Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyhedraSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyhedraSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyhedraSide.cc (Version 9.2.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4PolyhedraSide, the face << 
 27 // one segmented side of a Polyhedra           << 
 28 //                                                 26 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  27 // $Id: G4PolyhedraSide.cc,v 1.15 2008/05/15 11:41:59 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-02-patch-04 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 // --------------------------------------------------------------------
                                                   >>  32 // GEANT 4 class source file
                                                   >>  33 //
                                                   >>  34 //
                                                   >>  35 // G4PolyhedraSide.cc
                                                   >>  36 //
                                                   >>  37 // Implementation of the face representing one segmented side of a Polyhedra
                                                   >>  38 //
 30 // -------------------------------------------     39 // --------------------------------------------------------------------
 31                                                    40 
 32 #include "G4PolyhedraSide.hh"                      41 #include "G4PolyhedraSide.hh"
 33 #include "G4PhysicalConstants.hh"              << 
 34 #include "G4IntersectingCone.hh"                   42 #include "G4IntersectingCone.hh"
 35 #include "G4ClippablePolygon.hh"                   43 #include "G4ClippablePolygon.hh"
 36 #include "G4AffineTransform.hh"                    44 #include "G4AffineTransform.hh"
 37 #include "G4SolidExtentList.hh"                    45 #include "G4SolidExtentList.hh"
 38 #include "G4GeometryTolerance.hh"                  46 #include "G4GeometryTolerance.hh"
 39                                                    47 
 40 #include "Randomize.hh"                            48 #include "Randomize.hh"
 41                                                    49 
 42 // This new field helps to use the class G4PhS << 
 43 //                                             << 
 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 
 45                                                << 
 46 // This macro changes the references to fields << 
 47 // in the class G4PhSideData.                  << 
 48 //                                             << 
 49 #define G4MT_phphix ((subInstanceManager.offse << 
 50 #define G4MT_phphiy ((subInstanceManager.offse << 
 51 #define G4MT_phphiz ((subInstanceManager.offse << 
 52 #define G4MT_phphik ((subInstanceManager.offse << 
 53                                                << 
 54 // Returns the private data instance manager.  << 
 55 //                                                 50 //
 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 
 57 {                                              << 
 58   return subInstanceManager;                   << 
 59 }                                              << 
 60                                                << 
 61 // Constructor                                     51 // Constructor
 62 //                                                 52 //
 63 // Values for r1,z1 and r2,z2 should be specif     53 // Values for r1,z1 and r2,z2 should be specified in clockwise
 64 // order in (r,z).                                 54 // order in (r,z).
 65 //                                                 55 //
 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly <<  56 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ,
 67                                   const G4Poly <<  57                                   const G4PolyhedraSideRZ *tail,
 68                                   const G4Poly <<  58                                   const G4PolyhedraSideRZ *head,
 69                                   const G4Poly <<  59                                   const G4PolyhedraSideRZ *nextRZ,
 70                                         G4int      60                                         G4int theNumSide, 
 71                                         G4doub     61                                         G4double thePhiStart, 
 72                                         G4doub     62                                         G4double thePhiTotal, 
 73                                         G4bool     63                                         G4bool thePhiIsOpen,
 74                                         G4bool     64                                         G4bool isAllBehind )
 75 {                                                  65 {
 76                                                    66 
 77   instanceID = subInstanceManager.CreateSubIns << 
 78                                                << 
 79   kCarTolerance = G4GeometryTolerance::GetInst     67   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 80   G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p <<  68   fSurfaceArea=0.;
 81   G4MT_phphik = 0.0;                           << 
 82                                                << 
 83   //                                               69   //
 84   // Record values                                 70   // Record values
 85   //                                               71   //
 86   r[0] = tail->r; z[0] = tail->z;                  72   r[0] = tail->r; z[0] = tail->z;
 87   r[1] = head->r; z[1] = head->z;                  73   r[1] = head->r; z[1] = head->z;
 88                                                    74   
 89   G4double phiTotal;                               75   G4double phiTotal;
 90                                                    76   
 91   //                                               77   //
 92   // Set phi to our convention                     78   // Set phi to our convention
 93   //                                               79   //
 94   startPhi = thePhiStart;                          80   startPhi = thePhiStart;
 95   while (startPhi < 0.0)    // Loop checking,  <<  81   while (startPhi < 0.0) startPhi += twopi;
 96     startPhi += twopi;                         << 
 97                                                    82   
 98   phiIsOpen = thePhiIsOpen;                        83   phiIsOpen = thePhiIsOpen;
 99   phiTotal = (phiIsOpen) ? thePhiTotal : twopi     84   phiTotal = (phiIsOpen) ? thePhiTotal : twopi;
100                                                    85   
101   allBehind = isAllBehind;                         86   allBehind = isAllBehind;
102                                                    87     
103   //                                               88   //
104   // Make our intersecting cone                    89   // Make our intersecting cone
105   //                                               90   //
106   cone = new G4IntersectingCone( r, z );           91   cone = new G4IntersectingCone( r, z );
107                                                    92   
108   //                                               93   //
109   // Construct side plane vector set               94   // Construct side plane vector set
110   //                                               95   //
111   numSide = theNumSide>0 ? theNumSide : 1;     <<  96   numSide = theNumSide;
112   deltaPhi = phiTotal/numSide;                 <<  97   deltaPhi = phiTotal/theNumSide;
113   endPhi = startPhi+phiTotal;                      98   endPhi = startPhi+phiTotal;
114                                                <<  99   
115   const std::size_t maxSides = numSide;        << 100   vecs = new G4PolyhedraSideVec[numSide];
116   vecs = new G4PolyhedraSideVec[maxSides];     << 101   
117   edges = new G4PolyhedraSideEdge[phiIsOpen ?  << 102   edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide];
118                                                   103   
119   //                                              104   //
120   // ...this is where we start                    105   // ...this is where we start
121   //                                              106   //
122   G4double phi = startPhi;                        107   G4double phi = startPhi;
123   G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s    108   G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ),
124           b1( r[1]*std::cos(phi), r[1]*std::si    109           b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ),
125           c1( prevRZ->r*std::cos(phi), prevRZ-    110           c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ),
126           d1( nextRZ->r*std::cos(phi), nextRZ-    111           d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ),
127           a2, b2, c2, d2;                         112           a2, b2, c2, d2;
128   G4PolyhedraSideEdge *edge = edges;              113   G4PolyhedraSideEdge *edge = edges;
129                                                   114           
130   G4PolyhedraSideVec *vec = vecs;                 115   G4PolyhedraSideVec *vec = vecs;
131   do    // Loop checking, 13.08.2015, G.Cosmo  << 116   do
132   {                                               117   {
133     //                                            118     //
134     // ...this is where we are going              119     // ...this is where we are going
135     //                                            120     //
136     phi += deltaPhi;                              121     phi += deltaPhi;
137     a2 = G4ThreeVector( r[0]*std::cos(phi), r[    122     a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] );
138     b2 = G4ThreeVector( r[1]*std::cos(phi), r[    123     b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] );
139     c2 = G4ThreeVector( prevRZ->r*std::cos(phi    124     c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z );
140     d2 = G4ThreeVector( nextRZ->r*std::cos(phi    125     d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z );
141                                                   126     
142     G4ThreeVector tt;                             127     G4ThreeVector tt;  
143                                                   128     
144     //                                            129     //
145     // ...build some relevant vectors.            130     // ...build some relevant vectors.
146     //    the point is to sacrifice a little m    131     //    the point is to sacrifice a little memory with precalcs 
147     //    to gain speed                           132     //    to gain speed
148     //                                            133     //
149     vec->center = 0.25*( a1 + a2 + b1 + b2 );     134     vec->center = 0.25*( a1 + a2 + b1 + b2 );
150                                                   135     
151     tt = b2 + b1 - a2 - a1;                       136     tt = b2 + b1 - a2 - a1;
152     vec->surfRZ = tt.unit();                      137     vec->surfRZ = tt.unit();
153     if (vec==vecs) lenRZ = 0.25*tt.mag();         138     if (vec==vecs) lenRZ = 0.25*tt.mag();
154                                                   139     
155     tt = b2 - b1 + a2 - a1;                       140     tt = b2 - b1 + a2 - a1;
156     vec->surfPhi = tt.unit();                     141     vec->surfPhi = tt.unit();
157     if (vec==vecs)                                142     if (vec==vecs)
158     {                                             143     {
159       lenPhi[0] = 0.25*tt.mag();                  144       lenPhi[0] = 0.25*tt.mag();
160       tt = b2 - b1;                               145       tt = b2 - b1;
161       lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len    146       lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ;
162     }                                             147     }
163                                                   148     
164     tt = vec->surfPhi.cross(vec->surfRZ);         149     tt = vec->surfPhi.cross(vec->surfRZ);
165     vec->normal = tt.unit();                      150     vec->normal = tt.unit();
166                                                   151     
167     //                                            152     //
168     // ...edge normals are the average of the     153     // ...edge normals are the average of the normals of
169     //    the two faces they connect.             154     //    the two faces they connect.
170     //                                            155     //
171     // ...edge normals are necessary if we are    156     // ...edge normals are necessary if we are to accurately
172     //    decide if a point is "inside" a face    157     //    decide if a point is "inside" a face. For non-convex
173     //    shapes, it is absolutely necessary t    158     //    shapes, it is absolutely necessary to know information
174     //    on adjacent faces to accurate determ    159     //    on adjacent faces to accurate determine this.
175     //                                            160     //
176     // ...we don't need them for the phi edges    161     // ...we don't need them for the phi edges, since that
177     //    information is taken care of interna    162     //    information is taken care of internally. The r/z edges,
178     //    however, depend on the adjacent G4Po    163     //    however, depend on the adjacent G4PolyhedraSide.
