Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // Implementation of G4PolyhedraSide, the face << 27 // one segmented side of a Polyhedra << 28 // 23 // 29 // Author: David C. Williams (davidw@scipp.ucs << 24 // $Id: G4PolyhedraSide.cc,v 1.5 2002/10/28 11:47:53 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-05-00 $ >> 26 // >> 27 // >> 28 // -------------------------------------------------------------------- >> 29 // GEANT 4 class source file >> 30 // >> 31 // >> 32 // G4PolyhedraSide.cc >> 33 // >> 34 // Implemenation of the face representing one segmented side of a Polyhedra >> 35 // 30 // ------------------------------------------- 36 // -------------------------------------------------------------------- 31 37 32 #include "G4PolyhedraSide.hh" 38 #include "G4PolyhedraSide.hh" 33 #include "G4PhysicalConstants.hh" << 34 #include "G4IntersectingCone.hh" 39 #include "G4IntersectingCone.hh" 35 #include "G4ClippablePolygon.hh" 40 #include "G4ClippablePolygon.hh" 36 #include "G4AffineTransform.hh" 41 #include "G4AffineTransform.hh" 37 #include "G4SolidExtentList.hh" 42 #include "G4SolidExtentList.hh" 38 #include "G4GeometryTolerance.hh" << 39 << 40 #include "Randomize.hh" << 41 43 42 // This new field helps to use the class G4PhS << 43 // 44 // 44 G4PhSideManager G4PolyhedraSide::subInstanceMa << 45 << 46 // This macro changes the references to fields << 47 // in the class G4PhSideData. << 48 // << 49 #define G4MT_phphix ((subInstanceManager.offse << 50 #define G4MT_phphiy ((subInstanceManager.offse << 51 #define G4MT_phphiz ((subInstanceManager.offse << 52 #define G4MT_phphik ((subInstanceManager.offse << 53 << 54 // Returns the private data instance manager. << 55 // << 56 const G4PhSideManager& G4PolyhedraSide::GetSub << 57 { << 58 return subInstanceManager; << 59 } << 60 << 61 // Constructor 45 // Constructor 62 // 46 // 63 // Values for r1,z1 and r2,z2 should be specif 47 // Values for r1,z1 and r2,z2 should be specified in clockwise 64 // order in (r,z). 48 // order in (r,z). 65 // 49 // 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 50 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ *prevRZ, 67 const G4Poly << 51 const G4PolyhedraSideRZ *tail, 68 const G4Poly << 52 const G4PolyhedraSideRZ *head, 69 const G4Poly << 53 const G4PolyhedraSideRZ *nextRZ, 70 G4int 54 G4int theNumSide, 71 G4doub 55 G4double thePhiStart, 72 G4doub 56 G4double thePhiTotal, 73 G4bool 57 G4bool thePhiIsOpen, 74 G4bool 58 G4bool isAllBehind ) 75 { 59 { 76 << 77 instanceID = subInstanceManager.CreateSubIns << 78 << 79 kCarTolerance = G4GeometryTolerance::GetInst << 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p << 81 G4MT_phphik = 0.0; << 82 << 83 // 60 // 84 // Record values 61 // Record values 85 // 62 // 86 r[0] = tail->r; z[0] = tail->z; 63 r[0] = tail->r; z[0] = tail->z; 87 r[1] = head->r; z[1] = head->z; 64 r[1] = head->r; z[1] = head->z; 88 65 89 G4double phiTotal; 66 G4double phiTotal; 90 67 91 // 68 // 92 // Set phi to our convention 69 // Set phi to our convention 93 // 70 // 94 startPhi = thePhiStart; 71 startPhi = thePhiStart; 95 while (startPhi < 0.0) // Loop checking, << 72 while (startPhi < 0.0) startPhi += 2.0*M_PI; 96 startPhi += twopi; << 97 73 98 phiIsOpen = thePhiIsOpen; 74 phiIsOpen = thePhiIsOpen; 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi << 75 phiTotal = (phiIsOpen) ? thePhiTotal : 2*M_PI; 100 76 101 allBehind = isAllBehind; 77 allBehind = isAllBehind; 102 78 103 // 79 // 104 // Make our intersecting cone 80 // Make our intersecting cone 105 // 81 // 106 cone = new G4IntersectingCone( r, z ); 82 cone = new G4IntersectingCone( r, z ); 107 83 108 // 84 // 109 // Construct side plane vector set 85 // Construct side plane vector set 110 // 86 // 111 numSide = theNumSide>0 ? theNumSide : 1; << 87 numSide = theNumSide; 112 deltaPhi = phiTotal/numSide; << 88 deltaPhi = phiTotal/theNumSide; 113 endPhi = startPhi+phiTotal; 89 endPhi = startPhi+phiTotal; 114 << 90 115 const std::size_t maxSides = numSide; << 91 vecs = new G4PolyhedraSideVec[numSide]; 116 vecs = new G4PolyhedraSideVec[maxSides]; << 92 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? << 93 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide]; 118 94 119 // 95 // 120 // ...this is where we start 96 // ...this is where we start 121 // 97 // 122 G4double phi = startPhi; 98 G4double phi = startPhi; 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s << 99 G4ThreeVector a1( r[0]*cos(phi), r[0]*sin(phi), z[0] ), 124 b1( r[1]*std::cos(phi), r[1]*std::si << 100 b1( r[1]*cos(phi), r[1]*sin(phi), z[1] ), 125 c1( prevRZ->r*std::cos(phi), prevRZ- << 101 c1( prevRZ->r*cos(phi), prevRZ->r*sin(phi), prevRZ->z ), 126 d1( nextRZ->r*std::cos(phi), nextRZ- << 102 d1( nextRZ->r*cos(phi), nextRZ->r*sin(phi), nextRZ->z ), 127 a2, b2, c2, d2; 103 a2, b2, c2, d2; 128 G4PolyhedraSideEdge *edge = edges; 104 G4PolyhedraSideEdge *edge = edges; 129 105 130 G4PolyhedraSideVec *vec = vecs; 106 G4PolyhedraSideVec *vec = vecs; 131 do // Loop checking, 13.08.2015, G.Cosmo << 107 do 132 { 108 { 133 // 109 // 134 // ...this is where we are going 110 // ...this is where we are going 135 // 111 // 136 phi += deltaPhi; 112 phi += deltaPhi; 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[ << 113 a2 = G4ThreeVector( r[0]*cos(phi), r[0]*sin(phi), z[0] ); 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[ << 114 b2 = G4ThreeVector( r[1]*cos(phi), r[1]*sin(phi), z[1] ); 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi << 115 c2 = G4ThreeVector( prevRZ->r*cos(phi), prevRZ->r*sin(phi), prevRZ->z ); 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi << 116 d2 = G4ThreeVector( nextRZ->r*cos(phi), nextRZ->r*sin(phi), nextRZ->z ); 141 117 142 G4ThreeVector tt; 118 G4ThreeVector tt; 143 119 144 // 120 // 145 // ...build some relevant vectors. 121 // ...build some relevant vectors. 146 // the point is to sacrifice a little m 122 // the point is to sacrifice a little memory with precalcs 147 // to gain speed 123 // to gain speed 148 // 124 // 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 125 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 150 126 151 tt = b2 + b1 - a2 - a1; 127 tt = b2 + b1 - a2 - a1; 152 vec->surfRZ = tt.unit(); 128 vec->surfRZ = tt.unit(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 129 if (vec==vecs) lenRZ = 0.25*tt.mag(); 154 130 155 tt = b2 - b1 + a2 - a1; 131 tt = b2 - b1 + a2 - a1; 156 vec->surfPhi = tt.unit(); 132 vec->surfPhi = tt.unit(); 157 if (vec==vecs) 133 if (vec==vecs) 158 { 134 { 159 lenPhi[0] = 0.25*tt.mag(); 135 lenPhi[0] = 0.25*tt.mag(); 160 tt = b2 - b1; 136 tt = b2 - b1; 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len 137 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ; 162 } 138 } 163 139 164 tt = vec->surfPhi.cross(vec->surfRZ); 140 tt = vec->surfPhi.cross(vec->surfRZ); 165 vec->normal = tt.unit(); 141 vec->normal = tt.unit(); 166 142 167 // 143 // 168 // ...edge normals are the average of the 144 // ...edge normals are the average of the normals of 169 // the two faces they connect. 145 // the two faces they connect. 170 // 146 // 171 // ...edge normals are necessary if we are 147 // ...edge normals are necessary if we are to accurately 172 // decide if a point is "inside" a face 148 // decide if a point is "inside" a face. For non-convex 173 // shapes, it is absolutely necessary t 149 // shapes, it is absolutely necessary to know information 174 // on adjacent faces to accurate determ 150 // on adjacent faces to accurate determine this. 175 // 151 // 176 // ...we don't need them for the phi edges 152 // ...we don't need them for the phi edges, since that 177 // information is taken care of interna 153 // information is taken care of internally. The r/z edges, 178 // however, depend on the adjacent G4Po 154 // however, depend on the adjacent G4PolyhedraSide. 