a2 - a1; 152 vec->surfRZ = tt.unit(); 137 vec->surfRZ = tt.unit(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 138 if (vec==vecs) lenRZ = 0.25*tt.mag(); 154 139 155 tt = b2 - b1 + a2 - a1; 140 tt = b2 - b1 + a2 - a1; 156 vec->surfPhi = tt.unit(); 141 vec->surfPhi = tt.unit(); 157 if (vec==vecs) 142 if (vec==vecs) 158 { 143 { 159 lenPhi[0] = 0.25*tt.mag(); 144 lenPhi[0] = 0.25*tt.mag(); 160 tt = b2 - b1; 145 tt = b2 - b1; 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len 146 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ; 162 } 147 } 163 148 164 tt = vec->surfPhi.cross(vec->surfRZ); 149 tt = vec->surfPhi.cross(vec->surfRZ); 165 vec->normal = tt.unit(); 150 vec->normal = tt.unit(); 166 151 167 // 152 // 168 // ...edge normals are the average of the 153 // ...edge normals are the average of the normals of 169 // the two faces they connect. 154 // the two faces they connect. 170 // 155 // 171 // ...edge normals are necessary if we are 156 // ...edge normals are necessary if we are to accurately 172 // decide if a point is "inside" a face 157 // decide if a point is "inside" a face. For non-convex 173 // shapes, it is absolutely necessary t 158 // shapes, it is absolutely necessary to know information 174 // on adjacent faces to accurate determ 159 // on adjacent faces to accurate determine this. 175 // 160 // 176 // ...we don't need them for the phi edges 161 // ...we don't need them for the phi edges, since that 177 // information is taken care of interna 162 // information is taken care of internally. The r/z edges, 178 // however, depend on the adjacent G4Po 163 // however, depend on the adjacent G4PolyhedraSide. 179 // 164 // 180 G4ThreeVector a12, adj; 165 G4ThreeVector a12, adj; 181 166 182 a12 = a2-a1; 167 a12 = a2-a1; 183 168 184 adj = 0.5*(c1+c2-a1-a2); 169 adj = 0.5*(c1+c2-a1-a2); 185 adj = adj.cross(a12); 170 adj = adj.cross(a12); 186 adj = adj.unit() + vec->normal; 171 adj = adj.unit() + vec->normal; 187 vec->edgeNorm[0] = adj.unit(); 172 vec->edgeNorm[0] = adj.unit(); 188 173 189 a12 = b1-b2; 174 a12 = b1-b2; 190 adj = 0.5*(d1+d2-b1-b2); 175 adj = 0.5*(d1+d2-b1-b2); 191 adj = adj.cross(a12); 176 adj = adj.cross(a12); 192 adj = adj.unit() + vec->normal; 177 adj = adj.unit() + vec->normal; 193 vec->edgeNorm[1] = adj.unit(); 178 vec->edgeNorm[1] = adj.unit(); 194 179 195 // 180 // 196 // ...the corners are crucial. It is impor 181 // ...the corners are crucial. It is important that 197 // they are calculated consistently for 182 // they are calculated consistently for adjacent 198 // G4PolyhedraSides, to avoid gaps caus 183 // G4PolyhedraSides, to avoid gaps caused by roundoff. 199 // 184 // 200 vec->edges[0] = edge; 185 vec->edges[0] = edge; 201 edge->corner[0] = a1; 186 edge->corner[0] = a1; 202 edge->corner[1] = b1; 187 edge->corner[1] = b1; 203 edge++; 188 edge++; 204 vec->edges[1] = edge; 189 vec->edges[1] = edge; 205 190 206 a1 = a2; 191 a1 = a2; 207 b1 = b2; 192 b1 = b2; 208 c1 = c2; 193 c1 = c2; 209 d1 = d2; 194 d1 = d2; 210 } while( ++vec < vecs+maxSides ); << 195 } while( ++vec < vecs+numSide ); 211 196 212 // 197 // 213 // Clean up hanging edge 198 // Clean up hanging edge 214 // 199 // 215 if (phiIsOpen) 200 if (phiIsOpen) 216 { 201 { 217 edge->corner[0] = a2; 202 edge->corner[0] = a2; 218 edge->corner[1] = b2; 203 edge->corner[1] = b2; 219 } 204 } 220 else 205 else 221 { 206 { 222 vecs[maxSides-1].edges[1] = edges; << 207 vecs[numSide-1].edges[1] = edges; 223 } 208 } 224 209 225 // 210 // 226 // Go back and fill in remaining fields in e 211 // Go back and fill in remaining fields in edges 227 // 212 // 228 vec = vecs; 213 vec = vecs; 229 G4PolyhedraSideVec *prev = vecs+maxSides-1; << 214 G4PolyhedraSideVec *prev = vecs+numSide-1; 230 do // Loop checking, 13.08.2015, G.Cosmo << 215 do 231 { 216 { 232 edge = vec->edges[0]; // The edge betwe 217 edge = vec->edges[0]; // The edge between prev and vec 233 218 234 // 219 // 235 // Okay: edge normal is average of normals 220 // Okay: edge normal is average of normals of adjacent faces 236 // 221 // 237 G4ThreeVector eNorm = vec->normal + prev-> 222 G4ThreeVector eNorm = vec->normal + prev->normal; 238 edge->normal = eNorm.unit(); 223 edge->normal = eNorm.unit(); 239 224 240 // 225 // 241 // Vertex normal is average of norms of ad 226 // Vertex normal is average of norms of adjacent surfaces (all four) 242 // However, vec->edgeNorm is unit vector i 227 // However, vec->edgeNorm is unit vector in some direction 243 // as the sum of normals of adjacent Polyh 228 // as the sum of normals of adjacent PolyhedraSide with vec. 244 // The normalization used for this vector 229 // The normalization used for this vector should be the same 245 // for vec and prev. 230 // for vec and prev. 246 // 231 // 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[ 232 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0]; 248 edge->cornNorm[0] = eNorm.unit(); 233 edge->cornNorm[0] = eNorm.unit(); 249 234 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[ 235 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1]; 251 edge->cornNorm[1] = eNorm.unit(); 236 edge->cornNorm[1] = eNorm.unit(); 252 } while( prev=vec, ++vec < vecs + maxSides ) << 237 } while( prev=vec, ++vec < vecs + numSide ); 253 238 254 if (phiIsOpen) 239 if (phiIsOpen) 255 { 240 { 256 // G4double rFact = std::cos(0.5*deltaPhi) 241 // G4double rFact = std::cos(0.5*deltaPhi); 257 // 242 // 258 // If phi is open, we need to patch up nor 243 // If phi is open, we need to patch up normals of the 259 // first and last edges and their correspo 244 // first and last edges and their corresponding 260 // vertices. 245 // vertices. 261 // 246 // 262 // We use vectors that are in the plane of 247 // We use vectors that are in the plane of the 263 // face. This should be safe. 248 // face. This should be safe. 264 // 249 // 265 vec = vecs; 250 vec = vecs; 266 251 267 G4ThreeVector normvec = vec->edges[0]->cor 252 G4ThreeVector normvec = vec->edges[0]->corner[0] 268 - vec->edges[0]->cor 253 - vec->edges[0]->corner[1]; 269 normvec = normvec.cross(vec->normal); 254 normvec = normvec.cross(vec->normal); 270 if (normvec.dot(vec->surfPhi) > 0) normvec 255 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec; 271 256 272 vec->edges[0]->normal = normvec.unit(); 257 vec->edges[0]->normal = normvec.unit(); 273 258 274 vec->edges[0]->cornNorm[0] = (vec->edges[0 259 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0] 275 - vec->center) 260 - vec->center).unit(); 276 vec->edges[0]->cornNorm[1] = (vec->edges[0 261 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1] 277 - vec->center) 262 - vec->center).unit(); 278 263 279 // 264 // 280 // Repeat for ending phi 265 // Repeat for ending phi 281 // 266 // 282 vec = vecs + maxSides - 1; << 267 vec = vecs + numSide - 1; 283 268 284 normvec = vec->edges[1]->corner[0] - vec-> 269 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1]; 285 normvec = normvec.cross(vec->normal); 270 normvec = normvec.cross(vec->normal); 286 if (normvec.dot(vec->surfPhi) < 0) normvec 271 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec; 287 272 288 vec->edges[1]->normal = normvec.unit(); 273 vec->edges[1]->normal = normvec.unit(); 289 274 290 vec->edges[1]->cornNorm[0] = (vec->edges[1 275 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0] 291 - vec->center) 276 - vec->center).unit(); 292 vec->edges[1]->cornNorm[1] = (vec->edges[1 277 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1] 293 - vec->center) 278 - vec->center).unit(); 294 } 279 } 295 280 296 // 281 // 297 // edgeNorm is the factor one multiplies the 282 // edgeNorm is the factor one multiplies the distance along vector phi 298 // on the surface of one of our sides in ord 283 // on the surface of one of our sides in order to calculate the distance 299 // from the edge. (see routine DistanceAway) 284 // from the edge. (see routine DistanceAway) 300 // 285 // 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le 286 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] ); 302 } 287 } 303 288 >> 289 >> 290 // 304 // Fake default constructor - sets only member 291 // Fake default constructor - sets only member data and allocates memory 305 // for usage restri 292 // for usage restricted to object persistency. 