179     //                                            164     //
180     G4ThreeVector a12, adj;                       165     G4ThreeVector a12, adj;
181                                                   166     
182     a12 = a2-a1;                                  167     a12 = a2-a1;
183                                                   168 
184     adj = 0.5*(c1+c2-a1-a2);                      169     adj = 0.5*(c1+c2-a1-a2);
185     adj = adj.cross(a12);                         170     adj = adj.cross(a12);  
186     adj = adj.unit() + vec->normal;               171     adj = adj.unit() + vec->normal;       
187     vec->edgeNorm[0] = adj.unit();                172     vec->edgeNorm[0] = adj.unit();
188                                                   173     
189     a12 = b1-b2;                                  174     a12 = b1-b2;
190     adj = 0.5*(d1+d2-b1-b2);                      175     adj = 0.5*(d1+d2-b1-b2);
191     adj = adj.cross(a12);                         176     adj = adj.cross(a12);  
192     adj = adj.unit() + vec->normal;               177     adj = adj.unit() + vec->normal;       
193     vec->edgeNorm[1] = adj.unit();                178     vec->edgeNorm[1] = adj.unit();
194                                                   179     
195     //                                            180     //
196     // ...the corners are crucial. It is impor    181     // ...the corners are crucial. It is important that
197     //    they are calculated consistently for    182     //    they are calculated consistently for adjacent
198     //    G4PolyhedraSides, to avoid gaps caus    183     //    G4PolyhedraSides, to avoid gaps caused by roundoff.
199     //                                            184     //
200     vec->edges[0] = edge;                         185     vec->edges[0] = edge;
201     edge->corner[0] = a1;                         186     edge->corner[0] = a1;
202     edge->corner[1] = b1;                         187     edge->corner[1] = b1;
203     edge++;                                       188     edge++;
204     vec->edges[1] = edge;                         189     vec->edges[1] = edge;
205                                                   190 
206     a1 = a2;                                      191     a1 = a2;
207     b1 = b2;                                      192     b1 = b2;
208     c1 = c2;                                      193     c1 = c2;
209     d1 = d2;                                      194     d1 = d2;
210   } while( ++vec < vecs+maxSides );            << 195   } while( ++vec < vecs+numSide );
211                                                   196   
212   //                                              197   //
213   // Clean up hanging edge                        198   // Clean up hanging edge
214   //                                              199   //
215   if (phiIsOpen)                                  200   if (phiIsOpen)
216   {                                               201   {
217     edge->corner[0] = a2;                         202     edge->corner[0] = a2;
218     edge->corner[1] = b2;                         203     edge->corner[1] = b2;
219   }                                               204   }
220   else                                            205   else
221   {                                               206   {
222     vecs[maxSides-1].edges[1] = edges;         << 207     vecs[numSide-1].edges[1] = edges;
223   }                                               208   }
224                                                   209   
225   //                                              210   //
226   // Go back and fill in remaining fields in e    211   // Go back and fill in remaining fields in edges
227   //                                              212   //
228   vec = vecs;                                     213   vec = vecs;
229   G4PolyhedraSideVec *prev = vecs+maxSides-1;  << 214   G4PolyhedraSideVec *prev = vecs+numSide-1;
230   do    // Loop checking, 13.08.2015, G.Cosmo  << 215   do
231   {                                               216   {
232     edge = vec->edges[0];    // The edge betwe    217     edge = vec->edges[0];    // The edge between prev and vec
233                                                   218     
234     //                                            219     //
235     // Okay: edge normal is average of normals    220     // Okay: edge normal is average of normals of adjacent faces
236     //                                            221     //
237     G4ThreeVector eNorm = vec->normal + prev->    222     G4ThreeVector eNorm = vec->normal + prev->normal;
238     edge->normal = eNorm.unit();                  223     edge->normal = eNorm.unit();  
239                                                   224     
240     //                                            225     //
241     // Vertex normal is average of norms of ad    226     // Vertex normal is average of norms of adjacent surfaces (all four)
242     // However, vec->edgeNorm is unit vector i    227     // However, vec->edgeNorm is unit vector in some direction
243     // as the sum of normals of adjacent Polyh    228     // as the sum of normals of adjacent PolyhedraSide with vec.
244     // The normalization used for this vector     229     // The normalization used for this vector should be the same
245     // for vec and prev.                          230     // for vec and prev.
246     //                                            231     //
247     eNorm = vec->edgeNorm[0] + prev->edgeNorm[    232     eNorm = vec->edgeNorm[0] + prev->edgeNorm[0];
248     edge->cornNorm[0] = eNorm.unit();             233     edge->cornNorm[0] = eNorm.unit();
249                                                   234   
250     eNorm = vec->edgeNorm[1] + prev->edgeNorm[    235     eNorm = vec->edgeNorm[1] + prev->edgeNorm[1];
251     edge->cornNorm[1] = eNorm.unit();             236     edge->cornNorm[1] = eNorm.unit();
252   } while( prev=vec, ++vec < vecs + maxSides ) << 237   } while( prev=vec, ++vec < vecs + numSide );
253                                                   238   
254   if (phiIsOpen)                                  239   if (phiIsOpen)
255   {                                               240   {
256     // G4double rFact = std::cos(0.5*deltaPhi)    241     // G4double rFact = std::cos(0.5*deltaPhi);
257     //                                            242     //
258     // If phi is open, we need to patch up nor    243     // If phi is open, we need to patch up normals of the
259     // first and last edges and their correspo    244     // first and last edges and their corresponding
260     // vertices.                                  245     // vertices.
261     //                                            246     //
262     // We use vectors that are in the plane of    247     // We use vectors that are in the plane of the
263     // face. This should be safe.                 248     // face. This should be safe.
264     //                                            249     //
265     vec = vecs;                                   250     vec = vecs;
266                                                   251     
267     G4ThreeVector normvec = vec->edges[0]->cor    252     G4ThreeVector normvec = vec->edges[0]->corner[0]
268                           - vec->edges[0]->cor    253                           - vec->edges[0]->corner[1];
269     normvec = normvec.cross(vec->normal);         254     normvec = normvec.cross(vec->normal);
270     if (normvec.dot(vec->surfPhi) > 0) normvec    255     if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec;
271                                                   256 
272     vec->edges[0]->normal = normvec.unit();       257     vec->edges[0]->normal = normvec.unit();
273                                                   258     
274     vec->edges[0]->cornNorm[0] = (vec->edges[0    259     vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0]
275                                 - vec->center)    260                                 - vec->center).unit();
276     vec->edges[0]->cornNorm[1] = (vec->edges[0    261     vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1]
277                                 - vec->center)    262                                 - vec->center).unit();
278                                                   263     
279     //                                            264     //
280     // Repeat for ending phi                      265     // Repeat for ending phi
281     //                                            266     //
282     vec = vecs + maxSides - 1;                 << 267     vec = vecs + numSide - 1;
283                                                   268     
284     normvec = vec->edges[1]->corner[0] - vec->    269     normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1];
285     normvec = normvec.cross(vec->normal);         270     normvec = normvec.cross(vec->normal);
286     if (normvec.dot(vec->surfPhi) < 0) normvec    271     if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec;
287                                                   272 
288     vec->edges[1]->normal = normvec.unit();       273     vec->edges[1]->normal = normvec.unit();
289                                                   274     
290     vec->edges[1]->cornNorm[0] = (vec->edges[1    275     vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0]
291                                 - vec->center)    276                                 - vec->center).unit();
292     vec->edges[1]->cornNorm[1] = (vec->edges[1    277     vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1]
293                                 - vec->center)    278                                 - vec->center).unit();
294   }                                               279   }
295                                                   280   
296   //                                              281   //
297   // edgeNorm is the factor one multiplies the    282   // edgeNorm is the factor one multiplies the distance along vector phi
298   // on the surface of one of our sides in ord    283   // on the surface of one of our sides in order to calculate the distance
299   // from the edge. (see routine DistanceAway)    284   // from the edge. (see routine DistanceAway)
300   //                                              285   //
301   edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le    286   edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] );
302 }                                                 287 }
303                                                   288 
                                                   >> 289 
                                                   >> 290 //
304 // Fake default constructor - sets only member    291 // Fake default constructor - sets only member data and allocates memory
305 //                            for usage restri    292 //                            for usage restricted to object persistency.