179 // 155 // 180 G4ThreeVector a12, adj; 156 G4ThreeVector a12, adj; 181 157 182 a12 = a2-a1; 158 a12 = a2-a1; 183 159 184 adj = 0.5*(c1+c2-a1-a2); 160 adj = 0.5*(c1+c2-a1-a2); 185 adj = adj.cross(a12); 161 adj = adj.cross(a12); 186 adj = adj.unit() + vec->normal; 162 adj = adj.unit() + vec->normal; 187 vec->edgeNorm[0] = adj.unit(); 163 vec->edgeNorm[0] = adj.unit(); 188 164 189 a12 = b1-b2; 165 a12 = b1-b2; 190 adj = 0.5*(d1+d2-b1-b2); 166 adj = 0.5*(d1+d2-b1-b2); 191 adj = adj.cross(a12); 167 adj = adj.cross(a12); 192 adj = adj.unit() + vec->normal; 168 adj = adj.unit() + vec->normal; 193 vec->edgeNorm[1] = adj.unit(); 169 vec->edgeNorm[1] = adj.unit(); 194 170 195 // 171 // 196 // ...the corners are crucial. It is impor 172 // ...the corners are crucial. It is important that 197 // they are calculated consistently for 173 // they are calculated consistently for adjacent 198 // G4PolyhedraSides, to avoid gaps caus 174 // G4PolyhedraSides, to avoid gaps caused by roundoff. 199 // 175 // 200 vec->edges[0] = edge; 176 vec->edges[0] = edge; 201 edge->corner[0] = a1; 177 edge->corner[0] = a1; 202 edge->corner[1] = b1; 178 edge->corner[1] = b1; 203 edge++; 179 edge++; 204 vec->edges[1] = edge; 180 vec->edges[1] = edge; 205 181 206 a1 = a2; 182 a1 = a2; 207 b1 = b2; 183 b1 = b2; 208 c1 = c2; 184 c1 = c2; 209 d1 = d2; 185 d1 = d2; 210 } while( ++vec < vecs+maxSides ); << 186 } while( ++vec < vecs+numSide ); 211 187 212 // 188 // 213 // Clean up hanging edge 189 // Clean up hanging edge 214 // 190 // 215 if (phiIsOpen) 191 if (phiIsOpen) 216 { 192 { 217 edge->corner[0] = a2; 193 edge->corner[0] = a2; 218 edge->corner[1] = b2; 194 edge->corner[1] = b2; 219 } 195 } 220 else 196 else 221 { 197 { 222 vecs[maxSides-1].edges[1] = edges; << 198 vecs[numSide-1].edges[1] = edges; 223 } 199 } 224 200 225 // 201 // 226 // Go back and fill in remaining fields in e 202 // Go back and fill in remaining fields in edges 227 // 203 // 228 vec = vecs; 204 vec = vecs; 229 G4PolyhedraSideVec *prev = vecs+maxSides-1; << 205 G4PolyhedraSideVec *prev = vecs+numSide-1; 230 do // Loop checking, 13.08.2015, G.Cosmo << 206 do 231 { 207 { 232 edge = vec->edges[0]; // The edge betwe 208 edge = vec->edges[0]; // The edge between prev and vec 233 209 234 // 210 // 235 // Okay: edge normal is average of normals 211 // Okay: edge normal is average of normals of adjacent faces 236 // 212 // 237 G4ThreeVector eNorm = vec->normal + prev-> 213 G4ThreeVector eNorm = vec->normal + prev->normal; 238 edge->normal = eNorm.unit(); 214 edge->normal = eNorm.unit(); 239 215 240 // 216 // 241 // Vertex normal is average of norms of ad 217 // Vertex normal is average of norms of adjacent surfaces (all four) 242 // However, vec->edgeNorm is unit vector i 218 // However, vec->edgeNorm is unit vector in some direction 243 // as the sum of normals of adjacent Polyh 219 // as the sum of normals of adjacent PolyhedraSide with vec. 244 // The normalization used for this vector 220 // The normalization used for this vector should be the same 245 // for vec and prev. 221 // for vec and prev. 246 // 222 // 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[ 223 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0]; 248 edge->cornNorm[0] = eNorm.unit(); 224 edge->cornNorm[0] = eNorm.unit(); 249 225 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[ 226 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1]; 251 edge->cornNorm[1] = eNorm.unit(); 227 edge->cornNorm[1] = eNorm.unit(); 252 } while( prev=vec, ++vec < vecs + maxSides ) << 228 } while( prev=vec, ++vec < vecs + numSide ); 253 229 254 if (phiIsOpen) 230 if (phiIsOpen) 255 { 231 { 256 // G4double rFact = std::cos(0.5*deltaPhi) << 232 // G4double rFact = cos(0.5*deltaPhi); 257 // 233 // 258 // If phi is open, we need to patch up nor 234 // If phi is open, we need to patch up normals of the 259 // first and last edges and their correspo 235 // first and last edges and their corresponding 260 // vertices. 236 // vertices. 261 // 237 // 262 // We use vectors that are in the plane of 238 // We use vectors that are in the plane of the 263 // face. This should be safe. 239 // face. This should be safe. 264 // 240 // 265 vec = vecs; 241 vec = vecs; 266 242 267 G4ThreeVector normvec = vec->edges[0]->cor 243 G4ThreeVector normvec = vec->edges[0]->corner[0] 268 - vec->edges[0]->cor 244 - vec->edges[0]->corner[1]; 269 normvec = normvec.cross(vec->normal); 245 normvec = normvec.cross(vec->normal); 270 if (normvec.dot(vec->surfPhi) > 0) normvec 246 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec; 271 247 272 vec->edges[0]->normal = normvec.unit(); 248 vec->edges[0]->normal = normvec.unit(); 273 249 274 vec->edges[0]->cornNorm[0] = (vec->edges[0 250 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0] 275 - vec->center) 251 - vec->center).unit(); 276 vec->edges[0]->cornNorm[1] = (vec->edges[0 252 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1] 277 - vec->center) 253 - vec->center).unit(); 278 254 279 // 255 // 280 // Repeat for ending phi 256 // Repeat for ending phi 281 // 257 // 282 vec = vecs + maxSides - 1; << 258 vec = vecs + numSide - 1; 283 259 284 normvec = vec->edges[1]->corner[0] - vec-> 260 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1]; 285 normvec = normvec.cross(vec->normal); 261 normvec = normvec.cross(vec->normal); 286 if (normvec.dot(vec->surfPhi) < 0) normvec 262 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec; 287 263 288 vec->edges[1]->normal = normvec.unit(); 264 vec->edges[1]->normal = normvec.unit(); 289 265 290 vec->edges[1]->cornNorm[0] = (vec->edges[1 266 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0] 291 - vec->center) 267 - vec->center).unit(); 292 vec->edges[1]->cornNorm[1] = (vec->edges[1 268 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1] 293 - vec->center) 269 - vec->center).unit(); 294 } 270 } 295 271 296 // 272 // 297 // edgeNorm is the factor one multiplies the 273 // edgeNorm is the factor one multiplies the distance along vector phi 298 // on the surface of one of our sides in ord 274 // on the surface of one of our sides in order to calculate the distance 299 // from the edge. (see routine DistanceAway) 275 // from the edge. (see routine DistanceAway) 300 // 276 // 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le << 277 edgeNorm = 1.0/sqrt( 1.0 + lenPhi[1]*lenPhi[1] ); 302 } << 303 << 304 // Fake default constructor - sets only member << 305 // for usage restri << 306 // << 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) << 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), << 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) << 310 { << 311 r[0] = r[1] = 0.; << 312 z[0] = z[1] = 0.; << 313 lenPhi[0] = lenPhi[1] = 0.; << 314 } 278 } 315 279 316 280 >> 281 // 317 // Destructor 282 // Destructor 318 // 283 // 319 G4PolyhedraSide::~G4PolyhedraSide() 284 G4PolyhedraSide::~G4PolyhedraSide() 320 { 285 { 321 delete cone; 286 delete cone; 322 delete [] vecs; 287 delete [] vecs; 323 delete [] edges; 288 delete [] edges; 324 } 289 } 325 290 >> 291 >> 292 // 326 // Copy constructor 293 // Copy constructor 327 // 294 // 328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly << 295 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide &source ) 329 { 296 { 330 instanceID = subInstanceManager.CreateSubIns << 331 << 332 CopyStuff( source ); 297 CopyStuff( source ); 333 } 298 } 334 299 335 300 336 // 301 // 337 // Assignment operator 302 // Assignment operator 338 // 303 // 339 G4PolyhedraSide& G4PolyhedraSide::operator=( c << 304 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide &source ) 340 { 305 { 341 if (this == &source) return *this; 306 if (this == &source) return *this; 342 307 343 delete cone; 308 delete cone; 344 delete [] vecs; 309 delete [] vecs; 345 delete [] edges; 310 delete [] edges; 346 311 347 CopyStuff( source ); 312 CopyStuff( source ); 348 313 349 return *this; 314 return *this; 350 } 315 } 351 316 >> 317 >> 318 // 352 // CopyStuff 319 // CopyStuff 353 // 320 // 354 void G4PolyhedraSide::CopyStuff( const G4Polyh << 321 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide &source ) 355 { 322 { 356 // 323 // 357 // The simple stuff 324 // The simple stuff 358 // 325 // >> 326 numSide = source.numSide; 359 r[0] = source.r[0]; 327 r[0] = source.r[0]; 360 r[1] = source.r[1]; 328 r[1] = source.r[1]; 361 z[0] = source.z[0]; 329 z[0] = source.z[0]; 362 z[1] = source.z[1]; 330 z[1] = source.z[1]; 363 numSide = source.numSide; << 364 startPhi = source.startPhi; 331 startPhi = source.startPhi; 365 deltaPhi = source.deltaPhi; 332 deltaPhi = source.deltaPhi; 366 endPhi = source.endPhi; 333 endPhi = source.endPhi; 367 phiIsOpen = source.phiIsOpen; 334 phiIsOpen = source.phiIsOpen; 368 allBehind = source.allBehind; 335 allBehind = source.allBehind; 369 336 370 lenRZ = source.lenRZ; 337 lenRZ = source.lenRZ; 371 lenPhi[0] = source.lenPhi[0]; 338 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[1] = source.lenPhi[1]; 339 lenPhi[1] = source.lenPhi[1]; 373 edgeNorm = source.edgeNorm; 340 edgeNorm = source.edgeNorm; 374 << 341 375 kCarTolerance = source.kCarTolerance; << 376 fSurfaceArea = source.fSurfaceArea; << 377 << 378 cone = new G4IntersectingCone( *source.cone 342 cone = new G4IntersectingCone( *source.cone ); 379 343 380 // 344 // 381 // Duplicate edges 345 // Duplicate edges 382 // 346 // 383 const std::size_t numSides = (numSide > 0) ? << 347 G4int numEdges = phiIsOpen ? numSide+1 : numSide; 384 const std::size_t numEdges = phiIsOpen ? num << 385 edges = new G4PolyhedraSideEdge[numEdges]; 348 edges = new G4PolyhedraSideEdge[numEdges]; 386 349 387 G4PolyhedraSideEdge *edge = edges, 350 G4PolyhedraSideEdge *edge = edges, 388 *sourceEdge = source.edges; 351 *sourceEdge = source.edges; 389 do // Loop checking, 13.08.2015, G.Cosmo << 352 do 390 { 353 { 391 *edge = *sourceEdge; 354 *edge = *sourceEdge; 392 } while( ++sourceEdge, ++edge < edges + numE 355 } while( ++sourceEdge, ++edge < edges + numEdges); 393 356 394 // 357 // 395 // Duplicate vecs 358 // Duplicate vecs 396 // 359 // 397 vecs = new G4PolyhedraSideVec[numSides]; << 360 vecs = new G4PolyhedraSideVec[numSide]; 398 361 399 G4PolyhedraSideVec *vec = vecs, 362 G4PolyhedraSideVec *vec = vecs, 400 *sourceVec = source.vecs; 363 *sourceVec = source.vecs; 401 do // Loop checking, 13.08.2015, G.Cosmo << 364 do 402 { 365 { 403 *vec = *sourceVec; 366 *vec = *sourceVec; 404 vec->edges[0] = edges + (sourceVec->edges[ 367 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges); 405 vec->edges[1] = edges + (sourceVec->edges[ 368 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges); 406 } while( ++sourceVec, ++vec < vecs + numSide << 369 } while( ++sourceVec, ++vec < vecs + numSide ); 407 } 370 } 408 371 >> 372 >> 373 // 409 // Intersect 374 // Intersect 410 // 375 // 411 // Decide if a line intersects the face. 376 // Decide if a line intersects the face. 412 // 377 // 413 // Arguments: 378 // Arguments: 414 // p = (in) starting point of line segment 379 // p = (in) starting point of line segment 415 // v = (in) direction of line segment (ass 380 // v = (in) direction of line segment (assumed a unit vector) 416 // A, B = (in) 2d transform variables (see 381 // A, B = (in) 2d transform variables (see note top of file) 417 // normSign = (in) desired sign for dot prod 382 // normSign = (in) desired sign for dot product with normal (see below) 418 // surfTolerance = (in) minimum distance fro 383 // surfTolerance = (in) minimum distance from the surface 419 // vecs = (in) Vector set array 384 // vecs = (in) Vector set array 420 // distance = (out) distance to surface furf 385 // distance = (out) distance to surface furfilling all requirements 421 // distFromSurface = (out) distance from the 386 // distFromSurface = (out) distance from the surface 422 // thisNormal = (out) normal vector of the i 387 // thisNormal = (out) normal vector of the intersecting surface 423 // 388 // 424 // Return value: 389 // Return value: 425 // true if an intersection is found. Otherwis 390 // true if an intersection is found. Otherwise, output parameters are 426 // undefined. 391 // undefined. 427 // 392 // 428 // Notes: 393 // Notes: 429 // * normSign: if we are "inside" the shape an 394 // * normSign: if we are "inside" the shape and only want to find out how far 430 // to leave the shape, we only want to consi 395 // to leave the shape, we only want to consider intersections with surfaces in 431 // which the trajectory is leaving the shape 396 // which the trajectory is leaving the shape. Since the normal vectors to the 432 // surface always point outwards from the in 397 // surface always point outwards from the inside, this means we want the dot 433 // product of the trajectory direction v and 398 // product of the trajectory direction v and the normal of the side normals[i] 434 // to be positive. Thus, we should specify n 399 // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if 435 // we are outside and want to go in, normSig 400 // we are outside and want to go in, normSign should be set to -1.0. 436 // Don't set normSign to zero, or you will g 401 // Don't set normSign to zero, or you will get no intersections! 437 // 402 // 438 // * surfTolerance: see notes on argument "sur 403 // * surfTolerance: see notes on argument "surfTolerance" in routine 439 // "IntersectSidePlane". 404 // "IntersectSidePlane". 440 // ----HOWEVER---- We should *not* apply thi 405 // ----HOWEVER---- We should *not* apply this surface tolerance if the 441 // starting point is not within phi or z of 406 // starting point is not within phi or z of the surface. Specifically, 442 // if the starting point p angle in x/y plac 407 // if the starting point p angle in x/y places it on a separate side from the 443 // intersection or if the starting point p i 408 // intersection or if the starting point p is outside the z bounds of the 444 // segment, surfTolerance must be ignored or 409 // segment, surfTolerance must be ignored or we should *always* accept the 445 // intersection! 410 // intersection! 446 // This is simply because the sides do not h 411 // This is simply because the sides do not have infinite extent. 447 // 412 // 448 // 413 // 449 G4bool G4PolyhedraSide::Intersect( const G4Thr << 414 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector &p, 450 const G4Thr << 415 const G4ThreeVector &v, 451 G4boo 416 G4bool outgoing, 452 G4dou 417 G4double surfTolerance, 453 G4dou << 418 G4double &distance, 454 G4dou << 419 G4double &distFromSurface, 455 G4Thr << 420 G4ThreeVector &normal, 456 G4boo << 421 G4bool &isAllBehind ) 457 { 422 { 458 G4double normSign = outgoing ? +1 : -1; 423 G4double normSign = outgoing ? +1 : -1; 459 424 460 // 425 // 461 // ------------------TO BE IMPLEMENTED------ 426 // ------------------TO BE IMPLEMENTED--------------------- 462 // Testing the intersection of individual ph 427 // Testing the intersection of individual phi faces is 463 // pretty straight forward. The simple thing 428 // pretty straight forward. The simple thing therefore is to 464 // form a loop and check them all in sequenc 429 // form a loop and check them all in sequence. 