306 // 293 // 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) 294 G4PolyhedraSide::G4PolyhedraSide( __void__&) 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), << 295 : cone(0), vecs(0), edges(0) 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 310 { 296 { 311 r[0] = r[1] = 0.; << 312 z[0] = z[1] = 0.; << 313 lenPhi[0] = lenPhi[1] = 0.; << 314 } 297 } 315 298 316 299 >> 300 // 317 // Destructor 301 // Destructor 318 // 302 // 319 G4PolyhedraSide::~G4PolyhedraSide() 303 G4PolyhedraSide::~G4PolyhedraSide() 320 { 304 { 321 delete cone; 305 delete cone; 322 delete [] vecs; 306 delete [] vecs; 323 delete [] edges; 307 delete [] edges; 324 } 308 } 325 309 >> 310 >> 311 // 326 // Copy constructor 312 // Copy constructor 327 // 313 // 328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 314 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source ) >> 315 : G4VCSGface() 329 { 316 { 330 instanceID = subInstanceManager.CreateSubIns << 331 << 332 CopyStuff( source ); 317 CopyStuff( source ); 333 } 318 } 334 319 335 320 336 // 321 // 337 // Assignment operator 322 // Assignment operator 338 // 323 // 339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 324 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source ) 340 { 325 { 341 if (this == &source) return *this; 326 if (this == &source) return *this; 342 327 343 delete cone; 328 delete cone; 344 delete [] vecs; 329 delete [] vecs; 345 delete [] edges; 330 delete [] edges; 346 331 347 CopyStuff( source ); 332 CopyStuff( source ); 348 333 349 return *this; 334 return *this; 350 } 335 } 351 336 >> 337 >> 338 // 352 // CopyStuff 339 // CopyStuff 353 // 340 // 354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 341 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source ) 355 { 342 { 356 // 343 // 357 // The simple stuff 344 // The simple stuff 358 // 345 // >> 346 numSide = source.numSide; 359 r[0] = source.r[0]; 347 r[0] = source.r[0]; 360 r[1] = source.r[1]; 348 r[1] = source.r[1]; 361 z[0] = source.z[0]; 349 z[0] = source.z[0]; 362 z[1] = source.z[1]; 350 z[1] = source.z[1]; 363 numSide = source.numSide; << 364 startPhi = source.startPhi; 351 startPhi = source.startPhi; 365 deltaPhi = source.deltaPhi; 352 deltaPhi = source.deltaPhi; 366 endPhi = source.endPhi; 353 endPhi = source.endPhi; 367 phiIsOpen = source.phiIsOpen; 354 phiIsOpen = source.phiIsOpen; 368 allBehind = source.allBehind; 355 allBehind = source.allBehind; 369 356 370 lenRZ = source.lenRZ; 357 lenRZ = source.lenRZ; 371 lenPhi[0] = source.lenPhi[0]; 358 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[1] = source.lenPhi[1]; 359 lenPhi[1] = source.lenPhi[1]; 373 edgeNorm = source.edgeNorm; 360 edgeNorm = source.edgeNorm; 374 361 375 kCarTolerance = source.kCarTolerance; 362 kCarTolerance = source.kCarTolerance; 376 fSurfaceArea = source.fSurfaceArea; 363 fSurfaceArea = source.fSurfaceArea; 377 364 378 cone = new G4IntersectingCone( *source.cone 365 cone = new G4IntersectingCone( *source.cone ); 379 366 380 // 367 // 381 // Duplicate edges 368 // Duplicate edges 382 // 369 // 383 const std::size_t numSides = (numSide > 0) ? << 370 G4int numEdges = phiIsOpen ? numSide+1 : numSide; 384 const std::size_t numEdges = phiIsOpen ? num << 385 edges = new G4PolyhedraSideEdge[numEdges]; 371 edges = new G4PolyhedraSideEdge[numEdges]; 386 372 387 G4PolyhedraSideEdge *edge = edges, 373 G4PolyhedraSideEdge *edge = edges, 388 *sourceEdge = source.edges; 374 *sourceEdge = source.edges; 389 do // Loop checking, 13.08.2015, G.Cosmo << 375 do 390 { 376 { 391 *edge = *sourceEdge; 377 *edge = *sourceEdge; 392 } while( ++sourceEdge, ++edge < edges + numE 378 } while( ++sourceEdge, ++edge < edges + numEdges); 393 379 394 // 380 // 395 // Duplicate vecs 381 // Duplicate vecs 396 // 382 // 397 vecs = new G4PolyhedraSideVec[numSides]; << 383 vecs = new G4PolyhedraSideVec[numSide]; 398 384 399 G4PolyhedraSideVec *vec = vecs, 385 G4PolyhedraSideVec *vec = vecs, 400 *sourceVec = source.vecs; 386 *sourceVec = source.vecs; 401 do // Loop checking, 13.08.2015, G.Cosmo << 387 do 402 { 388 { 403 *vec = *sourceVec; 389 *vec = *sourceVec; 404 vec->edges[0] = edges + (sourceVec->edges[ 390 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges); 405 vec->edges[1] = edges + (sourceVec->edges[ 391 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges); 406 } while( ++sourceVec, ++vec < vecs + numSide << 392 } while( ++sourceVec, ++vec < vecs + numSide ); 407 } 393 } 408 394 >> 395 >> 396 // 409 // Intersect 397 // Intersect 410 // 398 // 411 // Decide if a line intersects the face. 399 // Decide if a line intersects the face. 412 // 400 // 413 // Arguments: 401 // Arguments: 414 // p = (in) starting point of line segment 402 // p = (in) starting point of line segment 415 // v = (in) direction of line segment (ass 403 // v = (in) direction of line segment (assumed a unit vector) 416 // A, B = (in) 2d transform variables (see 404 // A, B = (in) 2d transform variables (see note top of file) 417 // normSign = (in) desired sign for dot prod 405 // normSign = (in) desired sign for dot product with normal (see below) 418 // surfTolerance = (in) minimum distance fro 406 // surfTolerance = (in) minimum distance from the surface 419 // vecs = (in) Vector set array 407 // vecs = (in) Vector set array 420 // distance = (out) distance to surface furf 408 // distance = (out) distance to surface furfilling all requirements 421 // distFromSurface = (out) distance from the 409 // distFromSurface = (out) distance from the surface 422 // thisNormal = (out) normal vector of the i 410 // thisNormal = (out) normal vector of the intersecting surface 423 // 411 // 424 // Return value: 412 // Return value: 425 // true if an intersection is found. Otherwis 413 // true if an intersection is found. Otherwise, output parameters are 426 // undefined. 414 // undefined. 