306 //                                                293 //
307 G4PolyhedraSide::G4PolyhedraSide( __void__&)      294 G4PolyhedraSide::G4PolyhedraSide( __void__&)
308   : startPhi(0.), deltaPhi(0.), endPhi(0.),    << 295   : cone(0), vecs(0), edges(0)
309     lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 
310 {                                                 296 {
311   r[0] = r[1] = 0.;                            << 
312   z[0] = z[1] = 0.;                            << 
313   lenPhi[0] = lenPhi[1] = 0.;                  << 
314 }                                                 297 }
315                                                   298 
316                                                   299 
                                                   >> 300 //
317 // Destructor                                     301 // Destructor
318 //                                                302 //  
319 G4PolyhedraSide::~G4PolyhedraSide()               303 G4PolyhedraSide::~G4PolyhedraSide()
320 {                                                 304 {
321   delete cone;                                    305   delete cone;
322   delete [] vecs;                                 306   delete [] vecs;
323   delete [] edges;                                307   delete [] edges;
324 }                                                 308 }
325                                                   309 
                                                   >> 310 
                                                   >> 311 //
326 // Copy constructor                               312 // Copy constructor
327 //                                                313 //
328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 314 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source )
                                                   >> 315   : G4VCSGface()
329 {                                                 316 {
330   instanceID = subInstanceManager.CreateSubIns << 
331                                                << 
332   CopyStuff( source );                            317   CopyStuff( source );
333 }                                                 318 }
334                                                   319 
335                                                   320 
336 //                                                321 //
337 // Assignment operator                            322 // Assignment operator
338 //                                                323 //
339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 324 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source )
340 {                                                 325 {
341   if (this == &source) return *this;              326   if (this == &source) return *this;
342                                                   327   
343   delete cone;                                    328   delete cone;
344   delete [] vecs;                                 329   delete [] vecs;
345   delete [] edges;                                330   delete [] edges;
346                                                   331   
347   CopyStuff( source );                            332   CopyStuff( source );
348                                                   333 
349   return *this;                                   334   return *this;
350 }                                                 335 }
351                                                   336 
                                                   >> 337 
                                                   >> 338 //
352 // CopyStuff                                      339 // CopyStuff
353 //                                                340 //
354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 341 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source )
355 {                                                 342 {
356   //                                              343   //
357   // The simple stuff                             344   // The simple stuff
358   //                                              345   //
                                                   >> 346   numSide    = source.numSide;
359   r[0]    = source.r[0];                          347   r[0]    = source.r[0];
360   r[1]    = source.r[1];                          348   r[1]    = source.r[1];
361   z[0]    = source.z[0];                          349   z[0]    = source.z[0];
362   z[1]    = source.z[1];                          350   z[1]    = source.z[1];
363   numSide   = source.numSide;                  << 
364   startPhi  = source.startPhi;                    351   startPhi  = source.startPhi;
365   deltaPhi  = source.deltaPhi;                    352   deltaPhi  = source.deltaPhi;
366   endPhi    = source.endPhi;                      353   endPhi    = source.endPhi;
367   phiIsOpen = source.phiIsOpen;                   354   phiIsOpen = source.phiIsOpen;
368   allBehind = source.allBehind;                   355   allBehind = source.allBehind;
369                                                   356   
370   lenRZ     = source.lenRZ;                       357   lenRZ     = source.lenRZ;
371   lenPhi[0] = source.lenPhi[0];                   358   lenPhi[0] = source.lenPhi[0];
372   lenPhi[1] = source.lenPhi[1];                   359   lenPhi[1] = source.lenPhi[1];
373   edgeNorm  = source.edgeNorm;                    360   edgeNorm  = source.edgeNorm;
374                                                   361 
375   kCarTolerance = source.kCarTolerance;           362   kCarTolerance = source.kCarTolerance;
376   fSurfaceArea = source.fSurfaceArea;             363   fSurfaceArea = source.fSurfaceArea;
377                                                   364 
378   cone = new G4IntersectingCone( *source.cone     365   cone = new G4IntersectingCone( *source.cone );
379                                                   366 
380   //                                              367   //
381   // Duplicate edges                              368   // Duplicate edges
382   //                                              369   //
383   const std::size_t numSides = (numSide > 0) ? << 370   G4int  numEdges = phiIsOpen ? numSide+1 : numSide;
384   const std::size_t numEdges = phiIsOpen ? num << 
385   edges = new G4PolyhedraSideEdge[numEdges];      371   edges = new G4PolyhedraSideEdge[numEdges];
386                                                   372   
387   G4PolyhedraSideEdge *edge = edges,              373   G4PolyhedraSideEdge *edge = edges,
388           *sourceEdge = source.edges;             374           *sourceEdge = source.edges;
389   do    // Loop checking, 13.08.2015, G.Cosmo  << 375   do
390   {                                               376   {
391     *edge = *sourceEdge;                          377     *edge = *sourceEdge;
392   } while( ++sourceEdge, ++edge < edges + numE    378   } while( ++sourceEdge, ++edge < edges + numEdges);
393                                                   379 
394   //                                              380   //
395   // Duplicate vecs                               381   // Duplicate vecs
396   //                                              382   //
397   vecs = new G4PolyhedraSideVec[numSides];     << 383   vecs = new G4PolyhedraSideVec[numSide];
398                                                   384   
399   G4PolyhedraSideVec *vec = vecs,                 385   G4PolyhedraSideVec *vec = vecs,
400          *sourceVec = source.vecs;                386          *sourceVec = source.vecs;
401   do    // Loop checking, 13.08.2015, G.Cosmo  << 387   do
402   {                                               388   {
403     *vec = *sourceVec;                            389     *vec = *sourceVec;
404     vec->edges[0] = edges + (sourceVec->edges[    390     vec->edges[0] = edges + (sourceVec->edges[0] - source.edges);
405     vec->edges[1] = edges + (sourceVec->edges[    391     vec->edges[1] = edges + (sourceVec->edges[1] - source.edges);
406   } while( ++sourceVec, ++vec < vecs + numSide << 392   } while( ++sourceVec, ++vec < vecs + numSide );
407 }                                                 393 }
408                                                   394   
                                                   >> 395 
                                                   >> 396 //
409 // Intersect                                      397 // Intersect
410 //                                                398 //
411 // Decide if a line intersects the face.          399 // Decide if a line intersects the face.
412 //                                                400 //
413 // Arguments:                                     401 // Arguments:
414 //  p    = (in) starting point of line segment    402 //  p    = (in) starting point of line segment
415 //  v    = (in) direction of line segment (ass    403 //  v    = (in) direction of line segment (assumed a unit vector)
416 //  A, B    = (in) 2d transform variables (see    404 //  A, B    = (in) 2d transform variables (see note top of file)
417 //  normSign  = (in) desired sign for dot prod    405 //  normSign  = (in) desired sign for dot product with normal (see below)
418 //  surfTolerance  = (in) minimum distance fro    406 //  surfTolerance  = (in) minimum distance from the surface
419 //  vecs    = (in) Vector set array               407 //  vecs    = (in) Vector set array
420 //  distance  = (out) distance to surface furf    408 //  distance  = (out) distance to surface furfilling all requirements
421 //  distFromSurface = (out) distance from the     409 //  distFromSurface = (out) distance from the surface
422 //  thisNormal  = (out) normal vector of the i    410 //  thisNormal  = (out) normal vector of the intersecting surface
423 //                                                411 //
424 // Return value:                                  412 // Return value:
425 //  true if an intersection is found. Otherwis    413 //  true if an intersection is found. Otherwise, output parameters are
426 //  undefined.                                    414 //  undefined.
427 //                                                415 //
428 // Notes:                                         416 // Notes:
429 // * normSign: if we are "inside" the shape an    417 // * normSign: if we are "inside" the shape and only want to find out how far
430 //   to leave the shape, we only want to consi    418 //   to leave the shape, we only want to consider intersections with surfaces in
431 //   which the trajectory is leaving the shape    419 //   which the trajectory is leaving the shape. Since the normal vectors to the
432 //   surface always point outwards from the in    420 //   surface always point outwards from the inside, this means we want the dot
433 //   product of the trajectory direction v and    421 //   product of the trajectory direction v and the normal of the side normals[i]
434 //   to be positive. Thus, we should specify n    422 //   to be positive. Thus, we should specify normSign as +1.0. Otherwise, if
435 //   we are outside and want to go in, normSig    423 //   we are outside and want to go in, normSign should be set to -1.0.
436 //   Don't set normSign to zero, or you will g    424 //   Don't set normSign to zero, or you will get no intersections!
437 //                                                425 //
438 // * surfTolerance: see notes on argument "sur    426 // * surfTolerance: see notes on argument "surfTolerance" in routine
439 //   "IntersectSidePlane".                        427 //   "IntersectSidePlane".
440 //   ----HOWEVER---- We should *not* apply thi    428 //   ----HOWEVER---- We should *not* apply this surface tolerance if the
441 //   starting point is not within phi or z of     429 //   starting point is not within phi or z of the surface. Specifically,
442 //   if the starting point p angle in x/y plac    430 //   if the starting point p angle in x/y places it on a separate side from the
443 //   intersection or if the starting point p i    431 //   intersection or if the starting point p is outside the z bounds of the
444 //   segment, surfTolerance must be ignored or    432 //   segment, surfTolerance must be ignored or we should *always* accept the
445 //   intersection!                                433 //   intersection! 
446 //   This is simply because the sides do not h    434 //   This is simply because the sides do not have infinite extent.
447 //                                                435 //      
448 //                                                436 //
449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 437 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p,
450                                    const G4Thr << 438                                    const G4ThreeVector &v,  
451                                          G4boo    439                                          G4bool outgoing,
452                                          G4dou    440                                          G4double surfTolerance,
453                                          G4dou << 441                                          G4double &distance,
454                                          G4dou << 442                                          G4double &distFromSurface,
455                                          G4Thr << 443                                          G4ThreeVector &normal,
456                                          G4boo << 444                                          G4bool &isAllBehind )
457 {                                                 445 {
458   G4double normSign = outgoing ? +1 : -1;         446   G4double normSign = outgoing ? +1 : -1;
459                                                   447   
460   //                                              448   //
461   // ------------------TO BE IMPLEMENTED------    449   // ------------------TO BE IMPLEMENTED---------------------
462   // Testing the intersection of individual ph    450   // Testing the intersection of individual phi faces is
463   // pretty straight forward. The simple thing    451   // pretty straight forward. The simple thing therefore is to
464   // form a loop and check them all in sequenc    452   // form a loop and check them all in sequence.
465   //                                              453   //
466   // But, I worry about one day someone making    454   // But, I worry about one day someone making
467   // a polygon with a thousands sides. A linea    455   // a polygon with a thousands sides. A linear search
468   // would not be ideal in such a case.           456   // would not be ideal in such a case.
469   //                                              457   //
470   // So, it would be nice to be able to quickl    458   // So, it would be nice to be able to quickly decide
471   // which face would be intersected. One can     459   // which face would be intersected. One can make a very
472   // good guess by using the intersection with    460   // good guess by using the intersection with a cone.
473   // However, this is only reliable in 99% of     461   // However, this is only reliable in 99% of the cases.
474   //                                              462   //
475   // My solution: make a decent guess as to th    463   // My solution: make a decent guess as to the one or
476   // two potential faces might get intersected    464   // two potential faces might get intersected, and then
477   // test them. If we have the wrong face, use    465   // test them. If we have the wrong face, use the test
478   // to make a better guess.                      466   // to make a better guess.
479   //                                              467   //
480   // Since we might have two guesses, form a q    468   // Since we might have two guesses, form a queue of
481   // potential intersecting faces. Keep an arr    469   // potential intersecting faces. Keep an array of 
482   // already tested faces to avoid doing one m    470   // already tested faces to avoid doing one more than
483   // once.                                        471   // once.
484   //                                              472   //
485   // Result: at worst, an iterative search. On    473   // Result: at worst, an iterative search. On average,
486   // a little more than two tests would be req    474   // a little more than two tests would be required.
