Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyhedraSide, the face << 27 // one segmented side of a Polyhedra << 28 // 26 // 29 // Author: David C. Williams (davidw@scipp.ucs << 27 // $Id: G4PolyhedraSide.cc,v 1.13 2007/05/31 13:52:48 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-00 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4PolyhedraSide.cc >> 36 // >> 37 // Implemenation of the face representing one segmented side of a Polyhedra >> 38 // 30 // ------------------------------------------- 39 // -------------------------------------------------------------------- 31 40 32 #include "G4PolyhedraSide.hh" 41 #include "G4PolyhedraSide.hh" 33 #include "G4PhysicalConstants.hh" << 34 #include "G4IntersectingCone.hh" 42 #include "G4IntersectingCone.hh" 35 #include "G4ClippablePolygon.hh" 43 #include "G4ClippablePolygon.hh" 36 #include "G4AffineTransform.hh" 44 #include "G4AffineTransform.hh" 37 #include "G4SolidExtentList.hh" 45 #include "G4SolidExtentList.hh" 38 #include "G4GeometryTolerance.hh" 46 #include "G4GeometryTolerance.hh" 39 47 40 #include "Randomize.hh" << 41 << 42 // This new field helps to use the class G4PhS << 43 // 48 // 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 45 << 46 // This macro changes the references to fields << 47 // in the class G4PhSideData. << 48 // << 49 #define G4MT_phphix ((subInstanceManager.offse << 50 #define G4MT_phphiy ((subInstanceManager.offse << 51 #define G4MT_phphiz ((subInstanceManager.offse << 52 #define G4MT_phphik ((subInstanceManager.offse << 53 << 54 // Returns the private data instance manager. << 55 // << 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 57 { << 58 return subInstanceManager; << 59 } << 60 << 61 // Constructor 49 // Constructor 62 // 50 // 63 // Values for r1,z1 and r2,z2 should be specif 51 // Values for r1,z1 and r2,z2 should be specified in clockwise 64 // order in (r,z). 52 // order in (r,z). 65 // 53 // 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 54 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ, 67 const G4Poly << 55 const G4PolyhedraSideRZ *tail, 68 const G4Poly << 56 const G4PolyhedraSideRZ *head, 69 const G4Poly << 57 const G4PolyhedraSideRZ *nextRZ, 70 G4int 58 G4int theNumSide, 71 G4doub 59 G4double thePhiStart, 72 G4doub 60 G4double thePhiTotal, 73 G4bool 61 G4bool thePhiIsOpen, 74 G4bool 62 G4bool isAllBehind ) 75 { 63 { 76 64 77 instanceID = subInstanceManager.CreateSubIns << 78 << 79 kCarTolerance = G4GeometryTolerance::GetInst 65 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p << 81 G4MT_phphik = 0.0; << 82 66 83 // 67 // 84 // Record values 68 // Record values 85 // 69 // 86 r[0] = tail->r; z[0] = tail->z; 70 r[0] = tail->r; z[0] = tail->z; 87 r[1] = head->r; z[1] = head->z; 71 r[1] = head->r; z[1] = head->z; 88 72 89 G4double phiTotal; 73 G4double phiTotal; 90 74 91 // 75 // 92 // Set phi to our convention 76 // Set phi to our convention 93 // 77 // 94 startPhi = thePhiStart; 78 startPhi = thePhiStart; 95 while (startPhi < 0.0) // Loop checking, << 79 while (startPhi < 0.0) startPhi += twopi; 96 startPhi += twopi; << 97 80 98 phiIsOpen = thePhiIsOpen; 81 phiIsOpen = thePhiIsOpen; 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi 82 phiTotal = (phiIsOpen) ? thePhiTotal : twopi; 100 83 101 allBehind = isAllBehind; 84 allBehind = isAllBehind; 102 85 103 // 86 // 104 // Make our intersecting cone 87 // Make our intersecting cone 105 // 88 // 106 cone = new G4IntersectingCone( r, z ); 89 cone = new G4IntersectingCone( r, z ); 107 90 108 // 91 // 109 // Construct side plane vector set 92 // Construct side plane vector set 110 // 93 // 111 numSide = theNumSide>0 ? theNumSide : 1; << 94 numSide = theNumSide; 112 deltaPhi = phiTotal/numSide; << 95 deltaPhi = phiTotal/theNumSide; 113 endPhi = startPhi+phiTotal; 96 endPhi = startPhi+phiTotal; 114 << 97 115 const std::size_t maxSides = numSide; << 98 vecs = new G4PolyhedraSideVec[numSide]; 116 vecs = new G4PolyhedraSideVec[maxSides]; << 99 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? << 100 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide]; 118 101 119 // 102 // 120 // ...this is where we start 103 // ...this is where we start 121 // 104 // 122 G4double phi = startPhi; 105 G4double phi = startPhi; 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s 106 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ), 124 b1( r[1]*std::cos(phi), r[1]*std::si 107 b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ), 125 c1( prevRZ->r*std::cos(phi), prevRZ- 108 c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ), 126 d1( nextRZ->r*std::cos(phi), nextRZ- 109 d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ), 127 a2, b2, c2, d2; 110 a2, b2, c2, d2; 128 G4PolyhedraSideEdge *edge = edges; 111 G4PolyhedraSideEdge *edge = edges; 129 112 130 G4PolyhedraSideVec *vec = vecs; 113 G4PolyhedraSideVec *vec = vecs; 131 do // Loop checking, 13.08.2015, G.Cosmo << 114 do 132 { 115 { 133 // 116 // 134 // ...this is where we are going 117 // ...this is where we are going 135 // 118 // 136 phi += deltaPhi; 119 phi += deltaPhi; 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[ 120 a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ); 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[ 121 b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ); 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi 122 c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ); 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi 123 d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ); 141 124 142 G4ThreeVector tt; 125 G4ThreeVector tt; 143 126 144 // 127 // 145 // ...build some relevant vectors. 128 // ...build some relevant vectors. 146 // the point is to sacrifice a little m 129 // the point is to sacrifice a little memory with precalcs 147 // to gain speed 130 // to gain speed 148 // 131 // 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 132 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 150 133 151 tt = b2 + b1 - a2 - a1; 134 tt = b2 + b1 - a2 - a1; 152 vec->surfRZ = tt.unit(); 135 vec->surfRZ = tt.unit(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 136 if (vec==vecs) lenRZ = 0.25*tt.mag(); 154 137 155 tt = b2 - b1 + a2 - a1; 138 tt = b2 - b1 + a2 - a1; 156 vec->surfPhi = tt.unit(); 139 vec->surfPhi = tt.unit(); 157 if (vec==vecs) 140 if (vec==vecs) 158 { 141 { 159 lenPhi[0] = 0.25*tt.mag(); 142 lenPhi[0] = 0.25*tt.mag(); 160 tt = b2 - b1; 143 tt = b2 - b1; 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len 144 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ; 162 } 145 } 163 146 164 tt = vec->surfPhi.cross(vec->surfRZ); 147 tt = vec->surfPhi.cross(vec->surfRZ); 165 vec->normal = tt.unit(); 148 vec->normal = tt.unit(); 166 149 167 // 150 // 168 // ...edge normals are the average of the 151 // ...edge normals are the average of the normals of 169 // the two faces they connect. 152 // the two faces they connect. 170 // 153 // 171 // ...edge normals are necessary if we are 154 // ...edge normals are necessary if we are to accurately 172 // decide if a point is "inside" a face 155 // decide if a point is "inside" a face. For non-convex 173 // shapes, it is absolutely necessary t 156 // shapes, it is absolutely necessary to know information 174 // on adjacent faces to accurate determ 157 // on adjacent faces to accurate determine this. 175 // 158 // 176 // ...we don't need them for the phi edges 159 // ...we don't need them for the phi edges, since that 177 // information is taken care of interna 160 // information is taken care of internally. The r/z edges, 178 // however, depend on the adjacent G4Po 161 // however, depend on the adjacent G4PolyhedraSide. 