427 // 415 // 428 // Notes: 416 // Notes: 429 // * normSign: if we are "inside" the shape an 417 // * normSign: if we are "inside" the shape and only want to find out how far 430 // to leave the shape, we only want to consi 418 // to leave the shape, we only want to consider intersections with surfaces in 431 // which the trajectory is leaving the shape 419 // which the trajectory is leaving the shape. Since the normal vectors to the 432 // surface always point outwards from the in 420 // surface always point outwards from the inside, this means we want the dot 433 // product of the trajectory direction v and 421 // product of the trajectory direction v and the normal of the side normals[i] 434 // to be positive. Thus, we should specify n 422 // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if 435 // we are outside and want to go in, normSig 423 // we are outside and want to go in, normSign should be set to -1.0. 436 // Don't set normSign to zero, or you will g 424 // Don't set normSign to zero, or you will get no intersections! 437 // 425 // 438 // * surfTolerance: see notes on argument "sur 426 // * surfTolerance: see notes on argument "surfTolerance" in routine 439 // "IntersectSidePlane". 427 // "IntersectSidePlane". 440 // ----HOWEVER---- We should *not* apply thi 428 // ----HOWEVER---- We should *not* apply this surface tolerance if the 441 // starting point is not within phi or z of 429 // starting point is not within phi or z of the surface. Specifically, 442 // if the starting point p angle in x/y plac 430 // if the starting point p angle in x/y places it on a separate side from the 443 // intersection or if the starting point p i 431 // intersection or if the starting point p is outside the z bounds of the 444 // segment, surfTolerance must be ignored or 432 // segment, surfTolerance must be ignored or we should *always* accept the 445 // intersection! 433 // intersection! 446 // This is simply because the sides do not h 434 // This is simply because the sides do not have infinite extent. 447 // 435 // 448 // 436 // 449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 437 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p, 450 const G4Thr << 438 const G4ThreeVector &v, 451 G4boo 439 G4bool outgoing, 452 G4dou 440 G4double surfTolerance, 453 G4dou << 441 G4double &distance, 454 G4dou << 442 G4double &distFromSurface, 455 G4Thr << 443 G4ThreeVector &normal, 456 G4boo << 444 G4bool &isAllBehind ) 457 { 445 { 458 G4double normSign = outgoing ? +1 : -1; 446 G4double normSign = outgoing ? +1 : -1; 459 447 460 // 448 // 461 // ------------------TO BE IMPLEMENTED------ 449 // ------------------TO BE IMPLEMENTED--------------------- 462 // Testing the intersection of individual ph 450 // Testing the intersection of individual phi faces is 463 // pretty straight forward. The simple thing 451 // pretty straight forward. The simple thing therefore is to 464 // form a loop and check them all in sequenc 452 // form a loop and check them all in sequence. 465 // 453 // 466 // But, I worry about one day someone making 454 // But, I worry about one day someone making 467 // a polygon with a thousands sides. A linea 455 // a polygon with a thousands sides. A linear search 468 // would not be ideal in such a case. 456 // would not be ideal in such a case. 469 // 457 // 470 // So, it would be nice to be able to quickl 458 // So, it would be nice to be able to quickly decide 471 // which face would be intersected. One can 459 // which face would be intersected. One can make a very 472 // good guess by using the intersection with 460 // good guess by using the intersection with a cone. 473 // However, this is only reliable in 99% of 461 // However, this is only reliable in 99% of the cases. 474 // 462 // 475 // My solution: make a decent guess as to th 463 // My solution: make a decent guess as to the one or 476 // two potential faces might get intersected 464 // two potential faces might get intersected, and then 477 // test them. If we have the wrong face, use 465 // test them. If we have the wrong face, use the test 478 // to make a better guess. 466 // to make a better guess. 479 // 467 // 480 // Since we might have two guesses, form a q 468 // Since we might have two guesses, form a queue of 481 // potential intersecting faces. Keep an arr 469 // potential intersecting faces. Keep an array of 482 // already tested faces to avoid doing one m 470 // already tested faces to avoid doing one more than 483 // once. 471 // once. 484 // 472 // 485 // Result: at worst, an iterative search. On 473 // Result: at worst, an iterative search. On average, 486 // a little more than two tests would be req 474 // a little more than two tests would be required. 487 // 475 // 488 G4ThreeVector q = p + v; 476 G4ThreeVector q = p + v; 489 477 490 G4int face = 0; 478 G4int face = 0; 491 G4PolyhedraSideVec* vec = vecs; << 479 G4PolyhedraSideVec *vec = vecs; 492 do // Loop checking, 13.08.2015, G.Cosmo << 480 do 493 { 481 { 494 // 482 // 495 // Correct normal? 483 // Correct normal? 496 // 484 // 497 G4double dotProd = normSign*v.dot(vec->nor 485 G4double dotProd = normSign*v.dot(vec->normal); 498 if (dotProd <= 0) continue; 486 if (dotProd <= 0) continue; 499 487 500 // 488 // 501 // Is this face in front of the point alon 489 // Is this face in front of the point along the trajectory? 502 // 490 // 503 G4ThreeVector delta = p - vec->center; 491 G4ThreeVector delta = p - vec->center; 504 distFromSurface = -normSign*delta.dot(vec- 492 distFromSurface = -normSign*delta.dot(vec->normal); 505 493 506 if (distFromSurface < -surfTolerance) cont 494 if (distFromSurface < -surfTolerance) continue; 507 495 508 // 496 // 509 // phi 497 // phi 510 // c -------- d ^ 498 // c -------- d ^ 511 // | | | 499 // | | | 512 // a -------- b +---> r/z 500 // a -------- b +---> r/z 513 // 501 // 514 // 502 // 515 // Do we remain on this particular segment 503 // Do we remain on this particular segment? 516 // 504 // 517 G4ThreeVector qc = q - vec->edges[1]->corn 505 G4ThreeVector qc = q - vec->edges[1]->corner[0]; 518 G4ThreeVector qd = q - vec->edges[1]->corn 506 G4ThreeVector qd = q - vec->edges[1]->corner[1]; 519 507 520 if (normSign*qc.cross(qd).dot(v) < 0) cont 508 if (normSign*qc.cross(qd).dot(v) < 0) continue; 521 509 522 G4ThreeVector qa = q - vec->edges[0]->corn 510 G4ThreeVector qa = q - vec->edges[0]->corner[0]; 523 G4ThreeVector qb = q - vec->edges[0]->corn 511 G4ThreeVector qb = q - vec->edges[0]->corner[1]; 524 512 525 if (normSign*qa.cross(qb).dot(v) > 0) cont 513 if (normSign*qa.cross(qb).dot(v) > 0) continue; 526 514 527 // 515 // 528 // We found the one and only segment we mi 516 // We found the one and only segment we might be intersecting. 529 // Do we remain within r/z bounds? 517 // Do we remain within r/z bounds? 530 // 518 // 531 519 532 if (r[0] > 1/kInfinity && normSign*qa.cros 520 if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false; 533 if (r[1] > 1/kInfinity && normSign*qb.cros 521 if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false; 534 522 535 // 523 // 536 // We allow the face to be slightly behind 524 // We allow the face to be slightly behind the trajectory 537 // (surface tolerance) only if the point p 525 // (surface tolerance) only if the point p is within 538 // the vicinity of the face 526 // the vicinity of the face 539 // 527 // 540 if (distFromSurface < 0) 528 if (distFromSurface < 0) 541 { 529 { 542 G4ThreeVector ps = p - vec->center; 530 G4ThreeVector ps = p - vec->center; 543 531 544 G4double rz = ps.dot(vec->surfRZ); 532 G4double rz = ps.dot(vec->surfRZ); 545 if (std::fabs(rz) > lenRZ+surfTolerance) 533 if (std::fabs(rz) > lenRZ+surfTolerance) return false; 546 534 547 G4double pp = ps.dot(vec->surfPhi); 535 G4double pp = ps.dot(vec->surfPhi); 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 536 if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false; 549 } 537 } 550 538 551 539 552 // 540 // 553 // Intersection found. Return answer. 