487   //                                              475   //
488   G4ThreeVector q = p + v;                        476   G4ThreeVector q = p + v;
489                                                   477   
490   G4int face = 0;                                 478   G4int face = 0;
491   G4PolyhedraSideVec* vec = vecs;              << 479   G4PolyhedraSideVec *vec = vecs;
492   do    // Loop checking, 13.08.2015, G.Cosmo  << 480   do
493   {                                               481   {
494     //                                            482     //
495     // Correct normal?                            483     // Correct normal?
496     //                                            484     //
497     G4double dotProd = normSign*v.dot(vec->nor    485     G4double dotProd = normSign*v.dot(vec->normal);
498     if (dotProd <= 0) continue;                   486     if (dotProd <= 0) continue;
499                                                   487   
500     //                                            488     //
501     // Is this face in front of the point alon    489     // Is this face in front of the point along the trajectory?
502     //                                            490     //
503     G4ThreeVector delta = p - vec->center;        491     G4ThreeVector delta = p - vec->center;
504     distFromSurface = -normSign*delta.dot(vec-    492     distFromSurface = -normSign*delta.dot(vec->normal);
505                                                   493     
506     if (distFromSurface < -surfTolerance) cont    494     if (distFromSurface < -surfTolerance) continue;
507                                                   495     
508     //                                            496     //
509     //                            phi             497     //                            phi
510     //      c -------- d           ^              498     //      c -------- d           ^
511     //      |          |           |              499     //      |          |           |
512     //      a -------- b           +---> r/z      500     //      a -------- b           +---> r/z
513     //                                            501     //
514     //                                            502     //
515     // Do we remain on this particular segment    503     // Do we remain on this particular segment?
516     //                                            504     //
517     G4ThreeVector qc = q - vec->edges[1]->corn    505     G4ThreeVector qc = q - vec->edges[1]->corner[0];
518     G4ThreeVector qd = q - vec->edges[1]->corn    506     G4ThreeVector qd = q - vec->edges[1]->corner[1];
519                                                   507     
520     if (normSign*qc.cross(qd).dot(v) < 0) cont    508     if (normSign*qc.cross(qd).dot(v) < 0) continue;
521                                                   509     
522     G4ThreeVector qa = q - vec->edges[0]->corn    510     G4ThreeVector qa = q - vec->edges[0]->corner[0];
523     G4ThreeVector qb = q - vec->edges[0]->corn    511     G4ThreeVector qb = q - vec->edges[0]->corner[1];
524                                                   512     
525     if (normSign*qa.cross(qb).dot(v) > 0) cont    513     if (normSign*qa.cross(qb).dot(v) > 0) continue;
526                                                   514     
527     //                                            515     //
528     // We found the one and only segment we mi    516     // We found the one and only segment we might be intersecting.
529     // Do we remain within r/z bounds?            517     // Do we remain within r/z bounds?
530     //                                            518     //
531                                                   519     
532     if (r[0] > 1/kInfinity && normSign*qa.cros    520     if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false;
533     if (r[1] > 1/kInfinity && normSign*qb.cros    521     if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false;
534                                                   522     
535     //                                            523     //
536     // We allow the face to be slightly behind    524     // We allow the face to be slightly behind the trajectory
537     // (surface tolerance) only if the point p    525     // (surface tolerance) only if the point p is within
538     // the vicinity of the face                   526     // the vicinity of the face
539     //                                            527     //
540     if (distFromSurface < 0)                      528     if (distFromSurface < 0)
541     {                                             529     {
542       G4ThreeVector ps = p - vec->center;         530       G4ThreeVector ps = p - vec->center; 
543                                                   531       
544       G4double rz = ps.dot(vec->surfRZ);          532       G4double rz = ps.dot(vec->surfRZ);
545       if (std::fabs(rz) > lenRZ+surfTolerance)    533       if (std::fabs(rz) > lenRZ+surfTolerance) return false; 
546                                                   534 
547       G4double pp = ps.dot(vec->surfPhi);         535       G4double pp = ps.dot(vec->surfPhi);
548       if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 536       if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false;
549     }                                             537     }
550                                                   538       
551                                                   539 
552     //                                            540     //
553     // Intersection found. Return answer.         541     // Intersection found. Return answer.
554     //                                            542     //
555     distance = distFromSurface/dotProd;           543     distance = distFromSurface/dotProd;
556     normal = vec->normal;                         544     normal = vec->normal;
557     isAllBehind = allBehind;                      545     isAllBehind = allBehind;
558     return true;                                  546     return true;
559   } while( ++vec, ++face < numSide );             547   } while( ++vec, ++face < numSide );
560                                                   548 
561   //                                              549   //
562   // Oh well. Better luck next time.              550   // Oh well. Better luck next time.
563   //                                              551   //
564   return false;                                   552   return false;
565 }                                                 553 }
566                                                   554 
567 // Distance                                    << 555 
568 //                                             << 556 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing )
569 G4double G4PolyhedraSide::Distance( const G4Th << 
570 {                                                 557 {
571   G4double normSign = outgoing ? -1 : +1;         558   G4double normSign = outgoing ? -1 : +1;
572                                                   559   
573   //                                              560   //
574   // Try the closest phi segment first            561   // Try the closest phi segment first
575   //                                              562   //
576   G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 563   G4int iPhi = ClosestPhiSegment( p.phi() );
577                                                   564   
578   G4ThreeVector pdotc = p - vecs[iPhi].center;    565   G4ThreeVector pdotc = p - vecs[iPhi].center;
579   G4double normDist = pdotc.dot(vecs[iPhi].nor    566   G4double normDist = pdotc.dot(vecs[iPhi].normal);
580                                                   567   
581   if (normSign*normDist > -0.5*kCarTolerance)     568   if (normSign*normDist > -0.5*kCarTolerance)
582   {                                               569   {
583     return DistanceAway( p, vecs[iPhi], &normD    570     return DistanceAway( p, vecs[iPhi], &normDist );
584   }                                               571   }
585                                                   572 
586   //                                              573   //
587   // Now we have an interesting problem... do     574   // Now we have an interesting problem... do we try to find the
588   // closest facing side??                        575   // closest facing side??
589   //                                              576   //
590   // Considered carefully, the answer is no. W    577   // Considered carefully, the answer is no. We know that if we
591   // are asking for the distance out, we are s    578   // are asking for the distance out, we are supposed to be inside,
592   // and vice versa.                              579   // and vice versa.
593   //                                              580   //
594                                                   581   
595   return kInfinity;                               582   return kInfinity;
596 }                                                 583 }
597                                                   584 
                                                   >> 585 
                                                   >> 586 //
598 // Inside                                         587 // Inside
599 //                                                588 //
600 EInside G4PolyhedraSide::Inside( const G4Three << 589 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p,
601                                        G4doubl    590                                        G4double tolerance, 
602                                        G4doubl << 591                                        G4double *bestDistance )
603 {                                                 592 {
604   //                                              593   //
605   // Which phi segment is closest to this poin    594   // Which phi segment is closest to this point?
606   //                                              595   //
607   G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 596   G4int iPhi = ClosestPhiSegment( p.phi() );
608                                                   597   
609   G4double norm;                                  598   G4double norm;
610                                                   599   
611   //                                              600   //
612   // Get distance to this segment                 601   // Get distance to this segment
613   //                                              602   //
614   *bestDistance = DistanceToOneSide( p, vecs[i    603   *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
615                                                   604   
616   //                                              605   //
617   // Use distance along normal to decide retur    606   // Use distance along normal to decide return value
618   //                                              607   //
619   if ( (std::fabs(norm) > tolerance) || (*best << 608   if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) )
620     return (norm < 0) ? kInside : kOutside;    << 
621   else                                         << 
622     return kSurface;                              609     return kSurface;
                                                   >> 610   else if (norm < 0)
                                                   >> 611     return kInside;
                                                   >> 612   else  
                                                   >> 613     return kOutside;
623 }                                                 614 }
624                                                   615 
                                                   >> 616 
                                                   >> 617 //
625 // Normal                                         618 // Normal
626 //                                                619 //
627 G4ThreeVector G4PolyhedraSide::Normal( const G << 620 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p,
628                                              G << 621                                              G4double *bestDistance )
629 {                                                 622 {
630   //                                              623   //
631   // Which phi segment is closest to this poin    624   // Which phi segment is closest to this point?
632   //                                              625   //
633   G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 626   G4int iPhi = ClosestPhiSegment( p.phi() );
634                                                   627 
635   //                                              628   //
636   // Get distance to this segment                 629   // Get distance to this segment
637   //                                              630   //
638   G4double norm;                                  631   G4double norm;
639   *bestDistance = DistanceToOneSide( p, vecs[i    632   *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm );
640                                                   633 
641   return vecs[iPhi].normal;                       634   return vecs[iPhi].normal;
642 }                                                 635 }
643                                                   636 
                                                   >> 637 
                                                   >> 638 //
644 // Extent                                         639 // Extent
645 //                                                640 //
646 G4double G4PolyhedraSide::Extent( const G4Thre    641 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis )
647 {                                                 642 {
648   if (axis.perp2() < DBL_MIN)                     643   if (axis.perp2() < DBL_MIN)
649   {                                               644   {
650     //                                            645     //
651     // Special case                               646     // Special case
652     //                                            647     //
653     return axis.z() < 0 ? -cone->ZLo() : cone-    648     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
654   }                                               649   }
655                                                   650 
656   G4int iPhi, i1, i2;                             651   G4int iPhi, i1, i2;
657   G4double best;                                  652   G4double best;
658   G4ThreeVector* list[4];                      << 653   G4ThreeVector *list[4];
659                                                   654   
660   //                                              655   //
661   // Which phi segment, if any, does the axis     656   // Which phi segment, if any, does the axis belong to
662   //                                              657   //
663   iPhi = PhiSegment( GetPhi(axis) );           << 658   iPhi = PhiSegment( axis.phi() );
664                                                   659   
665   if (iPhi < 0)                                   660   if (iPhi < 0)
666   {                                               661   {
667     //                                            662     //
668     // No phi segment? Check front edge of fir    663     // No phi segment? Check front edge of first side and
669     // last edge of second side                   664     // last edge of second side
670     //                                            665     //
671     i1 = 0; i2 = numSide-1;                       666     i1 = 0; i2 = numSide-1;
672   }                                               667   }
673   else                                            668   else
674   {                                               669   {
675     //                                            670     //
676     // Check all corners of matching phi side     671     // Check all corners of matching phi side
677     //                                            672     //
678     i1 = iPhi; i2 = iPhi;                         673     i1 = iPhi; i2 = iPhi;
679   }                                               674   }
680                                                   675   
681   list[0] = vecs[i1].edges[0]->corner;            676   list[0] = vecs[i1].edges[0]->corner;
682   list[1] = vecs[i1].edges[0]->corner+1;          677   list[1] = vecs[i1].edges[0]->corner+1;
683   list[2] = vecs[i2].edges[1]->corner;            678   list[2] = vecs[i2].edges[1]->corner;
684   list[3] = vecs[i2].edges[1]->corner+1;          679   list[3] = vecs[i2].edges[1]->corner+1;
685                                                   680         
686   //                                              681   //
687   // Who's biggest?                               682   // Who's biggest?