465 // 430 // 466 // But, I worry about one day someone making 431 // But, I worry about one day someone making 467 // a polygon with a thousands sides. A linea 432 // a polygon with a thousands sides. A linear search 468 // would not be ideal in such a case. 433 // would not be ideal in such a case. 469 // 434 // 470 // So, it would be nice to be able to quickl 435 // So, it would be nice to be able to quickly decide 471 // which face would be intersected. One can 436 // which face would be intersected. One can make a very 472 // good guess by using the intersection with 437 // good guess by using the intersection with a cone. 473 // However, this is only reliable in 99% of 438 // However, this is only reliable in 99% of the cases. 474 // 439 // 475 // My solution: make a decent guess as to th 440 // My solution: make a decent guess as to the one or 476 // two potential faces might get intersected 441 // two potential faces might get intersected, and then 477 // test them. If we have the wrong face, use 442 // test them. If we have the wrong face, use the test 478 // to make a better guess. 443 // to make a better guess. 479 // 444 // 480 // Since we might have two guesses, form a q 445 // Since we might have two guesses, form a queue of 481 // potential intersecting faces. Keep an arr 446 // potential intersecting faces. Keep an array of 482 // already tested faces to avoid doing one m 447 // already tested faces to avoid doing one more than 483 // once. 448 // once. 484 // 449 // 485 // Result: at worst, an iterative search. On 450 // Result: at worst, an iterative search. On average, 486 // a little more than two tests would be req 451 // a little more than two tests would be required. 487 // 452 // 488 G4ThreeVector q = p + v; 453 G4ThreeVector q = p + v; 489 454 490 G4int face = 0; 455 G4int face = 0; 491 G4PolyhedraSideVec* vec = vecs; << 456 G4PolyhedraSideVec *vec = vecs; 492 do // Loop checking, 13.08.2015, G.Cosmo << 457 do 493 { 458 { 494 // 459 // 495 // Correct normal? 460 // Correct normal? 496 // 461 // 497 G4double dotProd = normSign*v.dot(vec->nor 462 G4double dotProd = normSign*v.dot(vec->normal); 498 if (dotProd <= 0) continue; 463 if (dotProd <= 0) continue; 499 464 500 // 465 // 501 // Is this face in front of the point alon 466 // Is this face in front of the point along the trajectory? 502 // 467 // 503 G4ThreeVector delta = p - vec->center; 468 G4ThreeVector delta = p - vec->center; 504 distFromSurface = -normSign*delta.dot(vec- 469 distFromSurface = -normSign*delta.dot(vec->normal); 505 470 506 if (distFromSurface < -surfTolerance) cont 471 if (distFromSurface < -surfTolerance) continue; 507 472 508 // 473 // 509 // phi 474 // phi 510 // c -------- d ^ 475 // c -------- d ^ 511 // | | | 476 // | | | 512 // a -------- b +---> r/z 477 // a -------- b +---> r/z 513 // 478 // 514 // 479 // 515 // Do we remain on this particular segment 480 // Do we remain on this particular segment? 516 // 481 // 517 G4ThreeVector qc = q - vec->edges[1]->corn 482 G4ThreeVector qc = q - vec->edges[1]->corner[0]; 518 G4ThreeVector qd = q - vec->edges[1]->corn 483 G4ThreeVector qd = q - vec->edges[1]->corner[1]; 519 484 520 if (normSign*qc.cross(qd).dot(v) < 0) cont 485 if (normSign*qc.cross(qd).dot(v) < 0) continue; 521 486 522 G4ThreeVector qa = q - vec->edges[0]->corn 487 G4ThreeVector qa = q - vec->edges[0]->corner[0]; 523 G4ThreeVector qb = q - vec->edges[0]->corn 488 G4ThreeVector qb = q - vec->edges[0]->corner[1]; 524 489 525 if (normSign*qa.cross(qb).dot(v) > 0) cont 490 if (normSign*qa.cross(qb).dot(v) > 0) continue; 526 491 527 // 492 // 528 // We found the one and only segment we mi 493 // We found the one and only segment we might be intersecting. 529 // Do we remain within r/z bounds? 494 // Do we remain within r/z bounds? 530 // 495 // 531 496 532 if (r[0] > 1/kInfinity && normSign*qa.cros << 497 if (normSign*qa.cross(qc).dot(v) < 0) return false; 533 if (r[1] > 1/kInfinity && normSign*qb.cros << 498 if (normSign*qb.cross(qd).dot(v) > 0) return false; 534 499 535 // 500 // 536 // We allow the face to be slightly behind 501 // We allow the face to be slightly behind the trajectory 537 // (surface tolerance) only if the point p 502 // (surface tolerance) only if the point p is within 538 // the vicinity of the face 503 // the vicinity of the face 539 // 504 // 540 if (distFromSurface < 0) 505 if (distFromSurface < 0) 541 { 506 { 542 G4ThreeVector ps = p - vec->center; 507 G4ThreeVector ps = p - vec->center; 543 508 544 G4double rz = ps.dot(vec->surfRZ); 509 G4double rz = ps.dot(vec->surfRZ); 545 if (std::fabs(rz) > lenRZ+surfTolerance) << 510 if (fabs(rz) > lenRZ+surfTolerance) return false; 546 511 547 G4double pp = ps.dot(vec->surfPhi); 512 G4double pp = ps.dot(vec->surfPhi); 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* << 513 if (fabs(pp) > lenPhi[0] + lenPhi[1]*rz + surfTolerance) return false; 549 } 514 } 550 515 551 516 552 // 517 // 553 // Intersection found. Return answer. 518 // Intersection found. Return answer. 554 // 519 // 555 distance = distFromSurface/dotProd; 520 distance = distFromSurface/dotProd; 556 normal = vec->normal; 521 normal = vec->normal; 557 isAllBehind = allBehind; 522 isAllBehind = allBehind; 558 return true; 523 return true; 559 } while( ++vec, ++face < numSide ); 524 } while( ++vec, ++face < numSide ); 560 525 561 // 526 // 562 // Oh well. Better luck next time. 527 // Oh well. Better luck next time. 563 // 528 // 564 return false; 529 return false; 565 } 530 } 566 531 567 // Distance << 532 568 // << 533 G4double G4PolyhedraSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 569 G4double G4PolyhedraSide::Distance( const G4Th << 570 { 534 { 571 G4double normSign = outgoing ? -1 : +1; 535 G4double normSign = outgoing ? -1 : +1; 572 536 573 // 537 // 574 // Try the closest phi segment first 538 // Try the closest phi segment first 575 // 539 // 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 540 G4int iPhi = ClosestPhiSegment( p.phi() ); 577 541 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 542 G4ThreeVector pdotc = p - vecs[iPhi].center; 579 G4double normDist = pdotc.dot(vecs[iPhi].nor 543 G4double normDist = pdotc.dot(vecs[iPhi].normal); 580 544 581 if (normSign*normDist > -0.5*kCarTolerance) 545 if (normSign*normDist > -0.5*kCarTolerance) 582 { 546 { 583 return DistanceAway( p, vecs[iPhi], &normD 547 return DistanceAway( p, vecs[iPhi], &normDist ); 584 } 548 } 585 549 586 // 550 // 587 // Now we have an interesting problem... do 551 // Now we have an interesting problem... do we try to find the 588 // closest facing side?? 552 // closest facing side?? 589 // 553 // 590 // Considered carefully, the answer is no. W 554 // Considered carefully, the answer is no. We know that if we 591 // are asking for the distance out, we are s 555 // are asking for the distance out, we are supposed to be inside, 592 // and vice versa. 556 // and vice versa. 593 // 557 // 594 558 595 return kInfinity; 559 return kInfinity; 596 } 560 } 597 561 >> 562 >> 563 // 598 // Inside 564 // Inside 599 // 565 // 600 EInside G4PolyhedraSide::Inside( const G4Three << 566 EInside G4PolyhedraSide::Inside( const G4ThreeVector &p, 601 G4doubl 567 G4double tolerance, 602 G4doubl << 568 G4double *bestDistance ) 603 { 569 { 604 // 570 // 605 // Which phi segment is closest to this poin 571 // Which phi segment is closest to this point? 