541 // Intersection found. Return answer. 554 // 542 // 555 distance = distFromSurface/dotProd; 543 distance = distFromSurface/dotProd; 556 normal = vec->normal; 544 normal = vec->normal; 557 isAllBehind = allBehind; 545 isAllBehind = allBehind; 558 return true; 546 return true; 559 } while( ++vec, ++face < numSide ); 547 } while( ++vec, ++face < numSide ); 560 548 561 // 549 // 562 // Oh well. Better luck next time. 550 // Oh well. Better luck next time. 563 // 551 // 564 return false; 552 return false; 565 } 553 } 566 554 567 // Distance << 555 568 // << 556 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 569 G4double G4PolyhedraSide::Distance( const G4Th << 570 { 557 { 571 G4double normSign = outgoing ? -1 : +1; 558 G4double normSign = outgoing ? -1 : +1; 572 559 573 // 560 // 574 // Try the closest phi segment first 561 // Try the closest phi segment first 575 // 562 // 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 563 G4int iPhi = ClosestPhiSegment( p.phi() ); 577 564 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 565 G4ThreeVector pdotc = p - vecs[iPhi].center; 579 G4double normDist = pdotc.dot(vecs[iPhi].nor 566 G4double normDist = pdotc.dot(vecs[iPhi].normal); 580 567 581 if (normSign*normDist > -0.5*kCarTolerance) 568 if (normSign*normDist > -0.5*kCarTolerance) 582 { 569 { 583 return DistanceAway( p, vecs[iPhi], &normD 570 return DistanceAway( p, vecs[iPhi], &normDist ); 584 } 571 } 585 572 586 // 573 // 587 // Now we have an interesting problem... do 574 // Now we have an interesting problem... do we try to find the 588 // closest facing side?? 575 // closest facing side?? 589 // 576 // 590 // Considered carefully, the answer is no. W 577 // Considered carefully, the answer is no. We know that if we 591 // are asking for the distance out, we are s 578 // are asking for the distance out, we are supposed to be inside, 592 // and vice versa. 579 // and vice versa. 593 // 580 // 594 581 595 return kInfinity; 582 return kInfinity; 596 } 583 } 597 584 >> 585 >> 586 // 598 // Inside 587 // Inside 599 // 588 // 600 EInside G4PolyhedraSide::Inside( const G4Three << 589 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p, 601 G4doubl 590 G4double tolerance, 602 G4doubl << 591 G4double *bestDistance ) 603 { 592 { 604 // 593 // 605 // Which phi segment is closest to this poin 594 // Which phi segment is closest to this point? 606 // 595 // 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 596 G4int iPhi = ClosestPhiSegment( p.phi() ); 608 597 609 G4double norm; 598 G4double norm; 610 599 611 // 600 // 612 // Get distance to this segment 601 // Get distance to this segment 613 // 602 // 614 *bestDistance = DistanceToOneSide( p, vecs[i 603 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 615 604 616 // 605 // 617 // Use distance along normal to decide retur 606 // Use distance along normal to decide return value 618 // 607 // 619 if ( (std::fabs(norm) > tolerance) || (*best << 608 if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) ) 620 return (norm < 0) ? kInside : kOutside; << 621 else << 622 return kSurface; 609 return kSurface; >> 610 else if (norm < 0) >> 611 return kInside; >> 612 else >> 613 return kOutside; 623 } 614 } 624 615 >> 616 >> 617 // 625 // Normal 618 // Normal 626 // 619 // 627 G4ThreeVector G4PolyhedraSide::Normal( const G << 620 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p, 628 G << 621 G4double *bestDistance ) 629 { 622 { 630 // 623 // 631 // Which phi segment is closest to this poin 624 // Which phi segment is closest to this point? 632 // 625 // 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 626 G4int iPhi = ClosestPhiSegment( p.phi() ); 634 627 635 // 628 // 636 // Get distance to this segment 629 // Get distance to this segment 637 // 630 // 638 G4double norm; 631 G4double norm; 639 *bestDistance = DistanceToOneSide( p, vecs[i 632 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 640 633 641 return vecs[iPhi].normal; 634 return vecs[iPhi].normal; 642 } 635 } 643 636 >> 637 >> 638 // 644 // Extent 639 // Extent 645 // 640 // 646 G4double G4PolyhedraSide::Extent( const G4Thre 641 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis ) 647 { 642 { 648 if (axis.perp2() < DBL_MIN) 643 if (axis.perp2() < DBL_MIN) 649 { 644 { 650 // 645 // 651 // Special case 646 // Special case 652 // 647 // 653 return axis.z() < 0 ? -cone->ZLo() : cone- 648 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 654 } 649 } 655 650 656 G4int iPhi, i1, i2; 651 G4int iPhi, i1, i2; 657 G4double best; 652 G4double best; 658 G4ThreeVector* list[4]; << 653 G4ThreeVector *list[4]; 659 654 660 // 655 // 661 // Which phi segment, if any, does the axis 656 // Which phi segment, if any, does the axis belong to 662 // 657 // 663 iPhi = PhiSegment( GetPhi(axis) ); << 658 iPhi = PhiSegment( axis.phi() ); 664 659 665 if (iPhi < 0) 660 if (iPhi < 0) 666 { 661 { 667 // 662 // 668 // No phi segment? Check front edge of fir 663 // No phi segment? Check front edge of first side and 669 // last edge of second side 664 // last edge of second side 670 // 665 // 671 i1 = 0; i2 = numSide-1; 666 i1 = 0; i2 = numSide-1; 672 } 667 } 673 else 668 else 674 { 669 { 675 // 670 // 676 // Check all corners of matching phi side 671 // Check all corners of matching phi side 677 // 672 // 678 i1 = iPhi; i2 = iPhi; 673 i1 = iPhi; i2 = iPhi; 679 } 674 } 680 675 681 list[0] = vecs[i1].edges[0]->corner; 676 list[0] = vecs[i1].edges[0]->corner; 682 list[1] = vecs[i1].edges[0]->corner+1; 677 list[1] = vecs[i1].edges[0]->corner+1; 683 list[2] = vecs[i2].edges[1]->corner; 678 list[2] = vecs[i2].edges[1]->corner; 684 list[3] = vecs[i2].edges[1]->corner+1; 679 list[3] = vecs[i2].edges[1]->corner+1; 685 680 686 // 681 // 687 // Who's biggest? 682 // Who's biggest? 688 // 683 // 689 best = -kInfinity; 684 best = -kInfinity; 690 G4ThreeVector** vec = list; << 685 G4ThreeVector **vec = list; 691 do // Loop checking, 13.08.2015, G.Cosmo << 686 do 692 { 687 { 693 G4double answer = (*vec)->dot(axis); 688 G4double answer = (*vec)->dot(axis); 694 if (answer > best) best = answer; 689 if (answer > best) best = answer; 695 } while( ++vec < list+4 ); 690 } while( ++vec < list+4 ); 696 691 697 return best; 692 return best; 698 } 693 } 699 694 >> 695 >> 696 // 700 // CalculateExtent 697 // CalculateExtent 701 // 698 // 702 // See notes in G4VCSGface 699 // See notes in G4VCSGface 703 // 700 // 704 void G4PolyhedraSide::CalculateExtent( const E 701 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 705 const G << 702 const G4VoxelLimits &voxelLimit, 706 const G << 703 const G4AffineTransform &transform, 707 G << 704 G4SolidExtentList &extentList ) 708 { 705 { 709 // 706 // 710 // Loop over all sides 707 // Loop over all sides 711 // 708 // 712 G4PolyhedraSideVec *vec = vecs; 709 G4PolyhedraSideVec *vec = vecs; 713 do // Loop checking, 13.08.2015, G.Cosmo << 710 do 714 { 711 { 715 // 712 // 716 // Fill our polygon with the four corners 713 // Fill our polygon with the four corners of 717 // this side, after the specified transfor 714 // this side, after the specified transformation 718 // 715 // 719 G4ClippablePolygon polygon; 716 G4ClippablePolygon polygon; 720 717 721 polygon.AddVertexInOrder(transform. 