688   //                                              683   //
689   best = -kInfinity;                              684   best = -kInfinity;
690   G4ThreeVector** vec = list;                  << 685   G4ThreeVector **vec = list;
691   do    // Loop checking, 13.08.2015, G.Cosmo  << 686   do
692   {                                               687   {
693     G4double answer = (*vec)->dot(axis);          688     G4double answer = (*vec)->dot(axis);
694     if (answer > best) best = answer;             689     if (answer > best) best = answer;
695   } while( ++vec < list+4 );                      690   } while( ++vec < list+4 );
696                                                   691   
697   return best;                                    692   return best;
698 }                                                 693 }
699                                                   694 
                                                   >> 695 
                                                   >> 696 //
700 // CalculateExtent                                697 // CalculateExtent
701 //                                                698 //
702 // See notes in G4VCSGface                        699 // See notes in G4VCSGface
703 //                                                700 //
704 void G4PolyhedraSide::CalculateExtent( const E    701 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 
705                                        const G << 702                                        const G4VoxelLimits &voxelLimit,
706                                        const G << 703                                        const G4AffineTransform &transform,
707                                              G << 704                                              G4SolidExtentList &extentList )
708 {                                                 705 {
709   //                                              706   //
710   // Loop over all sides                          707   // Loop over all sides
711   //                                              708   //
712   G4PolyhedraSideVec *vec = vecs;                 709   G4PolyhedraSideVec *vec = vecs;
713   do    // Loop checking, 13.08.2015, G.Cosmo  << 710   do
714   {                                               711   {
715     //                                            712     //
716     // Fill our polygon with the four corners     713     // Fill our polygon with the four corners of
717     // this side, after the specified transfor    714     // this side, after the specified transformation
718     //                                            715     //
719     G4ClippablePolygon polygon;                   716     G4ClippablePolygon polygon;
720                                                   717     
721     polygon.AddVertexInOrder(transform.           718     polygon.AddVertexInOrder(transform.
722                              TransformPoint(ve    719                              TransformPoint(vec->edges[0]->corner[0]));
723     polygon.AddVertexInOrder(transform.           720     polygon.AddVertexInOrder(transform.
724                              TransformPoint(ve    721                              TransformPoint(vec->edges[0]->corner[1]));
725     polygon.AddVertexInOrder(transform.           722     polygon.AddVertexInOrder(transform.
726                              TransformPoint(ve    723                              TransformPoint(vec->edges[1]->corner[1]));
727     polygon.AddVertexInOrder(transform.           724     polygon.AddVertexInOrder(transform.
728                              TransformPoint(ve    725                              TransformPoint(vec->edges[1]->corner[0]));
729                                                   726     
730     //                                            727     //
731     // Get extent                                 728     // Get extent
732     //                                            729     //  
733     if (polygon.PartialClip( voxelLimit, axis     730     if (polygon.PartialClip( voxelLimit, axis ))
734     {                                             731     {
735       //                                          732       //
736       // Get dot product of normal along targe    733       // Get dot product of normal along target axis
737       //                                          734       //
738       polygon.SetNormal( transform.TransformAx    735       polygon.SetNormal( transform.TransformAxis(vec->normal) );
739                                                   736 
740       extentList.AddSurface( polygon );           737       extentList.AddSurface( polygon );
741     }                                             738     }
742   } while( ++vec < vecs+numSide );                739   } while( ++vec < vecs+numSide );
743                                                   740   
744   return;                                         741   return;
745 }                                                 742 }
746                                                   743 
                                                   >> 744 
                                                   >> 745 //
747 // IntersectSidePlane                             746 // IntersectSidePlane
748 //                                                747 //
749 // Decide if a line correctly intersects one s    748 // Decide if a line correctly intersects one side plane of our segment.
750 // It is assumed that the correct side has bee    749 // It is assumed that the correct side has been chosen, and thus only 
751 // the z bounds (of the entire segment) are ch    750 // the z bounds (of the entire segment) are checked.
752 //                                                751 //
753 // normSign - To be multiplied against normal:    752 // normSign - To be multiplied against normal:
754 //            = +1.0 normal is unchanged          753 //            = +1.0 normal is unchanged
755 //            = -1.0 normal is reversed (now p    754 //            = -1.0 normal is reversed (now points inward)
756 //                                                755 //
757 // Arguments:                                     756 // Arguments:
758 //  p    - (in) Point                             757 //  p    - (in) Point
759 //  v    - (in) Direction                         758 //  v    - (in) Direction
760 //  vec    - (in) Description record of the si    759 //  vec    - (in) Description record of the side plane
761 //  normSign  - (in) Sign (+/- 1) to apply to     760 //  normSign  - (in) Sign (+/- 1) to apply to normal
762 //  surfTolerance  - (in) Surface tolerance (g    761 //  surfTolerance  - (in) Surface tolerance (generally > 0, see below)
763 //  distance  - (out) Distance along v to inte    762 //  distance  - (out) Distance along v to intersection
764 //  distFromSurface - (out) Distance from surf    763 //  distFromSurface - (out) Distance from surface normal
765 //                                                764 //
766 // Notes:                                         765 // Notes:
767 //   surfTolerance  - Used to decide if a poin    766 //   surfTolerance  - Used to decide if a point is behind the surface,
768 //        a point is allow to be -surfToleranc    767 //        a point is allow to be -surfTolerance behind the
769 //        surface (as measured along the norma    768 //        surface (as measured along the normal), but *only*
770 //        if the point is within the r/z bound    769 //        if the point is within the r/z bounds + surfTolerance
771 //        of the segment.                         770 //        of the segment.
772 //                                                771 //
773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 772 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p,
774                                             co << 773                                             const G4ThreeVector &v,
775                                             co << 774                                             const G4PolyhedraSideVec vec,
776                                                   775                                                   G4double normSign, 
777                                                   776                                                   G4double surfTolerance,
778                                                << 777                                                   G4double &distance,
779                                                << 778                                                   G4double &distFromSurface )
780 {                                                 779 {
781   //                                              780   //
782   // Correct normal? Here we have straight sid    781   // Correct normal? Here we have straight sides, and can safely ignore
783   // intersections where the dot product with     782   // intersections where the dot product with the normal is zero.
784   //                                              783   //
785   G4double dotProd = normSign*v.dot(vec.normal    784   G4double dotProd = normSign*v.dot(vec.normal);
786                                                   785   
787   if (dotProd <= 0) return false;                 786   if (dotProd <= 0) return false;
788                                                   787   
789   //                                              788   //
790   // Calculate distance to surface. If the sid    789   // Calculate distance to surface. If the side is too far
791   // behind the point, we must reject it.         790   // behind the point, we must reject it.
792   //                                              791   //
793   G4ThreeVector delta = p - vec.center;           792   G4ThreeVector delta = p - vec.center;
794   distFromSurface = -normSign*delta.dot(vec.no    793   distFromSurface = -normSign*delta.dot(vec.normal);
795                                                   794     
796   if (distFromSurface < -surfTolerance) return    795   if (distFromSurface < -surfTolerance) return false;
797                                                   796 
798   //                                              797   //
799   // Calculate precise distance to intersectio    798   // Calculate precise distance to intersection with the side
800   // (along the trajectory, not normal to the     799   // (along the trajectory, not normal to the surface)
801   //                                              800   //
802   distance = distFromSurface/dotProd;             801   distance = distFromSurface/dotProd;
803                                                   802   
804   //                                              803   //
805   // Do we fall off the r/z extent of the segm    804   // Do we fall off the r/z extent of the segment?
806   //                                              805   //
807   // Calculate this very, very carefully! Why?    806   // Calculate this very, very carefully! Why?
808   //         1. If a RZ end is at R=0, you can    807   //         1. If a RZ end is at R=0, you can't miss!
809   //         2. If you just fall off in RZ, th    808   //         2. If you just fall off in RZ, the answer must
810   //            be consistent with adjacent G4    809   //            be consistent with adjacent G4PolyhedraSide faces.
811   // (2) implies that only variables used by o    810   // (2) implies that only variables used by other G4PolyhedraSide
812   // faces may be used, which includes only: p    811   // faces may be used, which includes only: p, v, and the edge corners.
813   // It also means that one side is a ">" or "    812   // It also means that one side is a ">" or "<", which the other
814   // must be ">=" or "<=". Fortunately, this i    813   // must be ">=" or "<=". Fortunately, this isn't a new problem.
815   // The solution below I borrowed from Joseph    814   // The solution below I borrowed from Joseph O'Rourke,
816   // "Computational Geometry in C (Second Edit    815   // "Computational Geometry in C (Second Edition)"
817   // See: http://cs.smith.edu/~orourke/           816   // See: http://cs.smith.edu/~orourke/
818   //                                              817   //
819   G4ThreeVector ic = p + distance*v - vec.cent    818   G4ThreeVector ic = p + distance*v - vec.center;
820   G4double atRZ = vec.surfRZ.dot(ic);             819   G4double atRZ = vec.surfRZ.dot(ic);
821                                                   820   
822   if (atRZ < 0)                                   821   if (atRZ < 0)
823   {                                               822   {
824     if (r[0]==0) return true;    // Can't miss    823     if (r[0]==0) return true;    // Can't miss!