179 // 162 // 180 G4ThreeVector a12, adj; 163 G4ThreeVector a12, adj; 181 164 182 a12 = a2-a1; 165 a12 = a2-a1; 183 166 184 adj = 0.5*(c1+c2-a1-a2); 167 adj = 0.5*(c1+c2-a1-a2); 185 adj = adj.cross(a12); 168 adj = adj.cross(a12); 186 adj = adj.unit() + vec->normal; 169 adj = adj.unit() + vec->normal; 187 vec->edgeNorm[0] = adj.unit(); 170 vec->edgeNorm[0] = adj.unit(); 188 171 189 a12 = b1-b2; 172 a12 = b1-b2; 190 adj = 0.5*(d1+d2-b1-b2); 173 adj = 0.5*(d1+d2-b1-b2); 191 adj = adj.cross(a12); 174 adj = adj.cross(a12); 192 adj = adj.unit() + vec->normal; 175 adj = adj.unit() + vec->normal; 193 vec->edgeNorm[1] = adj.unit(); 176 vec->edgeNorm[1] = adj.unit(); 194 177 195 // 178 // 196 // ...the corners are crucial. It is impor 179 // ...the corners are crucial. It is important that 197 // they are calculated consistently for 180 // they are calculated consistently for adjacent 198 // G4PolyhedraSides, to avoid gaps caus 181 // G4PolyhedraSides, to avoid gaps caused by roundoff. 199 // 182 // 200 vec->edges[0] = edge; 183 vec->edges[0] = edge; 201 edge->corner[0] = a1; 184 edge->corner[0] = a1; 202 edge->corner[1] = b1; 185 edge->corner[1] = b1; 203 edge++; 186 edge++; 204 vec->edges[1] = edge; 187 vec->edges[1] = edge; 205 188 206 a1 = a2; 189 a1 = a2; 207 b1 = b2; 190 b1 = b2; 208 c1 = c2; 191 c1 = c2; 209 d1 = d2; 192 d1 = d2; 210 } while( ++vec < vecs+maxSides ); << 193 } while( ++vec < vecs+numSide ); 211 194 212 // 195 // 213 // Clean up hanging edge 196 // Clean up hanging edge 214 // 197 // 215 if (phiIsOpen) 198 if (phiIsOpen) 216 { 199 { 217 edge->corner[0] = a2; 200 edge->corner[0] = a2; 218 edge->corner[1] = b2; 201 edge->corner[1] = b2; 219 } 202 } 220 else 203 else 221 { 204 { 222 vecs[maxSides-1].edges[1] = edges; << 205 vecs[numSide-1].edges[1] = edges; 223 } 206 } 224 207 225 // 208 // 226 // Go back and fill in remaining fields in e 209 // Go back and fill in remaining fields in edges 227 // 210 // 228 vec = vecs; 211 vec = vecs; 229 G4PolyhedraSideVec *prev = vecs+maxSides-1; << 212 G4PolyhedraSideVec *prev = vecs+numSide-1; 230 do // Loop checking, 13.08.2015, G.Cosmo << 213 do 231 { 214 { 232 edge = vec->edges[0]; // The edge betwe 215 edge = vec->edges[0]; // The edge between prev and vec 233 216 234 // 217 // 235 // Okay: edge normal is average of normals 218 // Okay: edge normal is average of normals of adjacent faces 236 // 219 // 237 G4ThreeVector eNorm = vec->normal + prev-> 220 G4ThreeVector eNorm = vec->normal + prev->normal; 238 edge->normal = eNorm.unit(); 221 edge->normal = eNorm.unit(); 239 222 240 // 223 // 241 // Vertex normal is average of norms of ad 224 // Vertex normal is average of norms of adjacent surfaces (all four) 242 // However, vec->edgeNorm is unit vector i 225 // However, vec->edgeNorm is unit vector in some direction 243 // as the sum of normals of adjacent Polyh 226 // as the sum of normals of adjacent PolyhedraSide with vec. 244 // The normalization used for this vector 227 // The normalization used for this vector should be the same 245 // for vec and prev. 228 // for vec and prev. 246 // 229 // 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[ 230 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0]; 248 edge->cornNorm[0] = eNorm.unit(); 231 edge->cornNorm[0] = eNorm.unit(); 249 232 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[ 233 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1]; 251 edge->cornNorm[1] = eNorm.unit(); 234 edge->cornNorm[1] = eNorm.unit(); 252 } while( prev=vec, ++vec < vecs + maxSides ) << 235 } while( prev=vec, ++vec < vecs + numSide ); 253 236 254 if (phiIsOpen) 237 if (phiIsOpen) 255 { 238 { 256 // G4double rFact = std::cos(0.5*deltaPhi) 239 // G4double rFact = std::cos(0.5*deltaPhi); 257 // 240 // 258 // If phi is open, we need to patch up nor 241 // If phi is open, we need to patch up normals of the 259 // first and last edges and their correspo 242 // first and last edges and their corresponding 260 // vertices. 243 // vertices. 261 // 244 // 262 // We use vectors that are in the plane of 245 // We use vectors that are in the plane of the 263 // face. This should be safe. 246 // face. This should be safe. 264 // 247 // 265 vec = vecs; 248 vec = vecs; 266 249 267 G4ThreeVector normvec = vec->edges[0]->cor 250 G4ThreeVector normvec = vec->edges[0]->corner[0] 268 - vec->edges[0]->cor 251 - vec->edges[0]->corner[1]; 269 normvec = normvec.cross(vec->normal); 252 normvec = normvec.cross(vec->normal); 270 if (normvec.dot(vec->surfPhi) > 0) normvec 253 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec; 271 254 272 vec->edges[0]->normal = normvec.unit(); 255 vec->edges[0]->normal = normvec.unit(); 273 256 274 vec->edges[0]->cornNorm[0] = (vec->edges[0 257 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0] 275 - vec->center) 258 - vec->center).unit(); 276 vec->edges[0]->cornNorm[1] = (vec->edges[0 259 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1] 277 - vec->center) 260 - vec->center).unit(); 278 261 279 // 262 // 280 // Repeat for ending phi 263 // Repeat for ending phi 281 // 264 // 282 vec = vecs + maxSides - 1; << 265 vec = vecs + numSide - 1; 283 266 284 normvec = vec->edges[1]->corner[0] - vec-> 267 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1]; 285 normvec = normvec.cross(vec->normal); 268 normvec = normvec.cross(vec->normal); 286 if (normvec.dot(vec->surfPhi) < 0) normvec 269 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec; 287 270 288 vec->edges[1]->normal = normvec.unit(); 271 vec->edges[1]->normal = normvec.unit(); 289 272 290 vec->edges[1]->cornNorm[0] = (vec->edges[1 273 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0] 291 - vec->center) 274 - vec->center).unit(); 292 vec->edges[1]->cornNorm[1] = (vec->edges[1 275 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1] 293 - vec->center) 276 - vec->center).unit(); 294 } 277 } 295 278 296 // 279 // 297 // edgeNorm is the factor one multiplies the 280 // edgeNorm is the factor one multiplies the distance along vector phi 298 // on the surface of one of our sides in ord 281 // on the surface of one of our sides in order to calculate the distance 299 // from the edge. (see routine DistanceAway) 282 // from the edge. (see routine DistanceAway) 300 // 283 // 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le 284 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] ); 302 } 285 } 303 286 >> 287 >> 288 // 304 // Fake default constructor - sets only member 289 // Fake default constructor - sets only member data and allocates memory 305 // for usage restri 290 // for usage restricted to object persistency. 