718 polygon.AddVertexInOrder(transform. 722 TransformPoint(ve 719 TransformPoint(vec->edges[0]->corner[0])); 723 polygon.AddVertexInOrder(transform. 720 polygon.AddVertexInOrder(transform. 724 TransformPoint(ve 721 TransformPoint(vec->edges[0]->corner[1])); 725 polygon.AddVertexInOrder(transform. 722 polygon.AddVertexInOrder(transform. 726 TransformPoint(ve 723 TransformPoint(vec->edges[1]->corner[1])); 727 polygon.AddVertexInOrder(transform. 724 polygon.AddVertexInOrder(transform. 728 TransformPoint(ve 725 TransformPoint(vec->edges[1]->corner[0])); 729 726 730 // 727 // 731 // Get extent 728 // Get extent 732 // 729 // 733 if (polygon.PartialClip( voxelLimit, axis 730 if (polygon.PartialClip( voxelLimit, axis )) 734 { 731 { 735 // 732 // 736 // Get dot product of normal along targe 733 // Get dot product of normal along target axis 737 // 734 // 738 polygon.SetNormal( transform.TransformAx 735 polygon.SetNormal( transform.TransformAxis(vec->normal) ); 739 736 740 extentList.AddSurface( polygon ); 737 extentList.AddSurface( polygon ); 741 } 738 } 742 } while( ++vec < vecs+numSide ); 739 } while( ++vec < vecs+numSide ); 743 740 744 return; 741 return; 745 } 742 } 746 743 >> 744 >> 745 // 747 // IntersectSidePlane 746 // IntersectSidePlane 748 // 747 // 749 // Decide if a line correctly intersects one s 748 // Decide if a line correctly intersects one side plane of our segment. 750 // It is assumed that the correct side has bee 749 // It is assumed that the correct side has been chosen, and thus only 751 // the z bounds (of the entire segment) are ch 750 // the z bounds (of the entire segment) are checked. 752 // 751 // 753 // normSign - To be multiplied against normal: 752 // normSign - To be multiplied against normal: 754 // = +1.0 normal is unchanged 753 // = +1.0 normal is unchanged 755 // = -1.0 normal is reversed (now p 754 // = -1.0 normal is reversed (now points inward) 756 // 755 // 757 // Arguments: 756 // Arguments: 758 // p - (in) Point 757 // p - (in) Point 759 // v - (in) Direction 758 // v - (in) Direction 760 // vec - (in) Description record of the si 759 // vec - (in) Description record of the side plane 761 // normSign - (in) Sign (+/- 1) to apply to 760 // normSign - (in) Sign (+/- 1) to apply to normal 762 // surfTolerance - (in) Surface tolerance (g 761 // surfTolerance - (in) Surface tolerance (generally > 0, see below) 763 // distance - (out) Distance along v to inte 762 // distance - (out) Distance along v to intersection 764 // distFromSurface - (out) Distance from surf 763 // distFromSurface - (out) Distance from surface normal 765 // 764 // 766 // Notes: 765 // Notes: 767 // surfTolerance - Used to decide if a poin 766 // surfTolerance - Used to decide if a point is behind the surface, 768 // a point is allow to be -surfToleranc 767 // a point is allow to be -surfTolerance behind the 769 // surface (as measured along the norma 768 // surface (as measured along the normal), but *only* 770 // if the point is within the r/z bound 769 // if the point is within the r/z bounds + surfTolerance 771 // of the segment. 770 // of the segment. 772 // 771 // 773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 772 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p, 774 co << 773 const G4ThreeVector &v, 775 co << 774 const G4PolyhedraSideVec vec, 776 775 G4double normSign, 777 776 G4double surfTolerance, 778 << 777 G4double &distance, 779 << 778 G4double &distFromSurface ) 780 { 779 { 781 // 780 // 782 // Correct normal? Here we have straight sid 781 // Correct normal? Here we have straight sides, and can safely ignore 783 // intersections where the dot product with 782 // intersections where the dot product with the normal is zero. 784 // 783 // 785 G4double dotProd = normSign*v.dot(vec.normal 784 G4double dotProd = normSign*v.dot(vec.normal); 786 785 787 if (dotProd <= 0) return false; 786 if (dotProd <= 0) return false; 788 787 789 // 788 // 790 // Calculate distance to surface. If the sid 789 // Calculate distance to surface. If the side is too far 791 // behind the point, we must reject it. 790 // behind the point, we must reject it. 792 // 791 // 793 G4ThreeVector delta = p - vec.center; 792 G4ThreeVector delta = p - vec.center; 794 distFromSurface = -normSign*delta.dot(vec.no 793 distFromSurface = -normSign*delta.dot(vec.normal); 795 794 796 if (distFromSurface < -surfTolerance) return 795 if (distFromSurface < -surfTolerance) return false; 797 796 798 // 797 // 799 // Calculate precise distance to intersectio 798 // Calculate precise distance to intersection with the side 800 // (along the trajectory, not normal to the 799 // (along the trajectory, not normal to the surface) 801 // 800 // 802 distance = distFromSurface/dotProd; 801 distance = distFromSurface/dotProd; 803 802 804 // 803 // 805 // Do we fall off the r/z extent of the segm 804 // Do we fall off the r/z extent of the segment? 806 // 805 // 807 // Calculate this very, very carefully! Why? 806 // Calculate this very, very carefully! Why? 808 // 1. If a RZ end is at R=0, you can 807 // 1. If a RZ end is at R=0, you can't miss! 809 // 2. If you just fall off in RZ, th 808 // 2. If you just fall off in RZ, the answer must 810 // be consistent with adjacent G4 809 // be consistent with adjacent G4PolyhedraSide faces. 811 // (2) implies that only variables used by o 810 // (2) implies that only variables used by other G4PolyhedraSide 812 // faces may be used, which includes only: p 811 // faces may be used, which includes only: p, v, and the edge corners. 813 // It also means that one side is a ">" or " 812 // It also means that one side is a ">" or "<", which the other 814 // must be ">=" or "<=". Fortunately, this i 813 // must be ">=" or "<=". Fortunately, this isn't a new problem. 