825                                                   824     
826     if (atRZ < -lenRZ*1.2) return false;  // F    825     if (atRZ < -lenRZ*1.2) return false;  // Forget it! Missed by a mile.
827                                                   826     
828     G4ThreeVector q = p + v;                      827     G4ThreeVector q = p + v;    
829     G4ThreeVector qa = q - vec.edges[0]->corne    828     G4ThreeVector qa = q - vec.edges[0]->corner[0],
830                   qb = q - vec.edges[1]->corne    829                   qb = q - vec.edges[1]->corner[0];
831     G4ThreeVector qacb = qa.cross(qb);            830     G4ThreeVector qacb = qa.cross(qb);
832     if (normSign*qacb.dot(v) < 0) return false    831     if (normSign*qacb.dot(v) < 0) return false;
833                                                   832     
834     if (distFromSurface < 0)                      833     if (distFromSurface < 0)
835     {                                             834     {
836       if (atRZ < -lenRZ-surfTolerance) return     835       if (atRZ < -lenRZ-surfTolerance) return false;
837     }                                             836     }
838   }                                               837   }
839   else if (atRZ > 0)                              838   else if (atRZ > 0)
840   {                                               839   {
841     if (r[1]==0) return true;    // Can't miss    840     if (r[1]==0) return true;    // Can't miss!
842                                                   841     
843     if (atRZ > lenRZ*1.2) return false;  // Mi    842     if (atRZ > lenRZ*1.2) return false;  // Missed by a mile
844                                                   843     
845     G4ThreeVector q = p + v;                      844     G4ThreeVector q = p + v;    
846     G4ThreeVector qa = q - vec.edges[0]->corne    845     G4ThreeVector qa = q - vec.edges[0]->corner[1],
847                   qb = q - vec.edges[1]->corne    846                   qb = q - vec.edges[1]->corner[1];
848     G4ThreeVector qacb = qa.cross(qb);            847     G4ThreeVector qacb = qa.cross(qb);
849     if (normSign*qacb.dot(v) >= 0) return fals    848     if (normSign*qacb.dot(v) >= 0) return false;
850                                                   849     
851     if (distFromSurface < 0)                      850     if (distFromSurface < 0)
852     {                                             851     {
853       if (atRZ > lenRZ+surfTolerance) return f    852       if (atRZ > lenRZ+surfTolerance) return false;
854     }                                             853     }
855   }                                               854   }
856                                                   855 
857   return true;                                    856   return true;
858 }                                                 857 }
859                                                   858 
                                                   >> 859 
                                                   >> 860 //
860 // LineHitsSegments                               861 // LineHitsSegments
861 //                                                862 //
862 // Calculate which phi segments a line interse    863 // Calculate which phi segments a line intersects in three dimensions.
863 // No check is made as to whether the intersec    864 // No check is made as to whether the intersections are within the z bounds of
864 // the segment.                                   865 // the segment.
865 //                                                866 //
866 G4int G4PolyhedraSide::LineHitsSegments( const << 867 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p,
867                                          const << 868                                          const G4ThreeVector &v,
868                                                << 869                                                G4int *i1, G4int *i2 )
869 {                                                 870 {
870   G4double s1, s2;                                871   G4double s1, s2;
871   //                                              872   //
872   // First, decide if and where the line inter    873   // First, decide if and where the line intersects the cone
873   //                                              874   //
874   G4int n = cone->LineHitsCone( p, v, &s1, &s2    875   G4int n = cone->LineHitsCone( p, v, &s1, &s2 );
875                                                   876   
876   if (n==0) return 0;                             877   if (n==0) return 0;
877                                                   878   
878   //                                              879   //
879   // Try first intersection.                      880   // Try first intersection.
880   //                                              881   //
881   *i1 = PhiSegment( std::atan2( p.y() + s1*v.y    882   *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) );
882   if (n==1)                                       883   if (n==1)
883   {                                               884   {
884     return (*i1 < 0) ? 0 : 1;                     885     return (*i1 < 0) ? 0 : 1;
885   }                                               886   }
886                                                   887   
887   //                                              888   //
888   // Try second intersection                      889   // Try second intersection
889   //                                              890   //
890   *i2 = PhiSegment( std::atan2( p.y() + s2*v.y    891   *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) );
891   if (*i1 == *i2) return 0;                       892   if (*i1 == *i2) return 0;
892                                                   893   
893   if (*i1 < 0)                                    894   if (*i1 < 0)
894   {                                               895   {
895     if (*i2 < 0) return 0;                        896     if (*i2 < 0) return 0;
896     *i1 = *i2;                                    897     *i1 = *i2;
897     return 1;                                     898     return 1;
898   }                                               899   }
899                                                   900 
900   if (*i2 < 0) return 1;                          901   if (*i2 < 0) return 1;
901                                                   902   
902   return 2;                                       903   return 2;
903 }                                                 904 }
904                                                   905 
                                                   >> 906 
                                                   >> 907 //
905 // ClosestPhiSegment                              908 // ClosestPhiSegment
906 //                                                909 //
907 // Decide which phi segment is closest in phi     910 // Decide which phi segment is closest in phi to the point.
908 // The result is the same as PhiSegment if the    911 // The result is the same as PhiSegment if there is no phi opening.
909 //                                                912 //
910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do    913 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 )
911 {                                                 914 {
912   G4int iPhi = PhiSegment( phi0 );                915   G4int iPhi = PhiSegment( phi0 );
913   if (iPhi >= 0) return iPhi;                     916   if (iPhi >= 0) return iPhi;
914                                                   917   
915   //                                              918   //
916   // Boogers! The points falls inside the phi     919   // Boogers! The points falls inside the phi segment.
917   // Look for the closest point: the start, or    920   // Look for the closest point: the start, or  end
918   //                                              921   //
919   G4double phi = phi0;                            922   G4double phi = phi0;
920                                                   923   
921   while( phi < startPhi )    // Loop checking, << 924   while( phi < startPhi ) phi += twopi;
922     phi += twopi;                              << 
923   G4double d1 = phi-endPhi;                       925   G4double d1 = phi-endPhi;
924                                                   926 
925   while( phi > startPhi )    // Loop checking, << 927   while( phi > startPhi ) phi -= twopi;
926     phi -= twopi;                              << 
927   G4double d2 = startPhi-phi;                     928   G4double d2 = startPhi-phi;
928                                                   929   
929   return (d2 < d1) ? 0 : numSide-1;               930   return (d2 < d1) ? 0 : numSide-1;
930 }                                                 931 }
931                                                   932 
                                                   >> 933 
                                                   >> 934 //
932 // PhiSegment                                     935 // PhiSegment
933 //                                                936 //
934 // Decide which phi segment an angle belongs t    937 // Decide which phi segment an angle belongs to, counting from zero.
935 // A value of -1 indicates that the phi value     938 // A value of -1 indicates that the phi value is outside the shape
936 // (only possible if phiTotal < 360 degrees).     939 // (only possible if phiTotal < 360 degrees).
937 //                                                940 //
938 G4int G4PolyhedraSide::PhiSegment( G4double ph    941 G4int G4PolyhedraSide::PhiSegment( G4double phi0 )
939 {                                                 942 {
940   //                                              943   //
941   // How far are we from phiStart? Come up wit    944   // How far are we from phiStart? Come up with a positive answer
942   // that is less than 2*PI                       945   // that is less than 2*PI
943   //                                              946   //
944   G4double phi = phi0 - startPhi;                 947   G4double phi = phi0 - startPhi;
945   while( phi < 0 )    // Loop checking, 13.08. << 948   while( phi < 0      ) phi += twopi;
946     phi += twopi;                              << 949   while( phi > twopi ) phi -= twopi;
947   while( phi > twopi )    // Loop checking, 13 << 
948     phi -= twopi;                              << 
949                                                   950 
950   //                                              951   //
951   // Divide                                       952   // Divide
952   //                                              953   //
953   auto answer = (G4int)(phi/deltaPhi);         << 954   G4int answer = (G4int)(phi/deltaPhi);
954                                                   955   
955   if (answer >= numSide)                          956   if (answer >= numSide)
956   {                                               957   {
957     if (phiIsOpen)                                958     if (phiIsOpen)
958     {                                             959     {
959       return -1;  // Looks like we missed         960       return -1;  // Looks like we missed
960     }                                             961     }
961     else                                          962     else
962     {                                             963     {
963       answer = numSide-1;  // Probably just ro    964       answer = numSide-1;  // Probably just roundoff
964     }                                             965     }
965   }                                               966   }
966                                                   967   
967   return answer;                                  968   return answer;
968 }                                                 969 }
969                                                   970 
970 // GetPhi                                      << 
971 //                                             << 
972 // Calculate Phi for a given 3-vector (point), << 
973 // same point, in the attempt to avoid consecu << 
974 // quantity                                    << 
975 //                                             << 
976 G4double G4PolyhedraSide::GetPhi( const G4Thre << 
977 {                                              << 
978   G4double val=0.;                             << 
979   G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 
980                                                << 
981   if (vphi != p)                               << 
982   {                                            << 
983     val = p.phi();                             << 
984     G4MT_phphix = p.x(); G4MT_phphiy = p.y();  << 
985     G4MT_phphik = val;                         << 
986   }                                            << 
987   else                                         << 
988   {                                            << 
989     val = G4MT_phphik;                         << 
990   }                                            << 
991   return val;                                  << 
992 }                                              << 
993                                                   971 
                                                   >> 972 //
994 // DistanceToOneSide                              973 // DistanceToOneSide
995 //                                                974 //
996 // Arguments:                                     975 // Arguments:
997 //  p   - (in) Point to check                     976 //  p   - (in) Point to check
998 //  vec   - (in) vector set of this side          977 //  vec   - (in) vector set of this side
999 //  normDist - (out) distance normal to the si    978 //  normDist - (out) distance normal to the side or edge, as appropriate, signed
1000 // Return value = total distance from the sid    979 // Return value = total distance from the side
1001 //                                               980 //
1002 G4double G4PolyhedraSide::DistanceToOneSide(  << 981 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p,
1003                                               << 982                                              const G4PolyhedraSideVec &vec,
1004                                               << 983                                                    G4double *normDist )
1005 {                                                984 {
1006   G4ThreeVector pct = p - vec.center;         << 985   G4ThreeVector pc = p - vec.center;
1007                                                  986   
1008   //                                             987   //
1009   // Get normal distance                         988   // Get normal distance
1010   //                                             989   //
1011   *normDist = vec.normal.dot(pct);            << 990   *normDist = vec.normal.dot(pc);
1012                                                  991 
1013   //                                             992   //
1014   // Add edge penalty                            993   // Add edge penalty
1015   //                                             994   //
1016   return DistanceAway( p, vec, normDist );       995   return DistanceAway( p, vec, normDist );
1017 }                                                996 }
1018                                                  997 
                                                   >> 998 
                                                   >> 999 //
1019 // DistanceAway                                  1000 // DistanceAway
1020 //                                               1001 //
1021 // Add distance from side edges, if necessary << 1002 // Add distance from side edges, if necesssary, to total distance,
1022 // and updates normDist appropriate depending    1003 // and updates normDist appropriate depending on edge normals.