606 // 572 // 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 573 G4int iPhi = ClosestPhiSegment( p.phi() ); 608 574 609 G4double norm; 575 G4double norm; 610 576 611 // 577 // 612 // Get distance to this segment 578 // Get distance to this segment 613 // 579 // 614 *bestDistance = DistanceToOneSide( p, vecs[i 580 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 615 581 616 // 582 // 617 // Use distance along normal to decide retur 583 // Use distance along normal to decide return value 618 // 584 // 619 if ( (std::fabs(norm) > tolerance) || (*best << 585 if ( (fabs(norm) < tolerance) && (*bestDistance < 2.0*tolerance) ) 620 return (norm < 0) ? kInside : kOutside; << 621 else << 622 return kSurface; 586 return kSurface; >> 587 else if (norm < 0) >> 588 return kInside; >> 589 else >> 590 return kOutside; 623 } 591 } 624 592 >> 593 >> 594 // 625 // Normal 595 // Normal 626 // 596 // 627 G4ThreeVector G4PolyhedraSide::Normal( const G << 597 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector &p, 628 G << 598 G4double *bestDistance ) 629 { 599 { 630 // 600 // 631 // Which phi segment is closest to this poin 601 // Which phi segment is closest to this point? 632 // 602 // 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); << 603 G4int iPhi = ClosestPhiSegment( p.phi() ); 634 604 635 // 605 // 636 // Get distance to this segment 606 // Get distance to this segment 637 // 607 // 638 G4double norm; 608 G4double norm; 639 *bestDistance = DistanceToOneSide( p, vecs[i 609 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 640 610 641 return vecs[iPhi].normal; 611 return vecs[iPhi].normal; 642 } 612 } 643 613 >> 614 >> 615 // 644 // Extent 616 // Extent 645 // 617 // 646 G4double G4PolyhedraSide::Extent( const G4Thre 618 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis ) 647 { 619 { 648 if (axis.perp2() < DBL_MIN) 620 if (axis.perp2() < DBL_MIN) 649 { 621 { 650 // 622 // 651 // Special case 623 // Special case 652 // 624 // 653 return axis.z() < 0 ? -cone->ZLo() : cone- 625 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 654 } 626 } 655 627 656 G4int iPhi, i1, i2; 628 G4int iPhi, i1, i2; 657 G4double best; 629 G4double best; 658 G4ThreeVector* list[4]; << 630 G4ThreeVector *list[4]; 659 631 660 // 632 // 661 // Which phi segment, if any, does the axis 633 // Which phi segment, if any, does the axis belong to 662 // 634 // 663 iPhi = PhiSegment( GetPhi(axis) ); << 635 iPhi = PhiSegment( axis.phi() ); 664 636 665 if (iPhi < 0) 637 if (iPhi < 0) 666 { 638 { 667 // 639 // 668 // No phi segment? Check front edge of fir 640 // No phi segment? Check front edge of first side and 669 // last edge of second side 641 // last edge of second side 670 // 642 // 671 i1 = 0; i2 = numSide-1; 643 i1 = 0; i2 = numSide-1; 672 } 644 } 673 else 645 else 674 { 646 { 675 // 647 // 676 // Check all corners of matching phi side 648 // Check all corners of matching phi side 677 // 649 // 678 i1 = iPhi; i2 = iPhi; 650 i1 = iPhi; i2 = iPhi; 679 } 651 } 680 652 681 list[0] = vecs[i1].edges[0]->corner; 653 list[0] = vecs[i1].edges[0]->corner; 682 list[1] = vecs[i1].edges[0]->corner+1; 654 list[1] = vecs[i1].edges[0]->corner+1; 683 list[2] = vecs[i2].edges[1]->corner; 655 list[2] = vecs[i2].edges[1]->corner; 684 list[3] = vecs[i2].edges[1]->corner+1; 656 list[3] = vecs[i2].edges[1]->corner+1; 685 657 686 // 658 // 687 // Who's biggest? 659 // Who's biggest? 688 // 660 // 689 best = -kInfinity; 661 best = -kInfinity; 690 G4ThreeVector** vec = list; << 662 G4ThreeVector **vec = list; 691 do // Loop checking, 13.08.2015, G.Cosmo << 663 do 692 { 664 { 693 G4double answer = (*vec)->dot(axis); 665 G4double answer = (*vec)->dot(axis); 694 if (answer > best) best = answer; 666 if (answer > best) best = answer; 695 } while( ++vec < list+4 ); 667 } while( ++vec < list+4 ); 696 668 697 return best; 669 return best; 698 } 670 } 699 671 >> 672 >> 673 // 700 // CalculateExtent 674 // CalculateExtent 701 // 675 // 702 // See notes in G4VCSGface 676 // See notes in G4VCSGface 703 // 677 // 704 void G4PolyhedraSide::CalculateExtent( const E 678 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 705 const G << 679 const G4VoxelLimits &voxelLimit, 706 const G << 680 const G4AffineTransform &transform, 707 G << 681 G4SolidExtentList &extentList ) 708 { 682 { 709 // 683 // 710 // Loop over all sides 684 // Loop over all sides 711 // 685 // 712 G4PolyhedraSideVec *vec = vecs; 686 G4PolyhedraSideVec *vec = vecs; 713 do // Loop checking, 13.08.2015, G.Cosmo << 687 do 714 { 688 { 715 // 689 // 716 // Fill our polygon with the four corners 690 // Fill our polygon with the four corners of 717 // this side, after the specified transfor 691 // this side, after the specified transformation 718 // 692 // 719 G4ClippablePolygon polygon; 693 G4ClippablePolygon polygon; 720 694 721 polygon.AddVertexInOrder(transform. 695 polygon.AddVertexInOrder(transform. 722 TransformPoint(ve 696 TransformPoint(vec->edges[0]->corner[0])); 723 polygon.AddVertexInOrder(transform. 697 polygon.AddVertexInOrder(transform. 724 TransformPoint(ve 698 TransformPoint(vec->edges[0]->corner[1])); 725 polygon.AddVertexInOrder(transform. 699 polygon.AddVertexInOrder(transform. 726 TransformPoint(ve 700 TransformPoint(vec->edges[1]->corner[1])); 727 polygon.AddVertexInOrder(transform. 701 polygon.AddVertexInOrder(transform. 728 TransformPoint(ve 702 TransformPoint(vec->edges[1]->corner[0])); 729 703 730 // 704 // 731 // Get extent 705 // Get extent 732 // 706 // 733 if (polygon.PartialClip( voxelLimit, axis 707 if (polygon.PartialClip( voxelLimit, axis )) 734 { 708 { 735 // 709 // 736 // Get dot product of normal along targe 710 // Get dot product of normal along target axis 737 // 711 // 738 polygon.SetNormal( transform.TransformAx 712 polygon.SetNormal( transform.TransformAxis(vec->normal) ); 739 713 740 extentList.AddSurface( polygon ); 714 extentList.AddSurface( polygon ); 741 } 715 } 742 } while( ++vec < vecs+numSide ); 716 } while( ++vec < vecs+numSide ); 743 717 744 return; 718 return; 745 } 719 } 746 720 >> 721 >> 722 // 747 // IntersectSidePlane 723 // IntersectSidePlane 748 // 724 // 749 // Decide if a line correctly intersects one s 725 // Decide if a line correctly intersects one side plane of our segment. 750 // It is assumed that the correct side has bee 726 // It is assumed that the correct side has been chosen, and thus only 751 // the z bounds (of the entire segment) are ch 727 // the z bounds (of the entire segment) are checked. 752 // 728 // 753 // normSign - To be multiplied against normal: 729 // normSign - To be multiplied against normal: 754 // = +1.0 normal is unchanged 730 // = +1.0 normal is unchanged 755 // = -1.0 normal is reversed (now p 731 // = -1.0 normal is reversed (now points inward) 756 // 732 // 757 // Arguments: 733 // Arguments: 758 // p - (in) Point 734 // p - (in) Point 759 // v - (in) Direction 735 // v - (in) Direction 760 // vec - (in) Description record of the si 736 // vec - (in) Description record of the side plane 761 // normSign - (in) Sign (+/- 1) to apply to 737 // normSign - (in) Sign (+/- 1) to apply to normal 762 // surfTolerance - (in) Surface tolerance (g 738 // surfTolerance - (in) Surface tolerance (generally > 0, see below) 763 // distance - (out) Distance along v to inte 739 // distance - (out) Distance along v to intersection 764 // distFromSurface - (out) Distance from surf 740 // distFromSurface - (out) Distance from surface normal 765 // 741 // 766 // Notes: 742 // Notes: 767 // surfTolerance - Used to decide if a poin 743 // surfTolerance - Used to decide if a point is behind the surface, 768 // a point is allow to be -surfToleranc 744 // a point is allow to be -surfTolerance behind the 769 // surface (as measured along the norma 745 // surface (as measured along the normal), but *only* 770 // if the point is within the r/z bound 746 // if the point is within the r/z bounds + surfTolerance 771 // of the segment. 