815 // The solution below I borrowed from Joseph 814 // The solution below I borrowed from Joseph O'Rourke, 816 // "Computational Geometry in C (Second Edit 815 // "Computational Geometry in C (Second Edition)" 817 // See: http://cs.smith.edu/~orourke/ 816 // See: http://cs.smith.edu/~orourke/ 818 // 817 // 819 G4ThreeVector ic = p + distance*v - vec.cent 818 G4ThreeVector ic = p + distance*v - vec.center; 820 G4double atRZ = vec.surfRZ.dot(ic); 819 G4double atRZ = vec.surfRZ.dot(ic); 821 820 822 if (atRZ < 0) 821 if (atRZ < 0) 823 { 822 { 824 if (r[0]==0) return true; // Can't miss 823 if (r[0]==0) return true; // Can't miss! 825 824 826 if (atRZ < -lenRZ*1.2) return false; // F 825 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile. 827 826 828 G4ThreeVector q = p + v; 827 G4ThreeVector q = p + v; 829 G4ThreeVector qa = q - vec.edges[0]->corne 828 G4ThreeVector qa = q - vec.edges[0]->corner[0], 830 qb = q - vec.edges[1]->corne 829 qb = q - vec.edges[1]->corner[0]; 831 G4ThreeVector qacb = qa.cross(qb); 830 G4ThreeVector qacb = qa.cross(qb); 832 if (normSign*qacb.dot(v) < 0) return false 831 if (normSign*qacb.dot(v) < 0) return false; 833 832 834 if (distFromSurface < 0) 833 if (distFromSurface < 0) 835 { 834 { 836 if (atRZ < -lenRZ-surfTolerance) return 835 if (atRZ < -lenRZ-surfTolerance) return false; 837 } 836 } 838 } 837 } 839 else if (atRZ > 0) 838 else if (atRZ > 0) 840 { 839 { 841 if (r[1]==0) return true; // Can't miss 840 if (r[1]==0) return true; // Can't miss! 842 841 843 if (atRZ > lenRZ*1.2) return false; // Mi 842 if (atRZ > lenRZ*1.2) return false; // Missed by a mile 844 843 845 G4ThreeVector q = p + v; 844 G4ThreeVector q = p + v; 846 G4ThreeVector qa = q - vec.edges[0]->corne 845 G4ThreeVector qa = q - vec.edges[0]->corner[1], 847 qb = q - vec.edges[1]->corne 846 qb = q - vec.edges[1]->corner[1]; 848 G4ThreeVector qacb = qa.cross(qb); 847 G4ThreeVector qacb = qa.cross(qb); 849 if (normSign*qacb.dot(v) >= 0) return fals 848 if (normSign*qacb.dot(v) >= 0) return false; 850 849 851 if (distFromSurface < 0) 850 if (distFromSurface < 0) 852 { 851 { 853 if (atRZ > lenRZ+surfTolerance) return f 852 if (atRZ > lenRZ+surfTolerance) return false; 854 } 853 } 855 } 854 } 856 855 857 return true; 856 return true; 858 } 857 } 859 858 >> 859 >> 860 // 860 // LineHitsSegments 861 // LineHitsSegments 861 // 862 // 862 // Calculate which phi segments a line interse 863 // Calculate which phi segments a line intersects in three dimensions. 863 // No check is made as to whether the intersec 864 // No check is made as to whether the intersections are within the z bounds of 864 // the segment. 865 // the segment. 865 // 866 // 866 G4int G4PolyhedraSide::LineHitsSegments( const << 867 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p, 867 const << 868 const G4ThreeVector &v, 868 << 869 G4int *i1, G4int *i2 ) 869 { 870 { 870 G4double s1, s2; 871 G4double s1, s2; 871 // 872 // 872 // First, decide if and where the line inter 873 // First, decide if and where the line intersects the cone 873 // 874 // 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 875 G4int n = cone->LineHitsCone( p, v, &s1, &s2 ); 875 876 876 if (n==0) return 0; 877 if (n==0) return 0; 877 878 878 // 879 // 879 // Try first intersection. 880 // Try first intersection. 880 // 881 // 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y 882 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) ); 882 if (n==1) 883 if (n==1) 883 { 884 { 884 return (*i1 < 0) ? 0 : 1; 885 return (*i1 < 0) ? 0 : 1; 885 } 886 } 886 887 887 // 888 // 888 // Try second intersection 889 // Try second intersection 889 // 890 // 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y 891 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) ); 891 if (*i1 == *i2) return 0; 892 if (*i1 == *i2) return 0; 892 893 893 if (*i1 < 0) 894 if (*i1 < 0) 894 { 895 { 895 if (*i2 < 0) return 0; 896 if (*i2 < 0) return 0; 896 *i1 = *i2; 897 *i1 = *i2; 897 return 1; 898 return 1; 898 } 899 } 899 900 900 if (*i2 < 0) return 1; 901 if (*i2 < 0) return 1; 901 902 902 return 2; 903 return 2; 903 } 904 } 904 905 >> 906 >> 907 // 905 // ClosestPhiSegment 908 // ClosestPhiSegment 906 // 909 // 907 // Decide which phi segment is closest in phi 910 // Decide which phi segment is closest in phi to the point. 908 // The result is the same as PhiSegment if the 911 // The result is the same as PhiSegment if there is no phi opening. 909 // 912 // 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do 913 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 ) 911 { 914 { 912 G4int iPhi = PhiSegment( phi0 ); 915 G4int iPhi = PhiSegment( phi0 ); 913 if (iPhi >= 0) return iPhi; 916 if (iPhi >= 0) return iPhi; 914 917 915 // 918 // 916 // Boogers! The points falls inside the phi 919 // Boogers! The points falls inside the phi segment. 917 // Look for the closest point: the start, or 920 // Look for the closest point: the start, or end 918 // 921 // 919 G4double phi = phi0; 922 G4double phi = phi0; 920 923 921 while( phi < startPhi ) // Loop checking, << 924 while( phi < startPhi ) phi += twopi; 922 phi += twopi; << 923 G4double d1 = phi-endPhi; 925 G4double d1 = phi-endPhi; 924 926 925 while( phi > startPhi ) // Loop checking, << 927 while( phi > startPhi ) phi -= twopi; 926 phi -= twopi; << 927 G4double d2 = startPhi-phi; 928 G4double d2 = startPhi-phi; 928 929 929 return (d2 < d1) ? 0 : numSide-1; 930 return (d2 < d1) ? 0 : numSide-1; 930 } 931 } 931 932 >> 933 >> 934 // 932 // PhiSegment 935 // PhiSegment 933 // 936 // 934 // Decide which phi segment an angle belongs t 937 // Decide which phi segment an angle belongs to, counting from zero. 935 // A value of -1 indicates that the phi value 938 // A value of -1 indicates that the phi value is outside the shape 936 // (only possible if phiTotal < 360 degrees). 939 // (only possible if phiTotal < 360 degrees). 937 // 940 // 938 G4int G4PolyhedraSide::PhiSegment( G4double ph 941 G4int G4PolyhedraSide::PhiSegment( G4double phi0 ) 939 { 942 { 940 // 943 // 941 // How far are we from phiStart? Come up wit 944 // How far are we from phiStart? Come up with a positive answer 942 // that is less than 2*PI 945 // that is less than 2*PI 943 // 946 // 944 G4double phi = phi0 - startPhi; 947 G4double phi = phi0 - startPhi; 945 while( phi < 0 ) // Loop checking, 13.08. << 948 while( phi < 0 ) phi += twopi; 946 phi += twopi; << 949 while( phi > twopi ) phi -= twopi; 947 while( phi > twopi ) // Loop checking, 13 << 948 phi -= twopi; << 949 950 950 // 951 // 951 // Divide 952 // Divide 952 // 953 // 953 auto answer = (G4int)(phi/deltaPhi); << 954 G4int answer = (G4int)(phi/deltaPhi); 954 955 955 if (answer >= numSide) 956 if (answer >= numSide) 956 { 957 { 957 if (phiIsOpen) 958 if (phiIsOpen) 958 { 959 { 959 return -1; // Looks like we missed 960 return -1; // Looks like we missed 960 } 961 } 961 else 962 else 962 { 963 { 963 answer = numSide-1; // Probably just ro 964 answer = numSide-1; // Probably just roundoff 964 } 965 } 965 } 966 } 966 967 967 return answer; 968 return answer; 968 } 969 } 969 970 970 // GetPhi << 971 // << 972 // Calculate Phi for a given 3-vector (point), << 973 // same point, in the attempt to avoid consecu << 974 // quantity << 975 // << 976 G4double G4PolyhedraSide::GetPhi( const G4Thre << 977 { << 978 G4double val=0.; << 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 980 << 981 if (vphi != p) << 982 { << 983 val = p.phi(); << 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); << 985 G4MT_phphik = val; << 986 } << 987 else << 988 { << 989 val = G4MT_phphik; << 990 } << 991 return val; << 992 } << 993 971 >> 972 // 994 // DistanceToOneSide 973 // DistanceToOneSide 995 // 974 // 996 // Arguments: 975 // Arguments: 997 // p - (in) Point to check 976 // p - (in) Point to check 998 // vec - (in) vector set of this side 977 // vec - (in) vector set of this side 999 // normDist - (out) distance normal to the si 978 // normDist - (out) distance normal to the side or edge, as appropriate, signed 1000 // Return value = total distance from the sid 979 // Return value = total distance from the side 1001 // 980 // 1002 G4double G4PolyhedraSide::DistanceToOneSide( << 981 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p, 1003 << 982 const G4PolyhedraSideVec &vec, 1004 << 983 G4double *normDist ) 1005 { 984 { 1006 G4ThreeVector pct = p - vec.center; << 985 G4ThreeVector pc = p - vec.center; 1007 986 1008 // 987 // 1009 // Get normal distance 988 // Get normal distance 1010 // 989 // 1011 *normDist = vec.normal.dot(pct); << 990 *normDist = vec.normal.dot(pc); 1012 991 1013 // 992 // 1014 // Add edge penalty 993 // Add edge penalty 1015 // 994 // 1016 return DistanceAway( p, vec, normDist ); 995 return DistanceAway( p, vec, normDist ); 1017 } 996 } 1018 997 >> 998 >> 999 // 1019 // DistanceAway 1000 // DistanceAway 1020 // 1001 // 1021 // Add distance from side edges, if necessary << 1002 // Add distance from side edges, if necesssary, to total distance, 1022 // and updates normDist appropriate depending 1003 // and updates normDist appropriate depending on edge normals. 