1023 //                                               1004 //
1024 G4double G4PolyhedraSide::DistanceAway( const << 1005 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p,
1025                                         const << 1006                                         const G4PolyhedraSideVec &vec,
1026                                               << 1007                                               G4double *normDist )
1027 {                                                1008 {
1028   G4double distOut2;                             1009   G4double distOut2;
1029   G4ThreeVector pct = p - vec.center;         << 1010   G4ThreeVector pc = p - vec.center;
1030   G4double distFaceNorm = *normDist;             1011   G4double distFaceNorm = *normDist;
1031                                                  1012   
1032   //                                             1013   //
1033   // Okay, are we inside bounds?                 1014   // Okay, are we inside bounds?
1034   //                                             1015   //
1035   G4double pcDotRZ  = pct.dot(vec.surfRZ);    << 1016   G4double pcDotRZ  = pc.dot(vec.surfRZ);
1036   G4double pcDotPhi = pct.dot(vec.surfPhi);   << 1017   G4double pcDotPhi = pc.dot(vec.surfPhi);
1037                                                  1018   
1038   //                                             1019   //
1039   // Go through all permutations.                1020   // Go through all permutations.
1040   //                                             1021   //                                                   Phi
1041   //               |              |              1022   //               |              |                     ^
1042   //           B   |      H       |   E          1023   //           B   |      H       |   E                 |
1043   //        ------[1]------------[3]-----        1024   //        ------[1]------------[3]-----               |
1044   //               |XXXXXXXXXXXXXX|              1025   //               |XXXXXXXXXXXXXX|                     +----> RZ
1045   //           C   |XXXXXXXXXXXXXX|   F          1026   //           C   |XXXXXXXXXXXXXX|   F
1046   //               |XXXXXXXXXXXXXX|              1027   //               |XXXXXXXXXXXXXX|
1047   //        ------[0]------------[2]----         1028   //        ------[0]------------[2]----
1048   //           A   |      G       |   D          1029   //           A   |      G       |   D
1049   //               |              |              1030   //               |              |
1050   //                                             1031   //
1051   // It's real messy, but at least it's quick    1032   // It's real messy, but at least it's quick
1052   //                                             1033   //
1053                                                  1034   
1054   if (pcDotRZ < -lenRZ)                          1035   if (pcDotRZ < -lenRZ)
1055   {                                              1036   {
1056     G4double lenPhiZ = lenPhi[0] - lenRZ*lenP    1037     G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1];
1057     G4double distOutZ = pcDotRZ+lenRZ;           1038     G4double distOutZ = pcDotRZ+lenRZ;
1058     //                                           1039     //
1059     // Below in RZ                               1040     // Below in RZ
1060     //                                           1041     //
1061     if (pcDotPhi < -lenPhiZ)                     1042     if (pcDotPhi < -lenPhiZ)
1062     {                                            1043     {
1063       //                                         1044       //
1064       // ...and below in phi. Find distance t    1045       // ...and below in phi. Find distance to point (A)
1065       //                                         1046       //
1066       G4double distOutPhi = pcDotPhi+lenPhiZ;    1047       G4double distOutPhi = pcDotPhi+lenPhiZ;
1067       distOut2 = distOutPhi*distOutPhi + dist    1048       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1068       G4ThreeVector pa = p - vec.edges[0]->co    1049       G4ThreeVector pa = p - vec.edges[0]->corner[0];
1069       *normDist = pa.dot(vec.edges[0]->cornNo    1050       *normDist = pa.dot(vec.edges[0]->cornNorm[0]);
1070     }                                            1051     }
1071     else if (pcDotPhi > lenPhiZ)                 1052     else if (pcDotPhi > lenPhiZ)
1072     {                                            1053     {
1073       //                                         1054       //
1074       // ...and above in phi. Find distance t    1055       // ...and above in phi. Find distance to point (B)
1075       //                                         1056       //
1076       G4double distOutPhi = pcDotPhi-lenPhiZ;    1057       G4double distOutPhi = pcDotPhi-lenPhiZ;
1077       distOut2 = distOutPhi*distOutPhi + dist    1058       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1078       G4ThreeVector pb = p - vec.edges[1]->co    1059       G4ThreeVector pb = p - vec.edges[1]->corner[0];
1079       *normDist = pb.dot(vec.edges[1]->cornNo    1060       *normDist = pb.dot(vec.edges[1]->cornNorm[0]);
1080     }                                            1061     }
1081     else                                         1062     else
1082     {                                            1063     {
1083       //                                         1064       //
1084       // ...and inside in phi. Find distance     1065       // ...and inside in phi. Find distance to line (C)
1085       //                                         1066       //
1086       G4ThreeVector pa = p - vec.edges[0]->co    1067       G4ThreeVector pa = p - vec.edges[0]->corner[0];
1087       distOut2 = distOutZ*distOutZ;              1068       distOut2 = distOutZ*distOutZ;
1088       *normDist = pa.dot(vec.edgeNorm[0]);       1069       *normDist = pa.dot(vec.edgeNorm[0]);
1089     }                                            1070     }
1090   }                                              1071   }
1091   else if (pcDotRZ > lenRZ)                      1072   else if (pcDotRZ > lenRZ)
1092   {                                              1073   {
1093     G4double lenPhiZ = lenPhi[0] + lenRZ*lenP    1074     G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1];
1094     G4double distOutZ = pcDotRZ-lenRZ;           1075     G4double distOutZ = pcDotRZ-lenRZ;
1095     //                                           1076     //
1096     // Above in RZ                               1077     // Above in RZ
1097     //                                           1078     //
1098     if (pcDotPhi < -lenPhiZ)                     1079     if (pcDotPhi < -lenPhiZ)
1099     {                                            1080     {
1100       //                                         1081       //
1101       // ...and below in phi. Find distance t    1082       // ...and below in phi. Find distance to point (D)
1102       //                                         1083       //
1103       G4double distOutPhi = pcDotPhi+lenPhiZ;    1084       G4double distOutPhi = pcDotPhi+lenPhiZ;
1104       distOut2 = distOutPhi*distOutPhi + dist    1085       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1105       G4ThreeVector pd = p - vec.edges[0]->co    1086       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1106       *normDist = pd.dot(vec.edges[0]->cornNo    1087       *normDist = pd.dot(vec.edges[0]->cornNorm[1]);
1107     }                                            1088     }
1108     else if (pcDotPhi > lenPhiZ)                 1089     else if (pcDotPhi > lenPhiZ)
1109     {                                            1090     {
1110       //                                         1091       //
1111       // ...and above in phi. Find distance t    1092       // ...and above in phi. Find distance to point (E)
1112       //                                         1093       //
1113       G4double distOutPhi = pcDotPhi-lenPhiZ;    1094       G4double distOutPhi = pcDotPhi-lenPhiZ;
1114       distOut2 = distOutPhi*distOutPhi + dist    1095       distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ;
1115       G4ThreeVector pe = p - vec.edges[1]->co    1096       G4ThreeVector pe = p - vec.edges[1]->corner[1];
1116       *normDist = pe.dot(vec.edges[1]->cornNo    1097       *normDist = pe.dot(vec.edges[1]->cornNorm[1]);
1117     }                                            1098     }
1118     else                                         1099     else
1119     {                                            1100     {
1120       //                                         1101       //
1121       // ...and inside in phi. Find distance     1102       // ...and inside in phi. Find distance to line (F)
1122       //                                         1103       //
1123       distOut2 = distOutZ*distOutZ;              1104       distOut2 = distOutZ*distOutZ;
1124       G4ThreeVector pd = p - vec.edges[0]->co    1105       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1125       *normDist = pd.dot(vec.edgeNorm[1]);       1106       *normDist = pd.dot(vec.edgeNorm[1]);
1126     }                                            1107     }
1127   }                                              1108   }
1128   else                                           1109   else
1129   {                                              1110   {
1130     G4double lenPhiZ = lenPhi[0] + pcDotRZ*le    1111     G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1];
1131     //                                           1112     //
1132     // We are inside RZ bounds                   1113     // We are inside RZ bounds
1133     //                                           1114     // 
1134     if (pcDotPhi < -lenPhiZ)                     1115     if (pcDotPhi < -lenPhiZ)
1135     {                                            1116     {
1136       //                                         1117       //
1137       // ...and below in phi. Find distance t    1118       // ...and below in phi. Find distance to line (G)
1138       //                                         1119       //
1139       G4double distOut = edgeNorm*(pcDotPhi+l    1120       G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ);
1140       distOut2 = distOut*distOut;                1121       distOut2 = distOut*distOut;
1141       G4ThreeVector pd = p - vec.edges[0]->co    1122       G4ThreeVector pd = p - vec.edges[0]->corner[1];
1142       *normDist = pd.dot(vec.edges[0]->normal    1123       *normDist = pd.dot(vec.edges[0]->normal);
1143     }                                            1124     }
1144     else if (pcDotPhi > lenPhiZ)                 1125     else if (pcDotPhi > lenPhiZ)
1145     {                                            1126     {
1146       //                                         1127       //
1147       // ...and above in phi. Find distance t    1128       // ...and above in phi. Find distance to line (H)
1148       //                                         1129       //
1149       G4double distOut = edgeNorm*(pcDotPhi-l    1130       G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ);
1150       distOut2 = distOut*distOut;                1131       distOut2 = distOut*distOut;
1151       G4ThreeVector pe = p - vec.edges[1]->co    1132       G4ThreeVector pe = p - vec.edges[1]->corner[1];
1152       *normDist = pe.dot(vec.edges[1]->normal    1133       *normDist = pe.dot(vec.edges[1]->normal);
1153     }                                            1134     }
1154     else                                         1135     else
1155     {                                            1136     {
1156       //                                         1137       //
1157       // Inside bounds! No penalty.              1138       // Inside bounds! No penalty.