747 // of the segment. 772 // 748 // 773 G4bool G4PolyhedraSide::IntersectSidePlane( co << 749 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector &p, 774 co << 750 const G4ThreeVector &v, 775 co << 751 const G4PolyhedraSideVec vec, 776 752 G4double normSign, 777 753 G4double surfTolerance, 778 << 754 G4double &distance, 779 << 755 G4double &distFromSurface ) 780 { 756 { 781 // 757 // 782 // Correct normal? Here we have straight sid 758 // Correct normal? Here we have straight sides, and can safely ignore 783 // intersections where the dot product with 759 // intersections where the dot product with the normal is zero. 784 // 760 // 785 G4double dotProd = normSign*v.dot(vec.normal 761 G4double dotProd = normSign*v.dot(vec.normal); 786 762 787 if (dotProd <= 0) return false; 763 if (dotProd <= 0) return false; 788 764 789 // 765 // 790 // Calculate distance to surface. If the sid 766 // Calculate distance to surface. If the side is too far 791 // behind the point, we must reject it. 767 // behind the point, we must reject it. 792 // 768 // 793 G4ThreeVector delta = p - vec.center; 769 G4ThreeVector delta = p - vec.center; 794 distFromSurface = -normSign*delta.dot(vec.no 770 distFromSurface = -normSign*delta.dot(vec.normal); 795 771 796 if (distFromSurface < -surfTolerance) return 772 if (distFromSurface < -surfTolerance) return false; 797 773 798 // 774 // 799 // Calculate precise distance to intersectio 775 // Calculate precise distance to intersection with the side 800 // (along the trajectory, not normal to the 776 // (along the trajectory, not normal to the surface) 801 // 777 // 802 distance = distFromSurface/dotProd; 778 distance = distFromSurface/dotProd; 803 779 804 // 780 // 805 // Do we fall off the r/z extent of the segm 781 // Do we fall off the r/z extent of the segment? 806 // 782 // 807 // Calculate this very, very carefully! Why? 783 // Calculate this very, very carefully! Why? 808 // 1. If a RZ end is at R=0, you can 784 // 1. If a RZ end is at R=0, you can't miss! 809 // 2. If you just fall off in RZ, th 785 // 2. If you just fall off in RZ, the answer must 810 // be consistent with adjacent G4 786 // be consistent with adjacent G4PolyhedraSide faces. 811 // (2) implies that only variables used by o 787 // (2) implies that only variables used by other G4PolyhedraSide 812 // faces may be used, which includes only: p 788 // faces may be used, which includes only: p, v, and the edge corners. 813 // It also means that one side is a ">" or " 789 // It also means that one side is a ">" or "<", which the other 814 // must be ">=" or "<=". Fortunately, this i 790 // must be ">=" or "<=". Fortunately, this isn't a new problem. 815 // The solution below I borrowed from Joseph 791 // The solution below I borrowed from Joseph O'Rourke, 816 // "Computational Geometry in C (Second Edit 792 // "Computational Geometry in C (Second Edition)" 817 // See: http://cs.smith.edu/~orourke/ 793 // See: http://cs.smith.edu/~orourke/ 818 // 794 // 819 G4ThreeVector ic = p + distance*v - vec.cent 795 G4ThreeVector ic = p + distance*v - vec.center; 820 G4double atRZ = vec.surfRZ.dot(ic); 796 G4double atRZ = vec.surfRZ.dot(ic); 821 797 822 if (atRZ < 0) 798 if (atRZ < 0) 823 { 799 { 824 if (r[0]==0) return true; // Can't miss 800 if (r[0]==0) return true; // Can't miss! 825 801 826 if (atRZ < -lenRZ*1.2) return false; // F 802 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile. 827 803 828 G4ThreeVector q = p + v; 804 G4ThreeVector q = p + v; 829 G4ThreeVector qa = q - vec.edges[0]->corne 805 G4ThreeVector qa = q - vec.edges[0]->corner[0], 830 qb = q - vec.edges[1]->corne 806 qb = q - vec.edges[1]->corner[0]; 831 G4ThreeVector qacb = qa.cross(qb); 807 G4ThreeVector qacb = qa.cross(qb); 832 if (normSign*qacb.dot(v) < 0) return false 808 if (normSign*qacb.dot(v) < 0) return false; 833 809 834 if (distFromSurface < 0) 810 if (distFromSurface < 0) 835 { 811 { 836 if (atRZ < -lenRZ-surfTolerance) return 812 if (atRZ < -lenRZ-surfTolerance) return false; 837 } 813 } 838 } 814 } 839 else if (atRZ > 0) 815 else if (atRZ > 0) 840 { 816 { 841 if (r[1]==0) return true; // Can't miss 817 if (r[1]==0) return true; // Can't miss! 842 818 843 if (atRZ > lenRZ*1.2) return false; // Mi 819 if (atRZ > lenRZ*1.2) return false; // Missed by a mile 844 820 845 G4ThreeVector q = p + v; 821 G4ThreeVector q = p + v; 846 G4ThreeVector qa = q - vec.edges[0]->corne 822 G4ThreeVector qa = q - vec.edges[0]->corner[1], 847 qb = q - vec.edges[1]->corne 823 qb = q - vec.edges[1]->corner[1]; 848 G4ThreeVector qacb = qa.cross(qb); 824 G4ThreeVector qacb = qa.cross(qb); 849 if (normSign*qacb.dot(v) >= 0) return fals 825 if (normSign*qacb.dot(v) >= 0) return false; 850 826 851 if (distFromSurface < 0) 827 if (distFromSurface < 0) 852 { 828 { 853 if (atRZ > lenRZ+surfTolerance) return f 829 if (atRZ > lenRZ+surfTolerance) return false; 854 } 830 } 855 } 831 } 856 832 857 return true; 833 return true; 858 } 834 } 859 835 >> 836 >> 837 // 860 // LineHitsSegments 838 // LineHitsSegments 861 // 839 // 862 // Calculate which phi segments a line interse 840 // Calculate which phi segments a line intersects in three dimensions. 863 // No check is made as to whether the intersec 841 // No check is made as to whether the intersections are within the z bounds of 864 // the segment. 842 // the segment. 865 // 843 // 866 G4int G4PolyhedraSide::LineHitsSegments( const << 844 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector &p, 867 const << 845 const G4ThreeVector &v, 868 << 846 G4int *i1, G4int *i2 ) 869 { 847 { 870 G4double s1, s2; 848 G4double s1, s2; 871 // 849 // 872 // First, decide if and where the line inter 850 // First, decide if and where the line intersects the cone 873 // 851 // 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 852 G4int n = cone->LineHitsCone( p, v, &s1, &s2 ); 875 853 876 if (n==0) return 0; 854 if (n==0) return 0; 877 855 878 // 856 // 879 // Try first intersection. 857 // Try first intersection. 880 // 858 // 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y << 859 *i1 = PhiSegment( atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) ); 882 if (n==1) 860 if (n==1) 883 { 861 { 884 return (*i1 < 0) ? 0 : 1; 862 return (*i1 < 0) ? 0 : 1; 885 } 863 } 886 864 887 // 865 // 888 // Try second intersection 866 // Try second intersection 889 // 867 // 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y << 868 *i2 = PhiSegment( atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) ); 891 if (*i1 == *i2) return 0; 869 if (*i1 == *i2) return 0; 892 870 893 if (*i1 < 0) 871 if (*i1 < 0) 894 { 872 { 895 if (*i2 < 0) return 0; 873 if (*i2 < 0) return 0; 896 *i1 = *i2; 874 *i1 = *i2; 897 return 1; 875 return 1; 898 } 876 } 899 877 900 if (*i2 < 0) return 1; 878 if (*i2 < 0) return 1; 901 879 902 return 2; 880 return 2; 903 } 881 } 904 882 >> 883 >> 884 // 905 // ClosestPhiSegment 885 // ClosestPhiSegment 906 // 886 // 907 // Decide which phi segment is closest in phi 887 // Decide which phi segment is closest in phi to the point. 908 // The result is the same as PhiSegment if the 888 // The result is the same as PhiSegment if there is no phi opening. 