306 // 291 // 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) 292 G4PolyhedraSide::G4PolyhedraSide( __void__&) 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), << 293 : cone(0), vecs(0), edges(0) 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 310 { 294 { 311 r[0] = r[1] = 0.; << 312 z[0] = z[1] = 0.; << 313 lenPhi[0] = lenPhi[1] = 0.; << 314 } 295 } 315 296 316 297 >> 298 // 317 // Destructor 299 // Destructor 318 // 300 // 319 G4PolyhedraSide::~G4PolyhedraSide() 301 G4PolyhedraSide::~G4PolyhedraSide() 320 { 302 { 321 delete cone; 303 delete cone; 322 delete [] vecs; 304 delete [] vecs; 323 delete [] edges; 305 delete [] edges; 324 } 306 } 325 307 >> 308 >> 309 // 326 // Copy constructor 310 // Copy constructor 327 // 311 // 328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 312 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source ) >> 313 : G4VCSGface() 329 { 314 { 330 instanceID = subInstanceManager.CreateSubIns << 331 << 332 CopyStuff( source ); 315 CopyStuff( source ); 333 } 316 } 334 317 335 318 336 // 319 // 337 // Assignment operator 320 // Assignment operator 338 // 321 // 339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 322 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source ) 340 { 323 { 341 if (this == &source) return *this; 324 if (this == &source) return *this; 342 325 343 delete cone; 326 delete cone; 344 delete [] vecs; 327 delete [] vecs; 345 delete [] edges; 328 delete [] edges; 346 329 347 CopyStuff( source ); 330 CopyStuff( source ); 348 331 349 return *this; 332 return *this; 350 } 333 } 351 334 >> 335 >> 336 // 352 // CopyStuff 337 // CopyStuff 353 // 338 // 354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 339 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source ) 355 { 340 { 356 // 341 // 357 // The simple stuff 342 // The simple stuff 358 // 343 // >> 344 numSide = source.numSide; 359 r[0] = source.r[0]; 345 r[0] = source.r[0]; 360 r[1] = source.r[1]; 346 r[1] = source.r[1]; 361 z[0] = source.z[0]; 347 z[0] = source.z[0]; 362 z[1] = source.z[1]; 348 z[1] = source.z[1]; 363 numSide = source.numSide; << 364 startPhi = source.startPhi; 349 startPhi = source.startPhi; 365 deltaPhi = source.deltaPhi; 350 deltaPhi = source.deltaPhi; 366 endPhi = source.endPhi; 351 endPhi = source.endPhi; 367 phiIsOpen = source.phiIsOpen; 352 phiIsOpen = source.phiIsOpen; 368 allBehind = source.allBehind; 353 allBehind = source.allBehind; 369 354 370 lenRZ = source.lenRZ; 355 lenRZ = source.lenRZ; 371 lenPhi[0] = source.lenPhi[0]; 356 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[1] = source.lenPhi[1]; 357 lenPhi[1] = source.lenPhi[1]; 373 edgeNorm = source.edgeNorm; 358 edgeNorm = source.edgeNorm; 374 359 375 kCarTolerance = source.kCarTolerance; 360 kCarTolerance = source.kCarTolerance; 376 fSurfaceArea = source.fSurfaceArea; << 361 377 << 378 cone = new G4IntersectingCone( *source.cone 362 cone = new G4IntersectingCone( *source.cone ); 379 363 380 // 364 // 381 // Duplicate edges 365 // Duplicate edges 382 // 366 // 383 const std::size_t numSides = (numSide > 0) ? << 367 G4int numEdges = phiIsOpen ? numSide+1 : numSide; 384 const std::size_t numEdges = phiIsOpen ? num << 385 edges = new G4PolyhedraSideEdge[numEdges]; 368 edges = new G4PolyhedraSideEdge[numEdges]; 386 369 387 G4PolyhedraSideEdge *edge = edges, 370 G4PolyhedraSideEdge *edge = edges, 388 *sourceEdge = source.edges; 371 *sourceEdge = source.edges; 389 do // Loop checking, 13.08.2015, G.Cosmo << 372 do 390 { 373 { 391 *edge = *sourceEdge; 374 *edge = *sourceEdge; 392 } while( ++sourceEdge, ++edge < edges + numE 375 } while( ++sourceEdge, ++edge < edges + numEdges); 393 376 394 // 377 // 395 // Duplicate vecs 378 // Duplicate vecs 396 // 379 // 397 vecs = new G4PolyhedraSideVec[numSides]; << 380 vecs = new G4PolyhedraSideVec[numSide]; 398 381 399 G4PolyhedraSideVec *vec = vecs, 382 G4PolyhedraSideVec *vec = vecs, 400 *sourceVec = source.vecs; 383 *sourceVec = source.vecs; 401 do // Loop checking, 13.08.2015, G.Cosmo << 384 do 402 { 385 { 403 *vec = *sourceVec; 386 *vec = *sourceVec; 404 vec->edges[0] = edges + (sourceVec->edges[ 387 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges); 405 vec->edges[1] = edges + (sourceVec->edges[ 388 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges); 406 } while( ++sourceVec, ++vec < vecs + numSide << 389 } while( ++sourceVec, ++vec < vecs + numSide ); 407 } 390 } 408 391 >> 392 >> 393 // 409 // Intersect 394 // Intersect 410 // 395 // 411 // Decide if a line intersects the face. 396 // Decide if a line intersects the face. 412 // 397 // 413 // Arguments: 398 // Arguments: 414 // p = (in) starting point of line segment 399 // p = (in) starting point of line segment 415 // v = (in) direction of line segment (ass 400 // v = (in) direction of line segment (assumed a unit vector) 416 // A, B = (in) 2d transform variables (see 401 // A, B = (in) 2d transform variables (see note top of file) 417 // normSign = (in) desired sign for dot prod 402 // normSign = (in) desired sign for dot product with normal (see below) 418 // surfTolerance = (in) minimum distance fro 403 // surfTolerance = (in) minimum distance from the surface 419 // vecs = (in) Vector set array 404 // vecs = (in) Vector set array 420 // distance = (out) distance to surface furf 405 // distance = (out) distance to surface furfilling all requirements 421 // distFromSurface = (out) distance from the 406 // distFromSurface = (out) distance from the surface 422 // thisNormal = (out) normal vector of the i 407 // thisNormal = (out) normal vector of the intersecting surface 423 // 408 // 424 // Return value: 409 // Return value: 425 // true if an intersection is found. Otherwis 410 // true if an intersection is found. Otherwise, output parameters are 426 // undefined. 411 // undefined. 427 // 412 // 428 // Notes: 413 // Notes: 429 // * normSign: if we are "inside" the shape an 414 // * normSign: if we are "inside" the shape and only want to find out how far 430 // to leave the shape, we only want to consi 415 // to leave the shape, we only want to consider intersections with surfaces in 431 // which the trajectory is leaving the shape 416 // which the trajectory is leaving the shape. Since the normal vectors to the 432 // surface always point outwards from the in 417 // surface always point outwards from the inside, this means we want the dot 433 // product of the trajectory direction v and 418 // product of the trajectory direction v and the normal of the side normals[i] 434 // to be positive. Thus, we should specify n 419 // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if 435 // we are outside and want to go in, normSig 420 // we are outside and want to go in, normSign should be set to -1.0. 436 // Don't set normSign to zero, or you will g 421 // Don't set normSign to zero, or you will get no intersections! 437 // 422 // 438 // * surfTolerance: see notes on argument "sur 423 // * surfTolerance: see notes on argument "surfTolerance" in routine 439 // "IntersectSidePlane". 424 // "IntersectSidePlane". 440 // ----HOWEVER---- We should *not* apply thi 425 // ----HOWEVER---- We should *not* apply this surface tolerance if the 441 // starting point is not within phi or z of 426 // starting point is not within phi or z of the surface. Specifically, 442 // if the starting point p angle in x/y plac 427 // if the starting point p angle in x/y places it on a separate side from the 443 // intersection or if the starting point p i 428 // intersection or if the starting point p is outside the z bounds of the 444 // segment, surfTolerance must be ignored or 429 // segment, surfTolerance must be ignored or we should *always* accept the 445 // intersection! 430 // intersection! 446 // This is simply because the sides do not h 431 // This is simply because the sides do not have infinite extent. 447 // 432 // 448 // 433 // 449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 434 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p, 450 const G4Thr << 435 const G4ThreeVector &v, 451 G4boo 436 G4bool outgoing, 452 G4dou 437 G4double surfTolerance, 453 G4dou << 438 G4double &distance, 454 G4dou << 439 G4double &distFromSurface, 455 G4Thr << 440 G4ThreeVector &normal, 456 G4boo << 441 G4bool &isAllBehind ) 457 { 442 { 458 G4double normSign = outgoing ? +1 : -1; 443 G4double normSign = outgoing ? +1 : -1; 459 444 460 // 445 // 461 // ------------------TO BE IMPLEMENTED------ 446 // ------------------TO BE IMPLEMENTED--------------------- 462 // Testing the intersection of individual ph 447 // Testing the intersection of individual phi faces is 463 // pretty straight forward. The simple thing 448 // pretty straight forward. The simple thing therefore is to 464 // form a loop and check them all in sequenc 449 // form a loop and check them all in sequence. 