1023 // 1004 // 1024 G4double G4PolyhedraSide::DistanceAway( const << 1005 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p, 1025 const << 1006 const G4PolyhedraSideVec &vec, 1026 << 1007 G4double *normDist ) 1027 { 1008 { 1028 G4double distOut2; 1009 G4double distOut2; 1029 G4ThreeVector pct = p - vec.center; << 1010 G4ThreeVector pc = p - vec.center; 1030 G4double distFaceNorm = *normDist; 1011 G4double distFaceNorm = *normDist; 1031 1012 1032 // 1013 // 1033 // Okay, are we inside bounds? 1014 // Okay, are we inside bounds? 1034 // 1015 // 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); << 1016 G4double pcDotRZ = pc.dot(vec.surfRZ); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); << 1017 G4double pcDotPhi = pc.dot(vec.surfPhi); 1037 1018 1038 // 1019 // 1039 // Go through all permutations. 1020 // Go through all permutations. 1040 // 1021 // Phi 1041 // | | 1022 // | | ^ 1042 // B | H | E 1023 // B | H | E | 1043 // ------[1]------------[3]----- 1024 // ------[1]------------[3]----- | 1044 // |XXXXXXXXXXXXXX| 1025 // |XXXXXXXXXXXXXX| +----> RZ 1045 // C |XXXXXXXXXXXXXX| F 1026 // C |XXXXXXXXXXXXXX| F 1046 // |XXXXXXXXXXXXXX| 1027 // |XXXXXXXXXXXXXX| 1047 // ------[0]------------[2]---- 1028 // ------[0]------------[2]---- 1048 // A | G | D 1029 // A | G | D 1049 // | | 1030 // | | 1050 // 1031 // 1051 // It's real messy, but at least it's quick 1032 // It's real messy, but at least it's quick 1052 // 1033 // 1053 1034 1054 if (pcDotRZ < -lenRZ) 1035 if (pcDotRZ < -lenRZ) 1055 { 1036 { 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenP 1037 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1]; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1038 G4double distOutZ = pcDotRZ+lenRZ; 1058 // 1039 // 1059 // Below in RZ 1040 // Below in RZ 1060 // 1041 // 1061 if (pcDotPhi < -lenPhiZ) 1042 if (pcDotPhi < -lenPhiZ) 1062 { 1043 { 1063 // 1044 // 1064 // ...and below in phi. Find distance t 1045 // ...and below in phi. Find distance to point (A) 1065 // 1046 // 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1047 G4double distOutPhi = pcDotPhi+lenPhiZ; 1067 distOut2 = distOutPhi*distOutPhi + dist 1048 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1068 G4ThreeVector pa = p - vec.edges[0]->co 1049 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1069 *normDist = pa.dot(vec.edges[0]->cornNo 1050 *normDist = pa.dot(vec.edges[0]->cornNorm[0]); 1070 } 1051 } 1071 else if (pcDotPhi > lenPhiZ) 1052 else if (pcDotPhi > lenPhiZ) 1072 { 1053 { 1073 // 1054 // 1074 // ...and above in phi. Find distance t 1055 // ...and above in phi. Find distance to point (B) 1075 // 1056 // 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1057 G4double distOutPhi = pcDotPhi-lenPhiZ; 1077 distOut2 = distOutPhi*distOutPhi + dist 1058 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1078 G4ThreeVector pb = p - vec.edges[1]->co 1059 G4ThreeVector pb = p - vec.edges[1]->corner[0]; 1079 *normDist = pb.dot(vec.edges[1]->cornNo 1060 *normDist = pb.dot(vec.edges[1]->cornNorm[0]); 1080 } 1061 } 1081 else 1062 else 1082 { 1063 { 1083 // 1064 // 1084 // ...and inside in phi. Find distance 1065 // ...and inside in phi. Find distance to line (C) 1085 // 1066 // 1086 G4ThreeVector pa = p - vec.edges[0]->co 1067 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1087 distOut2 = distOutZ*distOutZ; 1068 distOut2 = distOutZ*distOutZ; 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1069 *normDist = pa.dot(vec.edgeNorm[0]); 1089 } 1070 } 1090 } 1071 } 1091 else if (pcDotRZ > lenRZ) 1072 else if (pcDotRZ > lenRZ) 1092 { 1073 { 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenP 1074 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1]; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1075 G4double distOutZ = pcDotRZ-lenRZ; 1095 // 1076 // 1096 // Above in RZ 1077 // Above in RZ 1097 // 1078 // 1098 if (pcDotPhi < -lenPhiZ) 1079 if (pcDotPhi < -lenPhiZ) 1099 { 1080 { 1100 // 1081 // 1101 // ...and below in phi. Find distance t 1082 // ...and below in phi. Find distance to point (D) 1102 // 1083 // 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1084 G4double distOutPhi = pcDotPhi+lenPhiZ; 1104 distOut2 = distOutPhi*distOutPhi + dist 1085 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1105 G4ThreeVector pd = p - vec.edges[0]->co 1086 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1106 *normDist = pd.dot(vec.edges[0]->cornNo 1087 *normDist = pd.dot(vec.edges[0]->cornNorm[1]); 1107 } 1088 } 1108 else if (pcDotPhi > lenPhiZ) 1089 else if (pcDotPhi > lenPhiZ) 1109 { 1090 { 1110 // 1091 // 1111 // ...and above in phi. Find distance t 1092 // ...and above in phi. Find distance to point (E) 1112 // 1093 // 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1094 G4double distOutPhi = pcDotPhi-lenPhiZ; 1114 distOut2 = distOutPhi*distOutPhi + dist 1095 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1115 G4ThreeVector pe = p - vec.edges[1]->co 1096 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1116 *normDist = pe.dot(vec.edges[1]->cornNo 1097 *normDist = pe.dot(vec.edges[1]->cornNorm[1]); 1117 } 1098 } 1118 else 1099 else 1119 { 1100 { 1120 // 1101 // 1121 // ...and inside in phi. Find distance 1102 // ...and inside in phi. Find distance to line (F) 1122 // 1103 // 1123 distOut2 = distOutZ*distOutZ; 1104 distOut2 = distOutZ*distOutZ; 1124 G4ThreeVector pd = p - vec.edges[0]->co 1105 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1106 *normDist = pd.dot(vec.edgeNorm[1]); 1126 } 1107 } 1127 } 1108 } 1128 else 1109 else 1129 { 1110 { 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*le 1111 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1]; 1131 // 1112 // 1132 // We are inside RZ bounds 1113 // We are inside RZ bounds 1133 // 1114 // 1134 if (pcDotPhi < -lenPhiZ) 1115 if (pcDotPhi < -lenPhiZ) 1135 { 1116 { 1136 // 1117 // 1137 // ...and below in phi. Find distance t 1118 // ...and below in phi. Find distance to line (G) 1138 // 1119 // 1139 G4double distOut = edgeNorm*(pcDotPhi+l 1120 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ); 1140 distOut2 = distOut*distOut; 1121 distOut2 = distOut*distOut; 1141 G4ThreeVector pd = p - vec.edges[0]->co 1122 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1142 *normDist = pd.dot(vec.edges[0]->normal 1123 *normDist = pd.dot(vec.edges[0]->normal); 1143 } 1124 } 1144 else if (pcDotPhi > lenPhiZ) 1125 else if (pcDotPhi > lenPhiZ) 1145 { 1126 { 1146 // 1127 // 1147 // ...and above in phi. Find distance t 1128 // ...and above in phi. Find distance to line (H) 1148 // 1129 // 1149 G4double distOut = edgeNorm*(pcDotPhi-l 1130 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ); 1150 distOut2 = distOut*distOut; 1131 distOut2 = distOut*distOut; 1151 G4ThreeVector pe = p - vec.edges[1]->co 1132 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1152 *normDist = pe.dot(vec.edges[1]->normal 1133 *normDist = pe.dot(vec.edges[1]->normal); 1153 } 1134 } 1154 else 1135 else 1155 { 1136 { 1156 // 1137 // 1157 // Inside bounds! No penalty. 