909 // 889 // 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do 890 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 ) 911 { 891 { 912 G4int iPhi = PhiSegment( phi0 ); 892 G4int iPhi = PhiSegment( phi0 ); 913 if (iPhi >= 0) return iPhi; 893 if (iPhi >= 0) return iPhi; 914 894 915 // 895 // 916 // Boogers! The points falls inside the phi 896 // Boogers! The points falls inside the phi segment. 917 // Look for the closest point: the start, or 897 // Look for the closest point: the start, or end 918 // 898 // 919 G4double phi = phi0; 899 G4double phi = phi0; 920 900 921 while( phi < startPhi ) // Loop checking, << 901 while( phi < startPhi ) phi += 2*M_PI; 922 phi += twopi; << 923 G4double d1 = phi-endPhi; 902 G4double d1 = phi-endPhi; 924 903 925 while( phi > startPhi ) // Loop checking, << 904 while( phi > startPhi ) phi -= 2*M_PI; 926 phi -= twopi; << 927 G4double d2 = startPhi-phi; 905 G4double d2 = startPhi-phi; 928 906 929 return (d2 < d1) ? 0 : numSide-1; 907 return (d2 < d1) ? 0 : numSide-1; 930 } 908 } 931 909 >> 910 >> 911 // 932 // PhiSegment 912 // PhiSegment 933 // 913 // 934 // Decide which phi segment an angle belongs t 914 // Decide which phi segment an angle belongs to, counting from zero. 935 // A value of -1 indicates that the phi value 915 // A value of -1 indicates that the phi value is outside the shape 936 // (only possible if phiTotal < 360 degrees). 916 // (only possible if phiTotal < 360 degrees). 937 // 917 // 938 G4int G4PolyhedraSide::PhiSegment( G4double ph 918 G4int G4PolyhedraSide::PhiSegment( G4double phi0 ) 939 { 919 { 940 // 920 // 941 // How far are we from phiStart? Come up wit 921 // How far are we from phiStart? Come up with a positive answer 942 // that is less than 2*PI 922 // that is less than 2*PI 943 // 923 // 944 G4double phi = phi0 - startPhi; 924 G4double phi = phi0 - startPhi; 945 while( phi < 0 ) // Loop checking, 13.08. << 925 while( phi < 0 ) phi += 2*M_PI; 946 phi += twopi; << 926 while( phi > 2*M_PI ) phi -= 2*M_PI; 947 while( phi > twopi ) // Loop checking, 13 << 948 phi -= twopi; << 949 927 950 // 928 // 951 // Divide 929 // Divide 952 // 930 // 953 auto answer = (G4int)(phi/deltaPhi); << 931 G4int answer = (G4int)(phi/deltaPhi); 954 932 955 if (answer >= numSide) 933 if (answer >= numSide) 956 { 934 { 957 if (phiIsOpen) 935 if (phiIsOpen) 958 { 936 { 959 return -1; // Looks like we missed 937 return -1; // Looks like we missed 960 } 938 } 961 else 939 else 962 { 940 { 963 answer = numSide-1; // Probably just ro 941 answer = numSide-1; // Probably just roundoff 964 } 942 } 965 } 943 } 966 944 967 return answer; 945 return answer; 968 } 946 } 969 947 970 // GetPhi << 971 // << 972 // Calculate Phi for a given 3-vector (point), << 973 // same point, in the attempt to avoid consecu << 974 // quantity << 975 // << 976 G4double G4PolyhedraSide::GetPhi( const G4Thre << 977 { << 978 G4double val=0.; << 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, << 980 << 981 if (vphi != p) << 982 { << 983 val = p.phi(); << 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); << 985 G4MT_phphik = val; << 986 } << 987 else << 988 { << 989 val = G4MT_phphik; << 990 } << 991 return val; << 992 } << 993 948 >> 949 // 994 // DistanceToOneSide 950 // DistanceToOneSide 995 // 951 // 996 // Arguments: 952 // Arguments: 997 // p - (in) Point to check 953 // p - (in) Point to check 998 // vec - (in) vector set of this side 954 // vec - (in) vector set of this side 999 // normDist - (out) distance normal to the si 955 // normDist - (out) distance normal to the side or edge, as appropriate, signed 1000 // Return value = total distance from the sid 956 // Return value = total distance from the side 1001 // 957 // 1002 G4double G4PolyhedraSide::DistanceToOneSide( << 958 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector &p, 1003 << 959 const G4PolyhedraSideVec &vec, 1004 << 960 G4double *normDist ) 1005 { 961 { 1006 G4ThreeVector pct = p - vec.center; << 962 G4ThreeVector pc = p - vec.center; 1007 963 1008 // 964 // 1009 // Get normal distance 965 // Get normal distance 1010 // 966 // 1011 *normDist = vec.normal.dot(pct); << 967 *normDist = vec.normal.dot(pc); 1012 968 1013 // 969 // 1014 // Add edge penalty 970 // Add edge penalty 1015 // 971 // 1016 return DistanceAway( p, vec, normDist ); 972 return DistanceAway( p, vec, normDist ); 1017 } 973 } 1018 974 >> 975 >> 976 // 1019 // DistanceAway 977 // DistanceAway 1020 // 978 // 1021 // Add distance from side edges, if necessary << 979 // Add distance from side edges, if necesssary, to total distance, 1022 // and updates normDist appropriate depending 980 // and updates normDist appropriate depending on edge normals. 1023 // 981 // 1024 G4double G4PolyhedraSide::DistanceAway( const << 982 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector &p, 1025 const << 983 const G4PolyhedraSideVec &vec, 1026 << 984 G4double *normDist ) 1027 { 985 { 1028 G4double distOut2; 986 G4double distOut2; 1029 G4ThreeVector pct = p - vec.center; << 987 G4ThreeVector pc = p - vec.center; 1030 G4double distFaceNorm = *normDist; 988 G4double distFaceNorm = *normDist; 1031 989 1032 // 990 // 1033 // Okay, are we inside bounds? 991 // Okay, are we inside bounds? 1034 // 992 // 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); << 993 G4double pcDotRZ = pc.dot(vec.surfRZ); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); << 994 G4double pcDotPhi = pc.dot(vec.surfPhi); 1037 995 1038 // 996 // 1039 // Go through all permutations. 997 // Go through all permutations. 1040 // 998 // Phi 1041 // | | 999 // | | ^ 1042 // B | H | E 1000 // B | H | E | 1043 // ------[1]------------[3]----- 1001 // ------[1]------------[3]----- | 1044 // |XXXXXXXXXXXXXX| 1002 // |XXXXXXXXXXXXXX| +----> RZ 1045 // C |XXXXXXXXXXXXXX| F 1003 // C |XXXXXXXXXXXXXX| F 1046 // |XXXXXXXXXXXXXX| 1004 // |XXXXXXXXXXXXXX| 1047 // ------[0]------------[2]---- 1005 // ------[0]------------[2]---- 1048 // A | G | D 1006 // A | G | D 1049 // | | 1007 // | | 1050 // 1008 // 1051 // It's real messy, but at least it's quick 1009 // It's real messy, but at least it's quick 1052 // 1010 // 1053 1011 1054 if (pcDotRZ < -lenRZ) 1012 if (pcDotRZ < -lenRZ) 1055 { 1013 { 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenP 1014 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1]; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1015 G4double distOutZ = pcDotRZ+lenRZ; 1058 // 1016 // 1059 // Below in RZ 1017 // Below in RZ 1060 // 1018 // 1061 if (pcDotPhi < -lenPhiZ) 1019 if (pcDotPhi < -lenPhiZ) 1062 { 1020 { 1063 // 1021 // 1064 // ...and below in phi. Find distance t 1022 // ...and below in phi. Find distance to point (A) 1065 // 1023 // 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1024 G4double distOutPhi = pcDotPhi+lenPhiZ; 1067 distOut2 = distOutPhi*distOutPhi + dist 1025 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1068 G4ThreeVector pa = p - vec.edges[0]->co 1026 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1069 *normDist = pa.dot(vec.edges[0]->cornNo 1027 *normDist = pa.dot(vec.edges[0]->cornNorm[0]); 1070 } 1028 } 1071 else if (pcDotPhi > lenPhiZ) 1029 else if (pcDotPhi > lenPhiZ) 1072 { 1030 { 1073 // 1031 // 1074 // ...and above in phi. Find distance t 1032 // ...and above in phi. Find distance to point (B) 1075 // 1033 // 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1034 G4double distOutPhi = pcDotPhi-lenPhiZ; 1077 distOut2 = distOutPhi*distOutPhi + dist 1035 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1078 G4ThreeVector pb = p - vec.edges[1]->co 1036 G4ThreeVector pb = p - vec.edges[1]->corner[0]; 1079 *normDist = pb.dot(vec.edges[1]->cornNo 1037 *normDist = pb.dot(vec.edges[1]->cornNorm[0]); 1080 } 1038 } 1081 else 1039 else 