465 // 450 // 466 // But, I worry about one day someone making 451 // But, I worry about one day someone making 467 // a polygon with a thousands sides. A linea 452 // a polygon with a thousands sides. A linear search 468 // would not be ideal in such a case. 453 // would not be ideal in such a case. 469 // 454 // 470 // So, it would be nice to be able to quickl 455 // So, it would be nice to be able to quickly decide 471 // which face would be intersected. One can 456 // which face would be intersected. One can make a very 472 // good guess by using the intersection with 457 // good guess by using the intersection with a cone. 473 // However, this is only reliable in 99% of 458 // However, this is only reliable in 99% of the cases. 474 // 459 // 475 // My solution: make a decent guess as to th 460 // My solution: make a decent guess as to the one or 476 // two potential faces might get intersected 461 // two potential faces might get intersected, and then 477 // test them. If we have the wrong face, use 462 // test them. If we have the wrong face, use the test 478 // to make a better guess. 463 // to make a better guess. 479 // 464 // 480 // Since we might have two guesses, form a q 465 // Since we might have two guesses, form a queue of 481 // potential intersecting faces. Keep an arr 466 // potential intersecting faces. Keep an array of 482 // already tested faces to avoid doing one m 467 // already tested faces to avoid doing one more than 483 // once. 468 // once. 484 // 469 // 485 // Result: at worst, an iterative search. On 470 // Result: at worst, an iterative search. On average, 486 // a little more than two tests would be req 471 // a little more than two tests would be required. 487 // 472 // 488 G4ThreeVector q = p + v; 473 G4ThreeVector q = p + v; 489 474 490 G4int face = 0; 475 G4int face = 0; 491 G4PolyhedraSideVec* vec = vecs; << 476 G4PolyhedraSideVec *vec = vecs; 492 do // Loop checking, 13.08.2015, G.Cosmo << 477 do 493 { 478 { 494 // 479 // 495 // Correct normal? 480 // Correct normal? 496 // 481 // 497 G4double dotProd = normSign*v.dot(vec->nor 482 G4double dotProd = normSign*v.dot(vec->normal); 498 if (dotProd <= 0) continue; 483 if (dotProd <= 0) continue; 499 484 500 // 485 // 501 // Is this face in front of the point alon 486 // Is this face in front of the point along the trajectory? 502 // 487 // 503 G4ThreeVector delta = p - vec->center; 488 G4ThreeVector delta = p - vec->center; 504 distFromSurface = -normSign*delta.dot(vec- 489 distFromSurface = -normSign*delta.dot(vec->normal); 505 490 506 if (distFromSurface < -surfTolerance) cont 491 if (distFromSurface < -surfTolerance) continue; 507 492 508 // 493 // 509 // phi 494 // phi 510 // c -------- d ^ 495 // c -------- d ^ 511 // | | | 496 // | | | 512 // a -------- b +---> r/z 497 // a -------- b +---> r/z 513 // 498 // 514 // 499 // 515 // Do we remain on this particular segment 500 // Do we remain on this particular segment? 516 // 501 // 517 G4ThreeVector qc = q - vec->edges[1]->corn 502 G4ThreeVector qc = q - vec->edges[1]->corner[0]; 518 G4ThreeVector qd = q - vec->edges[1]->corn 503 G4ThreeVector qd = q - vec->edges[1]->corner[1]; 519 504 520 if (normSign*qc.cross(qd).dot(v) < 0) cont 505 if (normSign*qc.cross(qd).dot(v) < 0) continue; 521 506 522 G4ThreeVector qa = q - vec->edges[0]->corn 507 G4ThreeVector qa = q - vec->edges[0]->corner[0]; 523 G4ThreeVector qb = q - vec->edges[0]->corn 508 G4ThreeVector qb = q - vec->edges[0]->corner[1]; 524 509 525 if (normSign*qa.cross(qb).dot(v) > 0) cont 510 if (normSign*qa.cross(qb).dot(v) > 0) continue; 526 511 527 // 512 // 528 // We found the one and only segment we mi 513 // We found the one and only segment we might be intersecting. 529 // Do we remain within r/z bounds? 514 // Do we remain within r/z bounds? 530 // 515 // 531 516 532 if (r[0] > 1/kInfinity && normSign*qa.cros 517 if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false; 533 if (r[1] > 1/kInfinity && normSign*qb.cros 518 if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false; 534 519 535 // 520 // 536 // We allow the face to be slightly behind 521 // We allow the face to be slightly behind the trajectory 537 // (surface tolerance) only if the point p 522 // (surface tolerance) only if the point p is within 538 // the vicinity of the face 523 // the vicinity of the face 539 // 524 // 540 if (distFromSurface < 0) 525 if (distFromSurface < 0) 541 { 526 { 542 G4ThreeVector ps = p - vec->center; 527 G4ThreeVector ps = p - vec->center; 543 528 544 G4double rz = ps.dot(vec->surfRZ); 529 G4double rz = ps.dot(vec->surfRZ); 545 if (std::fabs(rz) > lenRZ+surfTolerance) 530 if (std::fabs(rz) > lenRZ+surfTolerance) return false; 546 531 547 G4double pp = ps.dot(vec->surfPhi); 532 G4double pp = ps.dot(vec->surfPhi); 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 533 if (std::fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false; 549 } 534 } 550 535 551 536 552 // 537 // 553 // Intersection found. Return answer. 538 // Intersection found. Return answer. 554 // 539 // 555 distance = distFromSurface/dotProd; 540 distance = distFromSurface/dotProd; 556 normal = vec->normal; 541 normal = vec->normal; 557 isAllBehind = allBehind; 542 isAllBehind = allBehind; 558 return true; 543 return true; 559 } while( ++vec, ++face < numSide ); 544 } while( ++vec, ++face < numSide ); 560 545 561 // 546 // 562 // Oh well. Better luck next time. 547 // Oh well. Better luck next time. 563 // 548 // 564 return false; 549 return false; 565 } 550 } 566 551 567 // Distance << 552 568 // << 553 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 569 G4double G4PolyhedraSide::Distance( const G4Th << 570 { 554 { 571 G4double normSign = outgoing ? -1 : +1; 555 G4double normSign = outgoing ? -1 : +1; 572 556 573 // 557 // 574 // Try the closest phi segment first 558 // Try the closest phi segment first 575 // 559 // 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 560 G4int iPhi = ClosestPhiSegment( p.phi() ); 577 561 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 562 G4ThreeVector pdotc = p - vecs[iPhi].center; 579 G4double normDist = pdotc.dot(vecs[iPhi].nor 563 G4double normDist = pdotc.dot(vecs[iPhi].normal); 580 564 581 if (normSign*normDist > -0.5*kCarTolerance) 565 if (normSign*normDist > -0.5*kCarTolerance) 582 { 566 { 583 return DistanceAway( p, vecs[iPhi], &normD 567 return DistanceAway( p, vecs[iPhi], &normDist ); 584 } 568 } 585 569 586 // 570 // 587 // Now we have an interesting problem... do 571 // Now we have an interesting problem... do we try to find the 588 // closest facing side?? 572 // closest facing side?? 589 // 573 // 590 // Considered carefully, the answer is no. W 574 // Considered carefully, the answer is no. We know that if we 591 // are asking for the distance out, we are s 575 // are asking for the distance out, we are supposed to be inside, 592 // and vice versa. 576 // and vice versa. 593 // 577 // 594 578 595 return kInfinity; 579 return kInfinity; 596 } 580 } 597 581 >> 582 >> 583 // 598 // Inside 584 // Inside 599 // 585 // 600 EInside G4PolyhedraSide::Inside( const G4Three << 586 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p, 601 G4doubl 587 G4double tolerance, 602 G4doubl << 588 G4double *bestDistance ) 603 { 589 { 604 // 590 // 605 // Which phi segment is closest to this poin 591 // Which phi segment is closest to this point? 