1138 // Inside bounds! No penalty. 1158 // 1139 // 1159 return std::fabs(distFaceNorm); 1140 return std::fabs(distFaceNorm); 1160 } 1141 } 1161 } 1142 } 1162 return std::sqrt( distFaceNorm*distFaceNorm 1143 return std::sqrt( distFaceNorm*distFaceNorm + distOut2 ); 1163 } 1144 } 1164 1145 >> 1146 >> 1147 // 1165 // Calculation of surface area of a triangle. 1148 // Calculation of surface area of a triangle. 1166 // At the same time a random point in the tri 1149 // At the same time a random point in the triangle is given 1167 // 1150 // 1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1151 G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1, 1169 co << 1152 G4ThreeVector p2, 1170 co << 1153 G4ThreeVector p3, 1171 G4 << 1154 G4ThreeVector *p4 ) 1172 { 1155 { 1173 G4ThreeVector v, w; 1156 G4ThreeVector v, w; 1174 1157 1175 v = p3 - p1; 1158 v = p3 - p1; 1176 w = p1 - p2; 1159 w = p1 - p2; 1177 G4double lambda1 = G4UniformRand(); 1160 G4double lambda1 = G4UniformRand(); 1178 G4double lambda2 = lambda1*G4UniformRand(); 1161 G4double lambda2 = lambda1*G4UniformRand(); 1179 1162 1180 *p4=p2 + lambda1*w + lambda2*v; 1163 *p4=p2 + lambda1*w + lambda2*v; 1181 return 0.5*(v.cross(w)).mag(); 1164 return 0.5*(v.cross(w)).mag(); 1182 } 1165 } 1183 1166 >> 1167 >> 1168 // 1184 // GetPointOnPlane 1169 // GetPointOnPlane 1185 // 1170 // 1186 // Auxiliary method for GetPointOnSurface() 1171 // Auxiliary method for GetPointOnSurface() 1187 // 1172 // 1188 G4ThreeVector 1173 G4ThreeVector 1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1174 G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1, 1190 const G4Thr << 1175 G4ThreeVector p2, G4ThreeVector p3, 1191 G4double* A << 1176 G4double *Area ) 1192 { 1177 { 1193 G4double chose,aOne,aTwo; 1178 G4double chose,aOne,aTwo; 1194 G4ThreeVector point1,point2; 1179 G4ThreeVector point1,point2; 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1180 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1181 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1197 *Area= aOne+aTwo; 1182 *Area= aOne+aTwo; 1198 1183 1199 chose = G4UniformRand()*(aOne+aTwo); 1184 chose = G4UniformRand()*(aOne+aTwo); 1200 if( (chose>=0.) && (chose < aOne) ) 1185 if( (chose>=0.) && (chose < aOne) ) 1201 { 1186 { 1202 return (point1); 1187 return (point1); 1203 } 1188 } 1204 return (point2); 1189 return (point2); 1205 } 1190 } 1206 1191 >> 1192 >> 1193 // 1207 // SurfaceArea() 1194 // SurfaceArea() 1208 // 1195 // 1209 G4double G4PolyhedraSide::SurfaceArea() 1196 G4double G4PolyhedraSide::SurfaceArea() 1210 { 1197 { 1211 if( fSurfaceArea==0. ) 1198 if( fSurfaceArea==0. ) 1212 { 1199 { 1213 // Define the variables 1200 // Define the variables 1214 // 1201 // 1215 G4double area,areas; 1202 G4double area,areas; 1216 G4ThreeVector point1; 1203 G4ThreeVector point1; 1217 G4ThreeVector v1,v2,v3,v4; 1204 G4ThreeVector v1,v2,v3,v4; 1218 G4PolyhedraSideVec* vec = vecs; << 1205 G4PolyhedraSideVec *vec = vecs; 1219 areas=0.; 1206 areas=0.; 1220 1207 1221 // Do a loop on all SideEdge 1208 // Do a loop on all SideEdge 1222 // 1209 // 1223 do // Loop checking, 13.08.2015, G.Cos << 1210 do 1224 { 1211 { 1225 // Define 4points for a Plane or Triang 1212 // Define 4points for a Plane or Triangle 1226 // 1213 // 1227 v1=vec->edges[0]->corner[0]; << 1214 G4ThreeVector v1=vec->edges[0]->corner[0]; 1228 v2=vec->edges[0]->corner[1]; << 1215 G4ThreeVector v2=vec->edges[0]->corner[1]; 1229 v3=vec->edges[1]->corner[1]; << 1216 G4ThreeVector v3=vec->edges[1]->corner[1]; 1230 v4=vec->edges[1]->corner[0]; << 1217 G4ThreeVector v4=vec->edges[1]->corner[0]; 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&are 1218 point1=GetPointOnPlane(v1,v2,v3,v4,&area); 1232 areas+=area; 1219 areas+=area; 1233 } while( ++vec < vecs + numSide); 1220 } while( ++vec < vecs + numSide); 1234 1221 1235 fSurfaceArea=areas; 1222 fSurfaceArea=areas; 1236 } 1223 } 1237 return fSurfaceArea; 1224 return fSurfaceArea; 1238 } 1225 } 1239 1226 >> 1227 >> 1228 // 1240 // GetPointOnFace() 1229 // GetPointOnFace() 1241 // 1230 // 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace 1231 G4ThreeVector G4PolyhedraSide::GetPointOnFace() 1243 { 1232 { 1244 // Define the variables 1233 // Define the variables 1245 // 1234 // 1246 std::vector<G4double>areas; 1235 std::vector<G4double>areas; 1247 std::vector<G4ThreeVector>points; 1236 std::vector<G4ThreeVector>points; 1248 G4double area=0.; << 1237 G4double area=0; 1249 G4double result1; 1238 G4double result1; 1250 G4ThreeVector point1; 1239 G4ThreeVector point1; 1251 G4ThreeVector v1,v2,v3,v4; 1240 G4ThreeVector v1,v2,v3,v4; 1252 G4PolyhedraSideVec* vec = vecs; << 1241 G4PolyhedraSideVec *vec = vecs; 1253 1242 1254 // Do a loop on all SideEdge 1243 // Do a loop on all SideEdge 1255 // 1244 // 1256 do // Loop checking, 13.08.2015, G.Cosmo << 1245 do 1257 { 1246 { 1258 // Define 4points for a Plane or Triangle 1247 // Define 4points for a Plane or Triangle 1259 // 1248 // 1260 v1=vec->edges[0]->corner[0]; << 1249 G4ThreeVector v1=vec->edges[0]->corner[0]; 1261 v2=vec->edges[0]->corner[1]; << 1250 G4ThreeVector v2=vec->edges[0]->corner[1]; 1262 v3=vec->edges[1]->corner[1]; << 1251 G4ThreeVector v3=vec->edges[1]->corner[1]; 1263 v4=vec->edges[1]->corner[0]; << 1252 G4ThreeVector v4=vec->edges[1]->corner[0]; 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&resul 1253 point1=GetPointOnPlane(v1,v2,v3,v4,&result1); 1265 points.push_back(point1); 1254 points.push_back(point1); 1266 areas.push_back(result1); 1255 areas.push_back(result1); 1267 area+=result1; 1256 area+=result1; 1268 } while( ++vec < vecs+numSide ); 1257 } while( ++vec < vecs+numSide ); 1269 1258 1270 // Choose randomly one of the surfaces and 1259 // Choose randomly one of the surfaces and point on it 1271 // 1260 // 1272 G4double chose = area*G4UniformRand(); 1261 G4double chose = area*G4UniformRand(); 1273 G4double Achose1=0., Achose2=0.; << 1262 G4double Achose1,Achose2; >> 1263 Achose1=0;Achose2=0.; 1274 G4int i=0; 1264 G4int i=0; 1275 do // Loop checking, 13.08.2015, G.Cosmo << 1265 do 1276 { 1266 { 1277 Achose2+=areas[i]; 1267 Achose2+=areas[i]; 1278 if(chose>=Achose1 && chose<Achose2) 1268 if(chose>=Achose1 && chose<Achose2) 1279 { 1269 { 1280 point1=points[i] ; break; 1270 point1=points[i] ; break; 1281 } 1271 } 1282 ++i; Achose1=Achose2; << 1272 i++; Achose1=Achose2; 1283 } while( i<numSide ); 1273 } while( i<numSide ); 1284 1274 1285 return point1; 1275 return point1; 1286 } 1276 } 1287 1277