1158       //                                         1139       //
1159       return std::fabs(distFaceNorm);            1140       return std::fabs(distFaceNorm);
1160     }                                            1141     }
1161   }                                              1142   }
1162   return std::sqrt( distFaceNorm*distFaceNorm    1143   return std::sqrt( distFaceNorm*distFaceNorm + distOut2 );
1163 }                                                1144 }
1164                                                  1145 
                                                   >> 1146 
                                                   >> 1147 //
1165 // Calculation of surface area of a triangle.    1148 // Calculation of surface area of a triangle. 
1166 // At the same time a random point in the tri    1149 // At the same time a random point in the triangle is given
1167 //                                               1150 //
1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1151 G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1,
1169                                            co << 1152                                            G4ThreeVector p2,
1170                                            co << 1153                                            G4ThreeVector p3,
1171                                            G4 << 1154                                            G4ThreeVector *p4 )
1172 {                                                1155 {
1173   G4ThreeVector v, w;                            1156   G4ThreeVector v, w;
1174                                                  1157   
1175   v = p3 - p1;                                   1158   v = p3 - p1;
1176   w = p1 - p2;                                   1159   w = p1 - p2;
1177   G4double lambda1 = G4UniformRand();            1160   G4double lambda1 = G4UniformRand();
1178   G4double lambda2 = lambda1*G4UniformRand();    1161   G4double lambda2 = lambda1*G4UniformRand();
1179                                                  1162  
1180   *p4=p2 + lambda1*w + lambda2*v;                1163   *p4=p2 + lambda1*w + lambda2*v;
1181   return 0.5*(v.cross(w)).mag();                 1164   return 0.5*(v.cross(w)).mag();
1182 }                                                1165 }
1183                                                  1166 
                                                   >> 1167 
                                                   >> 1168 //
1184 // GetPointOnPlane                               1169 // GetPointOnPlane
1185 //                                               1170 //
1186 // Auxiliary method for GetPointOnSurface()      1171 // Auxiliary method for GetPointOnSurface()
1187 //                                               1172 //
1188 G4ThreeVector                                    1173 G4ThreeVector
1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1174 G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1, 
1190                                   const G4Thr << 1175                                   G4ThreeVector p2, G4ThreeVector p3,
1191                                   G4double* A << 1176                                   G4double *Area )
1192 {                                                1177 {
1193   G4double chose,aOne,aTwo;                      1178   G4double chose,aOne,aTwo;
1194   G4ThreeVector point1,point2;                   1179   G4ThreeVector point1,point2;
1195   aOne = SurfaceTriangle(p0,p1,p2,&point1);      1180   aOne = SurfaceTriangle(p0,p1,p2,&point1);
1196   aTwo = SurfaceTriangle(p2,p3,p0,&point2);      1181   aTwo = SurfaceTriangle(p2,p3,p0,&point2);
1197   *Area= aOne+aTwo;                              1182   *Area= aOne+aTwo;
1198                                                  1183 
1199   chose = G4UniformRand()*(aOne+aTwo);           1184   chose = G4UniformRand()*(aOne+aTwo);
1200   if( (chose>=0.) && (chose < aOne) )            1185   if( (chose>=0.) && (chose < aOne) )
1201   {                                              1186   {
1202    return (point1);                              1187    return (point1);    
1203   }                                              1188   }
1204   return (point2);                               1189   return (point2);
1205 }                                                1190 }
1206                                                  1191 
                                                   >> 1192 
                                                   >> 1193 //
1207 // SurfaceArea()                                 1194 // SurfaceArea()
1208 //                                               1195 //
1209 G4double G4PolyhedraSide::SurfaceArea()          1196 G4double G4PolyhedraSide::SurfaceArea()
1210 {                                                1197 {
1211   if( fSurfaceArea==0. )                         1198   if( fSurfaceArea==0. )
1212   {                                              1199   { 
1213     // Define the variables                      1200     // Define the variables
1214     //                                           1201     //
1215     G4double area,areas;                         1202     G4double area,areas;
1216     G4ThreeVector point1;                        1203     G4ThreeVector point1;
1217     G4ThreeVector v1,v2,v3,v4;                   1204     G4ThreeVector v1,v2,v3,v4; 
1218     G4PolyhedraSideVec* vec = vecs;           << 1205     G4PolyhedraSideVec *vec = vecs;
1219     areas=0.;                                    1206     areas=0.;
1220                                                  1207 
1221     // Do a loop on all SideEdge                 1208     // Do a loop on all SideEdge
1222     //                                           1209     //
1223     do    // Loop checking, 13.08.2015, G.Cos << 1210     do
1224     {                                            1211     {
1225       // Define 4points for a Plane or Triang    1212       // Define 4points for a Plane or Triangle
1226       //                                         1213       //
1227       v1=vec->edges[0]->corner[0];            << 1214       G4ThreeVector v1=vec->edges[0]->corner[0];
1228       v2=vec->edges[0]->corner[1];            << 1215       G4ThreeVector v2=vec->edges[0]->corner[1];
1229       v3=vec->edges[1]->corner[1];            << 1216       G4ThreeVector v3=vec->edges[1]->corner[1];
1230       v4=vec->edges[1]->corner[0];            << 1217       G4ThreeVector v4=vec->edges[1]->corner[0];
1231       point1=GetPointOnPlane(v1,v2,v3,v4,&are    1218       point1=GetPointOnPlane(v1,v2,v3,v4,&area);
1232       areas+=area;                               1219       areas+=area;
1233     } while( ++vec < vecs + numSide);            1220     } while( ++vec < vecs + numSide);
1234                                                  1221 
1235     fSurfaceArea=areas;                          1222     fSurfaceArea=areas;
1236   }                                              1223   }
1237   return fSurfaceArea;                           1224   return fSurfaceArea;
1238 }                                                1225 }
1239                                                  1226 
                                                   >> 1227 
                                                   >> 1228 //
1240 // GetPointOnFace()                              1229 // GetPointOnFace()
1241 //                                               1230 //
1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace    1231 G4ThreeVector G4PolyhedraSide::GetPointOnFace()
1243 {                                                1232 {
1244   // Define the variables                        1233   // Define the variables
1245   //                                             1234   //
1246   std::vector<G4double>areas;                    1235   std::vector<G4double>areas;
1247   std::vector<G4ThreeVector>points;              1236   std::vector<G4ThreeVector>points;
1248   G4double area=0.;                           << 1237   G4double area=0;
1249   G4double result1;                              1238   G4double result1;
1250   G4ThreeVector point1;                          1239   G4ThreeVector point1;
1251   G4ThreeVector v1,v2,v3,v4;                     1240   G4ThreeVector v1,v2,v3,v4; 
1252   G4PolyhedraSideVec* vec = vecs;             << 1241   G4PolyhedraSideVec *vec = vecs;
1253                                                  1242 
1254   // Do a loop on all SideEdge                   1243   // Do a loop on all SideEdge
1255   //                                             1244   //
1256   do    // Loop checking, 13.08.2015, G.Cosmo << 1245   do
1257   {                                              1246   {
1258     // Define 4points for a Plane or Triangle    1247     // Define 4points for a Plane or Triangle
1259     //                                           1248     //
1260     v1=vec->edges[0]->corner[0];              << 1249     G4ThreeVector v1=vec->edges[0]->corner[0];
1261     v2=vec->edges[0]->corner[1];              << 1250     G4ThreeVector v2=vec->edges[0]->corner[1];
1262     v3=vec->edges[1]->corner[1];              << 1251     G4ThreeVector v3=vec->edges[1]->corner[1];
1263     v4=vec->edges[1]->corner[0];              << 1252     G4ThreeVector v4=vec->edges[1]->corner[0];
1264     point1=GetPointOnPlane(v1,v2,v3,v4,&resul    1253     point1=GetPointOnPlane(v1,v2,v3,v4,&result1);
1265     points.push_back(point1);                    1254     points.push_back(point1);
1266     areas.push_back(result1);                    1255     areas.push_back(result1);
1267     area+=result1;                               1256     area+=result1;
1268   } while( ++vec < vecs+numSide );               1257   } while( ++vec < vecs+numSide );
1269                                                  1258 
1270   // Choose randomly one of the surfaces and     1259   // Choose randomly one of the surfaces and point on it
1271   //                                             1260   //
1272   G4double chose = area*G4UniformRand();         1261   G4double chose = area*G4UniformRand();
1273   G4double Achose1=0., Achose2=0.;            << 1262   G4double Achose1,Achose2;
                                                   >> 1263   Achose1=0;Achose2=0.; 
1274   G4int i=0;                                     1264   G4int i=0;
1275   do    // Loop checking, 13.08.2015, G.Cosmo << 1265   do 
1276   {                                              1266   {
1277     Achose2+=areas[i];                           1267     Achose2+=areas[i];
1278     if(chose>=Achose1 && chose<Achose2)          1268     if(chose>=Achose1 && chose<Achose2)
1279     {                                            1269     {
1280       point1=points[i] ; break;                  1270       point1=points[i] ; break;     
1281     }                                            1271     }
1282     ++i; Achose1=Achose2;                     << 1272     i++; Achose1=Achose2;
1283   } while( i<numSide );                          1273   } while( i<numSide );
1284                                                  1274  
1285   return point1;                                 1275   return point1;
1286 }                                                1276 }
1287                                                  1277