606 // 592 // 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 593 G4int iPhi = ClosestPhiSegment( p.phi() ); 608 594 609 G4double norm; 595 G4double norm; 610 596 611 // 597 // 612 // Get distance to this segment 598 // Get distance to this segment 613 // 599 // 614 *bestDistance = DistanceToOneSide( p, vecs[i 600 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 615 601 616 // 602 // 617 // Use distance along normal to decide retur 603 // Use distance along normal to decide return value 618 // 604 // 619 if ( (std::fabs(norm) > tolerance) || (*best << 605 if ( (std::fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) ) 620 return (norm < 0) ? kInside : kOutside; << 621 else << 622 return kSurface; 606 return kSurface; >> 607 else if (norm < 0) >> 608 return kInside; >> 609 else >> 610 return kOutside; 623 } 611 } 624 612 >> 613 >> 614 // 625 // Normal 615 // Normal 626 // 616 // 627 G4ThreeVector G4PolyhedraSide::Normal( const G << 617 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p, 628 G << 618 G4double *bestDistance ) 629 { 619 { 630 // 620 // 631 // Which phi segment is closest to this poin 621 // Which phi segment is closest to this point? 632 // 622 // 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 623 G4int iPhi = ClosestPhiSegment( p.phi() ); 634 624 635 // 625 // 636 // Get distance to this segment 626 // Get distance to this segment 637 // 627 // 638 G4double norm; 628 G4double norm; 639 *bestDistance = DistanceToOneSide( p, vecs[i 629 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 640 630 641 return vecs[iPhi].normal; 631 return vecs[iPhi].normal; 642 } 632 } 643 633 >> 634 >> 635 // 644 // Extent 636 // Extent 645 // 637 // 646 G4double G4PolyhedraSide::Extent( const G4Thre 638 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis ) 647 { 639 { 648 if (axis.perp2() < DBL_MIN) 640 if (axis.perp2() < DBL_MIN) 649 { 641 { 650 // 642 // 651 // Special case 643 // Special case 652 // 644 // 653 return axis.z() < 0 ? -cone->ZLo() : cone- 645 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 654 } 646 } 655 647 656 G4int iPhi, i1, i2; 648 G4int iPhi, i1, i2; 657 G4double best; 649 G4double best; 658 G4ThreeVector* list[4]; << 650 G4ThreeVector *list[4]; 659 651 660 // 652 // 661 // Which phi segment, if any, does the axis 653 // Which phi segment, if any, does the axis belong to 662 // 654 // 663 iPhi = PhiSegment( GetPhi(axis) ); << 655 iPhi = PhiSegment( axis.phi() ); 664 656 665 if (iPhi < 0) 657 if (iPhi < 0) 666 { 658 { 667 // 659 // 668 // No phi segment? Check front edge of fir 660 // No phi segment? Check front edge of first side and 669 // last edge of second side 661 // last edge of second side 670 // 662 // 671 i1 = 0; i2 = numSide-1; 663 i1 = 0; i2 = numSide-1; 672 } 664 } 673 else 665 else 674 { 666 { 675 // 667 // 676 // Check all corners of matching phi side 668 // Check all corners of matching phi side 677 // 669 // 678 i1 = iPhi; i2 = iPhi; 670 i1 = iPhi; i2 = iPhi; 679 } 671 } 680 672 681 list[0] = vecs[i1].edges[0]->corner; 673 list[0] = vecs[i1].edges[0]->corner; 682 list[1] = vecs[i1].edges[0]->corner+1; 674 list[1] = vecs[i1].edges[0]->corner+1; 683 list[2] = vecs[i2].edges[1]->corner; 675 list[2] = vecs[i2].edges[1]->corner; 684 list[3] = vecs[i2].edges[1]->corner+1; 676 list[3] = vecs[i2].edges[1]->corner+1; 685 677 686 // 678 // 687 // Who's biggest? 679 // Who's biggest? 688 // 680 // 689 best = -kInfinity; 681 best = -kInfinity; 690 G4ThreeVector** vec = list; << 682 G4ThreeVector **vec = list; 691 do // Loop checking, 13.08.2015, G.Cosmo << 683 do 692 { 684 { 693 G4double answer = (*vec)->dot(axis); 685 G4double answer = (*vec)->dot(axis); 694 if (answer > best) best = answer; 686 if (answer > best) best = answer; 695 } while( ++vec < list+4 ); 687 } while( ++vec < list+4 ); 696 688 697 return best; 689 return best; 698 } 690 } 699 691 >> 692 >> 693 // 700 // CalculateExtent 694 // CalculateExtent 701 // 695 // 702 // See notes in G4VCSGface 696 // See notes in G4VCSGface 703 // 697 // 704 void G4PolyhedraSide::CalculateExtent( const E 698 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 705 const G << 699 const G4VoxelLimits &voxelLimit, 706 const G << 700 const G4AffineTransform &transform, 707 G << 701 G4SolidExtentList &extentList ) 708 { 702 { 709 // 703 // 710 // Loop over all sides 704 // Loop over all sides 711 // 705 // 712 G4PolyhedraSideVec *vec = vecs; 706 G4PolyhedraSideVec *vec = vecs; 713 do // Loop checking, 13.08.2015, G.Cosmo << 707 do 714 { 708 { 715 // 709 // 716 // Fill our polygon with the four corners 710 // Fill our polygon with the four corners of 717 // this side, after the specified transfor 711 // this side, after the specified transformation 718 // 712 // 719 G4ClippablePolygon polygon; 713 G4ClippablePolygon polygon; 720 714 721 polygon.AddVertexInOrder(transform. 715 polygon.AddVertexInOrder(transform. 722 TransformPoint(ve 716 TransformPoint(vec->edges[0]->corner[0])); 723 polygon.AddVertexInOrder(transform. 717 polygon.AddVertexInOrder(transform. 724 TransformPoint(ve 718 TransformPoint(vec->edges[0]->corner[1])); 725 polygon.AddVertexInOrder(transform. 719 polygon.AddVertexInOrder(transform. 726 TransformPoint(ve 720 TransformPoint(vec->edges[1]->corner[1])); 727 polygon.AddVertexInOrder(transform. 721 polygon.AddVertexInOrder(transform. 728 TransformPoint(ve 722 TransformPoint(vec->edges[1]->corner[0])); 729 723 730 // 724 // 731 // Get extent 725 // Get extent 732 // 726 // 733 if (polygon.PartialClip( voxelLimit, axis 727 if (polygon.PartialClip( voxelLimit, axis )) 734 { 728 { 735 // 729 // 736 // Get dot product of normal along targe 730 // Get dot product of normal along target axis 737 // 731 // 738 polygon.SetNormal( transform.TransformAx 732 polygon.SetNormal( transform.TransformAxis(vec->normal) ); 739 733 740 extentList.AddSurface( polygon ); 734 extentList.AddSurface( polygon ); 741 } 735 } 742 } while( ++vec < vecs+numSide ); 736 } while( ++vec < vecs+numSide ); 743 737 744 return; 738 return; 745 } 739 } 746 740 >> 741 >> 742 // 747 // IntersectSidePlane 743 // IntersectSidePlane 748 // 744 // 749 // Decide if a line correctly intersects one s 745 // Decide if a line correctly intersects one side plane of our segment. 750 // It is assumed that the correct side has bee 746 // It is assumed that the correct side has been chosen, and thus only 751 // the z bounds (of the entire segment) are ch 747 // the z bounds (of the entire segment) are checked. 752 // 748 // 753 // normSign - To be multiplied against normal: 749 // normSign - To be multiplied against normal: 754 // = +1.0 normal is unchanged 750 // = +1.0 normal is unchanged 755 // = -1.0 normal is reversed (now p 751 // = -1.0 normal is reversed (now points inward) 756 // 752 // 757 // Arguments: 753 // Arguments: 758 // p - (in) Point 754 // p - (in) Point 759 // v - (in) Direction 755 // v - (in) Direction 760 // vec - (in) Description record of the si 756 // vec - (in) Description record of the side plane 761 // normSign - (in) Sign (+/- 1) to apply to 757 // normSign - (in) Sign (+/- 1) to apply to normal 762 // surfTolerance - (in) Surface tolerance (g 758 // surfTolerance - (in) Surface tolerance (generally > 0, see below) 763 // distance - (out) Distance along v to inte 759 // distance - (out) Distance along v to intersection 764 // distFromSurface - (out) Distance from surf 760 // distFromSurface - (out) Distance from surface normal 765 // 761 // 766 // Notes: 762 // Notes: 767 // surfTolerance - Used to decide if a poin 763 // surfTolerance - Used to decide if a point is behind the surface, 768 // a point is allow to be -surfToleranc 764 // a point is allow to be -surfTolerance behind the 769 // surface (as measured along the norma 765 // surface (as measured along the normal), but *only* 770 // if the point is within the r/z bound 766 // if the point is within the r/z bounds + surfTolerance 771 // of the segment. 