1082 { 1040 { 1083 // 1041 // 1084 // ...and inside in phi. Find distance 1042 // ...and inside in phi. Find distance to line (C) 1085 // 1043 // 1086 G4ThreeVector pa = p - vec.edges[0]->co 1044 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1087 distOut2 = distOutZ*distOutZ; 1045 distOut2 = distOutZ*distOutZ; 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1046 *normDist = pa.dot(vec.edgeNorm[0]); 1089 } 1047 } 1090 } 1048 } 1091 else if (pcDotRZ > lenRZ) 1049 else if (pcDotRZ > lenRZ) 1092 { 1050 { 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenP 1051 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1]; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1052 G4double distOutZ = pcDotRZ-lenRZ; 1095 // 1053 // 1096 // Above in RZ 1054 // Above in RZ 1097 // 1055 // 1098 if (pcDotPhi < -lenPhiZ) 1056 if (pcDotPhi < -lenPhiZ) 1099 { 1057 { 1100 // 1058 // 1101 // ...and below in phi. Find distance t 1059 // ...and below in phi. Find distance to point (D) 1102 // 1060 // 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1061 G4double distOutPhi = pcDotPhi+lenPhiZ; 1104 distOut2 = distOutPhi*distOutPhi + dist 1062 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1105 G4ThreeVector pd = p - vec.edges[0]->co 1063 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1106 *normDist = pd.dot(vec.edges[0]->cornNo 1064 *normDist = pd.dot(vec.edges[0]->cornNorm[1]); 1107 } 1065 } 1108 else if (pcDotPhi > lenPhiZ) 1066 else if (pcDotPhi > lenPhiZ) 1109 { 1067 { 1110 // 1068 // 1111 // ...and above in phi. Find distance t 1069 // ...and above in phi. Find distance to point (E) 1112 // 1070 // 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1071 G4double distOutPhi = pcDotPhi-lenPhiZ; 1114 distOut2 = distOutPhi*distOutPhi + dist 1072 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1115 G4ThreeVector pe = p - vec.edges[1]->co 1073 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1116 *normDist = pe.dot(vec.edges[1]->cornNo 1074 *normDist = pe.dot(vec.edges[1]->cornNorm[1]); 1117 } 1075 } 1118 else 1076 else 1119 { 1077 { 1120 // 1078 // 1121 // ...and inside in phi. Find distance 1079 // ...and inside in phi. Find distance to line (F) 1122 // 1080 // 1123 distOut2 = distOutZ*distOutZ; 1081 distOut2 = distOutZ*distOutZ; 1124 G4ThreeVector pd = p - vec.edges[0]->co 1082 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1083 *normDist = pd.dot(vec.edgeNorm[1]); 1126 } 1084 } 1127 } 1085 } 1128 else 1086 else 1129 { 1087 { 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*le 1088 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1]; 1131 // 1089 // 1132 // We are inside RZ bounds 1090 // We are inside RZ bounds 1133 // 1091 // 1134 if (pcDotPhi < -lenPhiZ) 1092 if (pcDotPhi < -lenPhiZ) 1135 { 1093 { 1136 // 1094 // 1137 // ...and below in phi. Find distance t 1095 // ...and below in phi. Find distance to line (G) 1138 // 1096 // 1139 G4double distOut = edgeNorm*(pcDotPhi+l 1097 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ); 1140 distOut2 = distOut*distOut; 1098 distOut2 = distOut*distOut; 1141 G4ThreeVector pd = p - vec.edges[0]->co 1099 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1142 *normDist = pd.dot(vec.edges[0]->normal 1100 *normDist = pd.dot(vec.edges[0]->normal); 1143 } 1101 } 1144 else if (pcDotPhi > lenPhiZ) 1102 else if (pcDotPhi > lenPhiZ) 1145 { 1103 { 1146 // 1104 // 1147 // ...and above in phi. Find distance t 1105 // ...and above in phi. Find distance to line (H) 1148 // 1106 // 1149 G4double distOut = edgeNorm*(pcDotPhi-l 1107 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ); 1150 distOut2 = distOut*distOut; 1108 distOut2 = distOut*distOut; 1151 G4ThreeVector pe = p - vec.edges[1]->co 1109 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1152 *normDist = pe.dot(vec.edges[1]->normal 1110 *normDist = pe.dot(vec.edges[1]->normal); 1153 } 1111 } 1154 else 1112 else 1155 { 1113 { 1156 // 1114 // 1157 // Inside bounds! No penalty. 1115 // Inside bounds! No penalty. 1158 // 1116 // 1159 return std::fabs(distFaceNorm); << 1117 return fabs(distFaceNorm); 1160 } 1118 } 1161 } 1119 } 1162 return std::sqrt( distFaceNorm*distFaceNorm << 1120 return sqrt( distFaceNorm*distFaceNorm + distOut2 ); 1163 } << 1164 << 1165 // Calculation of surface area of a triangle. << 1166 // At the same time a random point in the tri << 1167 // << 1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1169 co << 1170 co << 1171 G4 << 1172 { << 1173 G4ThreeVector v, w; << 1174 << 1175 v = p3 - p1; << 1176 w = p1 - p2; << 1177 G4double lambda1 = G4UniformRand(); << 1178 G4double lambda2 = lambda1*G4UniformRand(); << 1179 << 1180 *p4=p2 + lambda1*w + lambda2*v; << 1181 return 0.5*(v.cross(w)).mag(); << 1182 } << 1183 << 1184 // GetPointOnPlane << 1185 // << 1186 // Auxiliary method for GetPointOnSurface() << 1187 // << 1188 G4ThreeVector << 1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1190 const G4Thr << 1191 G4double* A << 1192 { << 1193 G4double chose,aOne,aTwo; << 1194 G4ThreeVector point1,point2; << 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); << 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); << 1197 *Area= aOne+aTwo; << 1198 << 1199 chose = G4UniformRand()*(aOne+aTwo); << 1200 if( (chose>=0.) && (chose < aOne) ) << 1201 { << 1202 return (point1); << 1203 } << 1204 return (point2); << 1205 } << 1206 << 1207 // SurfaceArea() << 1208 // << 1209 G4double G4PolyhedraSide::SurfaceArea() << 1210 { << 1211 if( fSurfaceArea==0. ) << 1212 { << 1213 // Define the variables << 1214 // << 1215 G4double area,areas; << 1216 G4ThreeVector point1; << 1217 G4ThreeVector v1,v2,v3,v4; << 1218 G4PolyhedraSideVec* vec = vecs; << 1219 areas=0.; << 1220 << 1221 // Do a loop on all SideEdge << 1222 // << 1223 do // Loop checking, 13.08.2015, G.Cos << 1224 { << 1225 // Define 4points for a Plane or Triang << 1226 // << 1227 v1=vec->edges[0]->corner[0]; << 1228 v2=vec->edges[0]->corner[1]; << 1229 v3=vec->edges[1]->corner[1]; << 1230 v4=vec->edges[1]->corner[0]; << 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&are << 1232 areas+=area; << 1233 } while( ++vec < vecs + numSide); << 1234 << 1235 fSurfaceArea=areas; << 1236 } << 1237 return fSurfaceArea; << 1238 } << 1239 << 1240 // GetPointOnFace() << 1241 // << 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace << 1243 { << 1244 // Define the variables << 1245 // << 1246 std::vector<G4double>areas; << 1247 std::vector<G4ThreeVector>points; << 1248 G4double area=0.; << 1249 G4double result1; << 1250 G4ThreeVector point1; << 1251 G4ThreeVector v1,v2,v3,v4; << 1252 G4PolyhedraSideVec* vec = vecs; << 1253 << 1254 // Do a loop on all SideEdge << 1255 // << 1256 do // Loop checking, 13.08.2015, G.Cosmo << 1257 { << 1258 // Define 4points for a Plane or Triangle << 1259 // << 1260 v1=vec->edges[0]->corner[0]; << 1261 v2=vec->edges[0]->corner[1]; << 1262 v3=vec->edges[1]->corner[1]; << 1263 v4=vec->edges[1]->corner[0]; << 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&resul << 1265 points.push_back(point1); << 1266 areas.push_back(result1); << 1267 area+=result1; << 1268 } while( ++vec < vecs+numSide ); << 1269 << 1270 // Choose randomly one of the surfaces and << 1271 // << 1272 G4double chose = area*G4UniformRand(); << 1273 G4double Achose1=0., Achose2=0.; << 1274 G4int i=0; << 1275 do // Loop checking, 13.08.2015, G.Cosmo << 1276 { << 1277 Achose2+=areas[i]; << 1278 if(chose>=Achose1 && chose<Achose2) << 1279 { << 1280 point1=points[i] ; break; << 1281 } << 1282 ++i; Achose1=Achose2; << 1283 } while( i<numSide ); << 1284 << 1285 return point1; << 1286 } 1121 } 1287 1122