767 // of the segment. 772 // 768 // 773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 769 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p, 774 co << 770 const G4ThreeVector &v, 775 co << 771 const G4PolyhedraSideVec vec, 776 772 G4double normSign, 777 773 G4double surfTolerance, 778 << 774 G4double &distance, 779 << 775 G4double &distFromSurface ) 780 { 776 { 781 // 777 // 782 // Correct normal? Here we have straight sid 778 // Correct normal? Here we have straight sides, and can safely ignore 783 // intersections where the dot product with 779 // intersections where the dot product with the normal is zero. 784 // 780 // 785 G4double dotProd = normSign*v.dot(vec.normal 781 G4double dotProd = normSign*v.dot(vec.normal); 786 782 787 if (dotProd <= 0) return false; 783 if (dotProd <= 0) return false; 788 784 789 // 785 // 790 // Calculate distance to surface. If the sid 786 // Calculate distance to surface. If the side is too far 791 // behind the point, we must reject it. 787 // behind the point, we must reject it. 792 // 788 // 793 G4ThreeVector delta = p - vec.center; 789 G4ThreeVector delta = p - vec.center; 794 distFromSurface = -normSign*delta.dot(vec.no 790 distFromSurface = -normSign*delta.dot(vec.normal); 795 791 796 if (distFromSurface < -surfTolerance) return 792 if (distFromSurface < -surfTolerance) return false; 797 793 798 // 794 // 799 // Calculate precise distance to intersectio 795 // Calculate precise distance to intersection with the side 800 // (along the trajectory, not normal to the 796 // (along the trajectory, not normal to the surface) 801 // 797 // 802 distance = distFromSurface/dotProd; 798 distance = distFromSurface/dotProd; 803 799 804 // 800 // 805 // Do we fall off the r/z extent of the segm 801 // Do we fall off the r/z extent of the segment? 806 // 802 // 807 // Calculate this very, very carefully! Why? 803 // Calculate this very, very carefully! Why? 808 // 1. If a RZ end is at R=0, you can 804 // 1. If a RZ end is at R=0, you can't miss! 809 // 2. If you just fall off in RZ, th 805 // 2. If you just fall off in RZ, the answer must 810 // be consistent with adjacent G4 806 // be consistent with adjacent G4PolyhedraSide faces. 811 // (2) implies that only variables used by o 807 // (2) implies that only variables used by other G4PolyhedraSide 812 // faces may be used, which includes only: p 808 // faces may be used, which includes only: p, v, and the edge corners. 813 // It also means that one side is a ">" or " 809 // It also means that one side is a ">" or "<", which the other 814 // must be ">=" or "<=". Fortunately, this i 810 // must be ">=" or "<=". Fortunately, this isn't a new problem. 815 // The solution below I borrowed from Joseph 811 // The solution below I borrowed from Joseph O'Rourke, 816 // "Computational Geometry in C (Second Edit 812 // "Computational Geometry in C (Second Edition)" 817 // See: http://cs.smith.edu/~orourke/ 813 // See: http://cs.smith.edu/~orourke/ 818 // 814 // 819 G4ThreeVector ic = p + distance*v - vec.cent 815 G4ThreeVector ic = p + distance*v - vec.center; 820 G4double atRZ = vec.surfRZ.dot(ic); 816 G4double atRZ = vec.surfRZ.dot(ic); 821 817 822 if (atRZ < 0) 818 if (atRZ < 0) 823 { 819 { 824 if (r[0]==0) return true; // Can't miss 820 if (r[0]==0) return true; // Can't miss! 825 821 826 if (atRZ < -lenRZ*1.2) return false; // F 822 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile. 827 823 828 G4ThreeVector q = p + v; 824 G4ThreeVector q = p + v; 829 G4ThreeVector qa = q - vec.edges[0]->corne 825 G4ThreeVector qa = q - vec.edges[0]->corner[0], 830 qb = q - vec.edges[1]->corne 826 qb = q - vec.edges[1]->corner[0]; 831 G4ThreeVector qacb = qa.cross(qb); 827 G4ThreeVector qacb = qa.cross(qb); 832 if (normSign*qacb.dot(v) < 0) return false 828 if (normSign*qacb.dot(v) < 0) return false; 833 829 834 if (distFromSurface < 0) 830 if (distFromSurface < 0) 835 { 831 { 836 if (atRZ < -lenRZ-surfTolerance) return 832 if (atRZ < -lenRZ-surfTolerance) return false; 837 } 833 } 838 } 834 } 839 else if (atRZ > 0) 835 else if (atRZ > 0) 840 { 836 { 841 if (r[1]==0) return true; // Can't miss 837 if (r[1]==0) return true; // Can't miss! 842 838 843 if (atRZ > lenRZ*1.2) return false; // Mi 839 if (atRZ > lenRZ*1.2) return false; // Missed by a mile 844 840 845 G4ThreeVector q = p + v; 841 G4ThreeVector q = p + v; 846 G4ThreeVector qa = q - vec.edges[0]->corne 842 G4ThreeVector qa = q - vec.edges[0]->corner[1], 847 qb = q - vec.edges[1]->corne 843 qb = q - vec.edges[1]->corner[1]; 848 G4ThreeVector qacb = qa.cross(qb); 844 G4ThreeVector qacb = qa.cross(qb); 849 if (normSign*qacb.dot(v) >= 0) return fals 845 if (normSign*qacb.dot(v) >= 0) return false; 850 846 851 if (distFromSurface < 0) 847 if (distFromSurface < 0) 852 { 848 { 853 if (atRZ > lenRZ+surfTolerance) return f 849 if (atRZ > lenRZ+surfTolerance) return false; 854 } 850 } 855 } 851 } 856 852 857 return true; 853 return true; 858 } 854 } 859 855 >> 856 >> 857 // 860 // LineHitsSegments 858 // LineHitsSegments 861 // 859 // 862 // Calculate which phi segments a line interse 860 // Calculate which phi segments a line intersects in three dimensions. 863 // No check is made as to whether the intersec 861 // No check is made as to whether the intersections are within the z bounds of 864 // the segment. 862 // the segment. 865 // 863 // 866 G4int G4PolyhedraSide::LineHitsSegments( const << 864 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p, 867 const << 865 const G4ThreeVector &v, 868 << 866 G4int *i1, G4int *i2 ) 869 { 867 { 870 G4double s1, s2; 868 G4double s1, s2; 871 // 869 // 872 // First, decide if and where the line inter 870 // First, decide if and where the line intersects the cone 873 // 871 // 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 872 G4int n = cone->LineHitsCone( p, v, &s1, &s2 ); 875 873 876 if (n==0) return 0; 874 if (n==0) return 0; 877 875 878 // 876 // 879 // Try first intersection. 877 // Try first intersection. 880 // 878 // 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y 879 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) ); 882 if (n==1) 880 if (n==1) 883 { 881 { 884 return (*i1 < 0) ? 0 : 1; 882 return (*i1 < 0) ? 0 : 1; 885 } 883 } 886 884 887 // 885 // 888 // Try second intersection 886 // Try second intersection 889 // 887 // 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y 888 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) ); 891 if (*i1 == *i2) return 0; 889 if (*i1 == *i2) return 0; 892 890 893 if (*i1 < 0) 891 if (*i1 < 0) 894 { 892 { 895 if (*i2 < 0) return 0; 893 if (*i2 < 0) return 0; 896 *i1 = *i2; 894 *i1 = *i2; 897 return 1; 895 return 1; 898 } 896 } 899 897 900 if (*i2 < 0) return 1; 898 if (*i2 < 0) return 1; 901 899 902 return 2; 900 return 2; 903 } 901 } 904 902 >> 903 >> 904 // 905 // ClosestPhiSegment 905 // ClosestPhiSegment 906 // 906 // 907 // Decide which phi segment is closest in phi 907 // Decide which phi segment is closest in phi to the point. 908 // The result is the same as PhiSegment if the 908 // The result is the same as PhiSegment if there is no phi opening. 909 // 909 // 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 ) 911 { 911 { 912 G4int iPhi = PhiSegment( phi0 ); 912 G4int iPhi = PhiSegment( phi0 ); 913 if (iPhi >= 0) return iPhi; 913 if (iPhi >= 0) return iPhi; 914 914 915 // 915 // 916 // Boogers! The points falls inside the phi 916 // Boogers! The points falls inside the phi segment. 917 // Look for the closest point: the start, or 917 // Look for the closest point: the start, or end 918 // 918 // 919 G4double phi = phi0; 919 G4double phi = phi0; 920 920 921 while( phi < startPhi ) // Loop checking, << 921 while( phi < startPhi ) phi += twopi; 922 phi += twopi; << 923 G4double d1 = phi-endPhi; 922 G4double d1 = phi-endPhi; 924 923 925 while( phi > startPhi ) // Loop checking, << 924 while( phi > startPhi ) phi -= twopi; 926 phi -= twopi; << 927 G4double d2 = startPhi-phi; 925 G4double d2 = startPhi-phi; 928 926 929 return (d2 < d1) ? 0 : numSide-1; 927 return (d2 < d1) ? 0 : numSide-1; 930 } 928 } 931 929 >> 930 >> 931 // 932 // PhiSegment 932 // PhiSegment 933 // 933 // 934 // Decide which phi segment an angle belongs t 934 // Decide which phi segment an angle belongs to, counting from zero. 935 // A value of -1 indicates that the phi value 935 // A value of -1 indicates that the phi value is outside the shape 936 // (only possible if phiTotal < 360 degrees). 936 // (only possible if phiTotal < 360 degrees). 937 // 937 // 938 G4int G4PolyhedraSide::PhiSegment( G4double ph 938 G4int G4PolyhedraSide::PhiSegment( G4double phi0 ) 939 { 939 { 940 // 940 // 941 // How far are we from phiStart? Come up wit 941 // How far are we from phiStart? Come up with a positive answer 942 // that is less than 2*PI 942 // that is less than 2*PI 943 // 943 // 944 G4double phi = phi0 - startPhi; 944 G4double phi = phi0 - startPhi; 945 while( phi < 0 ) // Loop checking, 13.08. << 945 while( phi < 0 ) phi += twopi; 946 phi += twopi; << 946 while( phi > twopi ) phi -= twopi; 947 while( phi > twopi ) // Loop checking, 13 << 948 phi -= twopi; << 949 947 950 // 948 // 951 // Divide 949 // Divide 952 // 950 // 953 auto answer = (G4int)(phi/deltaPhi); << 951 G4int answer = (G4int)(phi/deltaPhi); 954 952 955 if (answer >= numSide) 953 if (answer >= numSide) 956 { 954 { 957 if (phiIsOpen) 955 if (phiIsOpen) 958 { 956 { 959 return -1; // Looks like we missed 957 return -1; // Looks like we missed 960 } 958 } 961 else 959 else 962 { 960 { 963 answer = numSide-1; // Probably just ro 961 answer = numSide-1; // Probably just roundoff 964 } 962 } 965 } 963 } 966 964 967 return answer; 965 return answer; 968 } 966 } 969 967 970 // GetPhi << 971 // << 972 // Calculate Phi for a given 3-vector (point), << 973 // same point, in the attempt to avoid consecu << 974 // quantity << 975 // << 976 G4double G4PolyhedraSide::GetPhi( const G4Thre << 977 { << 978 G4double val=0.; << 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 980 << 981 if (vphi != p) << 982 { << 983 val = p.phi(); << 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); << 985 G4MT_phphik = val; << 986 } << 987 else << 988 { << 989 val = G4MT_phphik; << 990 } << 991 return val; << 992 } << 993 968 >> 969 // 994 // DistanceToOneSide 970 // DistanceToOneSide 995 // 971 // 996 // Arguments: 972 // Arguments: 997 // p - (in) Point to check 973 // p - (in) Point to check 998 // vec - (in) vector set of this side 974 // vec - (in) vector set of this side 999 // normDist - (out) distance normal to the si 975 // normDist - (out) distance normal to the side or edge, as appropriate, signed 1000 // Return value = total distance from the sid 976 // Return value = total distance from the side 1001 // 977 // 1002 G4double G4PolyhedraSide::DistanceToOneSide( << 978 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p, 1003 << 979 const G4PolyhedraSideVec &vec, 1004 << 980 G4double *normDist ) 1005 { 981 { 1006 G4ThreeVector pct = p - vec.center; << 982 G4ThreeVector pc = p - vec.center; 1007 983 1008 // 984 // 1009 // Get normal distance 985 // Get normal distance 1010 // 986 // 1011 *normDist = vec.normal.dot(pct); << 987 *normDist = vec.normal.dot(pc); 1012 988 1013 // 989 // 1014 // Add edge penalty 990 // Add edge penalty 1015 // 991 // 1016 return DistanceAway( p, vec, normDist ); 992 return DistanceAway( p, vec, normDist ); 1017 } 993 } 1018 994 >> 995 >> 996 // 1019 // DistanceAway 997 // DistanceAway 1020 // 998 // 1021 // Add distance from side edges, if necessary << 999 // Add distance from side edges, if necesssary, to total distance, 1022 // and updates normDist appropriate depending 1000 // and updates normDist appropriate depending on edge normals. 1023 // 1001 // 1024 G4double G4PolyhedraSide::DistanceAway( const << 1002 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p, 1025 const << 1003 const G4PolyhedraSideVec &vec, 1026 << 1004 G4double *normDist ) 1027 { 1005 { 1028 G4double distOut2; 1006 G4double distOut2; 1029 G4ThreeVector pct = p - vec.center; << 1007 G4ThreeVector pc = p - vec.center; 1030 G4double distFaceNorm = *normDist; 1008 G4double distFaceNorm = *normDist; 1031 1009 1032 // 1010 // 1033 // Okay, are we inside bounds? 1011 // Okay, are we inside bounds? 1034 // 1012 // 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); << 1013 G4double pcDotRZ = pc.dot(vec.surfRZ); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); << 1014 G4double pcDotPhi = pc.dot(vec.surfPhi); 1037 1015 1038 // 1016 // 1039 // Go through all permutations. 1017 // Go through all permutations. 1040 // 1018 // Phi 1041 // | | 1019 // | | ^ 1042 // B | H | E 1020 // B | H | E | 1043 // ------[1]------------[3]----- 1021 // ------[1]------------[3]----- | 1044 // |XXXXXXXXXXXXXX| 1022 // |XXXXXXXXXXXXXX| +----> RZ 1045 // C |XXXXXXXXXXXXXX| F 1023 // C |XXXXXXXXXXXXXX| F 1046 // |XXXXXXXXXXXXXX| 1024 // |XXXXXXXXXXXXXX| 1047 // ------[0]------------[2]---- 1025 // ------[0]------------[2]---- 1048 // A | G | D 1026 // A | G | D 1049 // | | 1027 // | | 1050 // 1028 // 1051 // It's real messy, but at least it's quick 1029 // It's real messy, but at least it's quick 1052 // 1030 // 1053 1031 1054 if (pcDotRZ < -lenRZ) 1032 if (pcDotRZ < -lenRZ) 1055 { 1033 { 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenP 1034 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1]; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1035 G4double distOutZ = pcDotRZ+lenRZ; 1058 // 1036 // 1059 // Below in RZ 1037 // Below in RZ 1060 // 1038 // 1061 if (pcDotPhi < -lenPhiZ) 1039 if (pcDotPhi < -lenPhiZ) 1062 { 1040 { 1063 // 1041 // 1064 // ...and below in phi. Find distance t 1042 // ...and below in phi. Find distance to point (A) 1065 // 1043 // 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1044 G4double distOutPhi = pcDotPhi+lenPhiZ; 1067 distOut2 = distOutPhi*distOutPhi + dist 1045 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1068 G4ThreeVector pa = p - vec.edges[0]->co 1046 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1069 *normDist = pa.dot(vec.edges[0]->cornNo 1047 *normDist = pa.dot(vec.edges[0]->cornNorm[0]); 1070 } 1048 } 1071 else if (pcDotPhi > lenPhiZ) 1049 else if (pcDotPhi > lenPhiZ) 1072 { 1050 { 1073 // 1051 // 1074 // ...and above in phi. Find distance t 1052 // ...and above in phi. Find distance to point (B) 1075 // 1053 // 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1054 G4double distOutPhi = pcDotPhi-lenPhiZ; 1077 distOut2 = distOutPhi*distOutPhi + dist 1055 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1078 G4ThreeVector pb = p - vec.edges[1]->co 1056 G4ThreeVector pb = p - vec.edges[1]->corner[0]; 1079 *normDist = pb.dot(vec.edges[1]->cornNo 1057 *normDist = pb.dot(vec.edges[1]->cornNorm[0]); 1080 } 1058 } 1081 else 1059 else 1082 { 1060 { 1083 // 1061 // 1084 // ...and inside in phi. Find distance 1062 // ...and inside in phi. Find distance to line (C) 1085 // 1063 // 1086 G4ThreeVector pa = p - vec.edges[0]->co 1064 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1087 distOut2 = distOutZ*distOutZ; 1065 distOut2 = distOutZ*distOutZ; 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1066 *normDist = pa.dot(vec.edgeNorm[0]); 1089 } 1067 } 1090 } 1068 } 1091 else if (pcDotRZ > lenRZ) 1069 else if (pcDotRZ > lenRZ) 1092 { 1070 { 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenP 1071 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1]; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1072 G4double distOutZ = pcDotRZ-lenRZ; 1095 // 1073 // 1096 // Above in RZ 1074 // Above in RZ 1097 // 1075 // 1098 if (pcDotPhi < -lenPhiZ) 1076 if (pcDotPhi < -lenPhiZ) 1099 { 1077 { 1100 // 1078 // 1101 // ...and below in phi. Find distance t 1079 // ...and below in phi. Find distance to point (D) 1102 // 1080 // 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1081 G4double distOutPhi = pcDotPhi+lenPhiZ; 1104 distOut2 = distOutPhi*distOutPhi + dist 1082 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1105 G4ThreeVector pd = p - vec.edges[0]->co 1083 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1106 *normDist = pd.dot(vec.edges[0]->cornNo 1084 *normDist = pd.dot(vec.edges[0]->cornNorm[1]); 1107 } 1085 } 1108 else if (pcDotPhi > lenPhiZ) 1086 else if (pcDotPhi > lenPhiZ) 1109 { 1087 { 1110 // 1088 // 1111 // ...and above in phi. Find distance t 1089 // ...and above in phi. Find distance to point (E) 1112 // 1090 // 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1091 G4double distOutPhi = pcDotPhi-lenPhiZ; 1114 distOut2 = distOutPhi*distOutPhi + dist 1092 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1115 G4ThreeVector pe = p - vec.edges[1]->co 1093 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1116 *normDist = pe.dot(vec.edges[1]->cornNo 1094 *normDist = pe.dot(vec.edges[1]->cornNorm[1]); 1117 } 1095 } 1118 else 1096 else 1119 { 1097 { 1120 // 1098 // 1121 // ...and inside in phi. Find distance 1099 // ...and inside in phi. Find distance to line (F) 1122 // 1100 // 1123 distOut2 = distOutZ*distOutZ; 1101 distOut2 = distOutZ*distOutZ; 1124 G4ThreeVector pd = p - vec.edges[0]->co 1102 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1103 *normDist = pd.dot(vec.edgeNorm[1]); 1126 } 1104 } 1127 } 1105 } 1128 else 1106 else 1129 { 1107 { 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*le 1108 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1]; 1131 // 1109 // 1132 // We are inside RZ bounds 1110 // We are inside RZ bounds 1133 // 1111 // 1134 if (pcDotPhi < -lenPhiZ) 1112 if (pcDotPhi < -lenPhiZ) 1135 { 1113 { 1136 // 1114 // 1137 // ...and below in phi. Find distance t 1115 // ...and below in phi. Find distance to line (G) 1138 // 1116 // 1139 G4double distOut = edgeNorm*(pcDotPhi+l 1117 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ); 1140 distOut2 = distOut*distOut; 1118 distOut2 = distOut*distOut; 1141 G4ThreeVector pd = p - vec.edges[0]->co 1119 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1142 *normDist = pd.dot(vec.edges[0]->normal 1120 *normDist = pd.dot(vec.edges[0]->normal); 1143 } 1121 } 1144 else if (pcDotPhi > lenPhiZ) 1122 else if (pcDotPhi > lenPhiZ) 1145 { 1123 { 1146 // 1124 // 1147 // ...and above in phi. Find distance t 1125 // ...and above in phi. Find distance to line (H) 1148 // 1126 // 1149 G4double distOut = edgeNorm*(pcDotPhi-l 1127 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ); 1150 distOut2 = distOut*distOut; 1128 distOut2 = distOut*distOut; 1151 G4ThreeVector pe = p - vec.edges[1]->co 1129 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1152 *normDist = pe.dot(vec.edges[1]->normal 1130 *normDist = pe.dot(vec.edges[1]->normal); 1153 } 1131 } 1154 else 1132 else 1155 { 1133 { 1156 // 1134 // 1157 // Inside bounds! No penalty. 1135 // Inside bounds! No penalty. 1158 // 1136 // 1159 return std::fabs(distFaceNorm); 1137 return std::fabs(distFaceNorm); 1160 } 1138 } 1161 } 1139 } 1162 return std::sqrt( distFaceNorm*distFaceNorm 1140 return std::sqrt( distFaceNorm*distFaceNorm + distOut2 ); 1163 } << 1164 << 1165 // Calculation of surface area of a triangle. << 1166 // At the same time a random point in the tri << 1167 // << 1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1169 co << 1170 co << 1171 G4 << 1172 { << 1173 G4ThreeVector v, w; << 1174 << 1175 v = p3 - p1; << 1176 w = p1 - p2; << 1177 G4double lambda1 = G4UniformRand(); << 1178 G4double lambda2 = lambda1*G4UniformRand(); << 1179 << 1180 *p4=p2 + lambda1*w + lambda2*v; << 1181 return 0.5*(v.cross(w)).mag(); << 1182 } << 1183 << 1184 // GetPointOnPlane << 1185 // << 1186 // Auxiliary method for GetPointOnSurface() << 1187 // << 1188 G4ThreeVector << 1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1190 const G4Thr << 1191 G4double* A << 1192 { << 1193 G4double chose,aOne,aTwo; << 1194 G4ThreeVector point1,point2; << 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); << 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); << 1197 *Area= aOne+aTwo; << 1198 << 1199 chose = G4UniformRand()*(aOne+aTwo); << 1200 if( (chose>=0.) && (chose < aOne) ) << 1201 { << 1202 return (point1); << 1203 } << 1204 return (point2); << 1205 } << 1206 << 1207 // SurfaceArea() << 1208 // << 1209 G4double G4PolyhedraSide::SurfaceArea() << 1210 { << 1211 if( fSurfaceArea==0. ) << 1212 { << 1213 // Define the variables << 1214 // << 1215 G4double area,areas; << 1216 G4ThreeVector point1; << 1217 G4ThreeVector v1,v2,v3,v4; << 1218 G4PolyhedraSideVec* vec = vecs; << 1219 areas=0.; << 1220 << 1221 // Do a loop on all SideEdge << 1222 // << 1223 do // Loop checking, 13.08.2015, G.Cos << 1224 { << 1225 // Define 4points for a Plane or Triang << 1226 // << 1227 v1=vec->edges[0]->corner[0]; << 1228 v2=vec->edges[0]->corner[1]; << 1229 v3=vec->edges[1]->corner[1]; << 1230 v4=vec->edges[1]->corner[0]; << 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&are << 1232 areas+=area; << 1233 } while( ++vec < vecs + numSide); << 1234 << 1235 fSurfaceArea=areas; << 1236 } << 1237 return fSurfaceArea; << 1238 } << 1239 << 1240 // GetPointOnFace() << 1241 // << 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace << 1243 { << 1244 // Define the variables << 1245 // << 1246 std::vector<G4double>areas; << 1247 std::vector<G4ThreeVector>points; << 1248 G4double area=0.; << 1249 G4double result1; << 1250 G4ThreeVector point1; << 1251 G4ThreeVector v1,v2,v3,v4; << 1252 G4PolyhedraSideVec* vec = vecs; << 1253 << 1254 // Do a loop on all SideEdge << 1255 // << 1256 do // Loop checking, 13.08.2015, G.Cosmo << 1257 { << 1258 // Define 4points for a Plane or Triangle << 1259 // << 1260 v1=vec->edges[0]->corner[0]; << 1261 v2=vec->edges[0]->corner[1]; << 1262 v3=vec->edges[1]->corner[1]; << 1263 v4=vec->edges[1]->corner[0]; << 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&resul << 1265 points.push_back(point1); << 1266 areas.push_back(result1); << 1267 area+=result1; << 1268 } while( ++vec < vecs+numSide ); << 1269 << 1270 // Choose randomly one of the surfaces and << 1271 // << 1272 G4double chose = area*G4UniformRand(); << 1273 G4double Achose1=0., Achose2=0.; << 1274 G4int i=0; << 1275 do // Loop checking, 13.08.2015, G.Cosmo << 1276 { << 1277 Achose2+=areas[i]; << 1278 if(chose>=Achose1 && chose<Achose2) << 1279 { << 1280 point1=points[i] ; break; << 1281 } << 1282 ++i; Achose1=Achose2; << 1283 } while( i<numSide ); << 1284 << 1285 return point1; << 1286 } 1141 } 1287 1142