Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyhedraSide, the face 26 // Implementation of G4PolyhedraSide, the face representing 27 // one segmented side of a Polyhedra 27 // one segmented side of a Polyhedra 28 // 28 // 29 // Author: David C. Williams (davidw@scipp.ucs 29 // Author: David C. Williams (davidw@scipp.ucsc.edu) 30 // ------------------------------------------- 30 // -------------------------------------------------------------------- 31 31 32 #include "G4PolyhedraSide.hh" 32 #include "G4PolyhedraSide.hh" 33 #include "G4PhysicalConstants.hh" 33 #include "G4PhysicalConstants.hh" 34 #include "G4IntersectingCone.hh" 34 #include "G4IntersectingCone.hh" 35 #include "G4ClippablePolygon.hh" 35 #include "G4ClippablePolygon.hh" 36 #include "G4AffineTransform.hh" 36 #include "G4AffineTransform.hh" 37 #include "G4SolidExtentList.hh" 37 #include "G4SolidExtentList.hh" 38 #include "G4GeometryTolerance.hh" 38 #include "G4GeometryTolerance.hh" 39 39 40 #include "Randomize.hh" 40 #include "Randomize.hh" 41 41 42 // This new field helps to use the class G4PhS 42 // This new field helps to use the class G4PhSideManager. 43 // 43 // 44 G4PhSideManager G4PolyhedraSide::subInstanceMa 44 G4PhSideManager G4PolyhedraSide::subInstanceManager; 45 45 46 // This macro changes the references to fields 46 // This macro changes the references to fields that are now encapsulated 47 // in the class G4PhSideData. 47 // in the class G4PhSideData. 48 // 48 // 49 #define G4MT_phphix ((subInstanceManager.offse 49 #define G4MT_phphix ((subInstanceManager.offset[instanceID]).fPhix) 50 #define G4MT_phphiy ((subInstanceManager.offse 50 #define G4MT_phphiy ((subInstanceManager.offset[instanceID]).fPhiy) 51 #define G4MT_phphiz ((subInstanceManager.offse 51 #define G4MT_phphiz ((subInstanceManager.offset[instanceID]).fPhiz) 52 #define G4MT_phphik ((subInstanceManager.offse 52 #define G4MT_phphik ((subInstanceManager.offset[instanceID]).fPhik) 53 53 54 // Returns the private data instance manager. 54 // Returns the private data instance manager. 55 // 55 // 56 const G4PhSideManager& G4PolyhedraSide::GetSub 56 const G4PhSideManager& G4PolyhedraSide::GetSubInstanceManager() 57 { 57 { 58 return subInstanceManager; 58 return subInstanceManager; 59 } 59 } 60 60 61 // Constructor 61 // Constructor 62 // 62 // 63 // Values for r1,z1 and r2,z2 should be specif 63 // Values for r1,z1 and r2,z2 should be specified in clockwise 64 // order in (r,z). 64 // order in (r,z). 65 // 65 // 66 G4PolyhedraSide::G4PolyhedraSide( const G4Poly 66 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSideRZ* prevRZ, 67 const G4Poly 67 const G4PolyhedraSideRZ* tail, 68 const G4Poly 68 const G4PolyhedraSideRZ* head, 69 const G4Poly 69 const G4PolyhedraSideRZ* nextRZ, 70 G4int 70 G4int theNumSide, 71 G4doub 71 G4double thePhiStart, 72 G4doub 72 G4double thePhiTotal, 73 G4bool 73 G4bool thePhiIsOpen, 74 G4bool 74 G4bool isAllBehind ) 75 { 75 { 76 76 77 instanceID = subInstanceManager.CreateSubIns 77 instanceID = subInstanceManager.CreateSubInstance(); 78 78 79 kCarTolerance = G4GeometryTolerance::GetInst 79 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_p 80 G4MT_phphix = 0.0; G4MT_phphiy = 0.0; G4MT_phphiz = 0.0; 81 G4MT_phphik = 0.0; 81 G4MT_phphik = 0.0; 82 82 83 // 83 // 84 // Record values 84 // Record values 85 // 85 // 86 r[0] = tail->r; z[0] = tail->z; 86 r[0] = tail->r; z[0] = tail->z; 87 r[1] = head->r; z[1] = head->z; 87 r[1] = head->r; z[1] = head->z; 88 88 89 G4double phiTotal; 89 G4double phiTotal; 90 90 91 // 91 // 92 // Set phi to our convention 92 // Set phi to our convention 93 // 93 // 94 startPhi = thePhiStart; 94 startPhi = thePhiStart; 95 while (startPhi < 0.0) // Loop checking, 95 while (startPhi < 0.0) // Loop checking, 13.08.2015, G.Cosmo 96 startPhi += twopi; 96 startPhi += twopi; 97 97 98 phiIsOpen = thePhiIsOpen; 98 phiIsOpen = thePhiIsOpen; 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi 99 phiTotal = (phiIsOpen) ? thePhiTotal : twopi; 100 100 101 allBehind = isAllBehind; 101 allBehind = isAllBehind; 102 102 103 // 103 // 104 // Make our intersecting cone 104 // Make our intersecting cone 105 // 105 // 106 cone = new G4IntersectingCone( r, z ); 106 cone = new G4IntersectingCone( r, z ); 107 107 108 // 108 // 109 // Construct side plane vector set 109 // Construct side plane vector set 110 // 110 // 111 numSide = theNumSide>0 ? theNumSide : 1; << 111 numSide = theNumSide; 112 deltaPhi = phiTotal/numSide; << 112 deltaPhi = phiTotal/theNumSide; 113 endPhi = startPhi+phiTotal; 113 endPhi = startPhi+phiTotal; 114 << 114 115 const std::size_t maxSides = numSide; << 115 vecs = new G4PolyhedraSideVec[numSide]; 116 vecs = new G4PolyhedraSideVec[maxSides]; << 116 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? << 117 edges = new G4PolyhedraSideEdge[phiIsOpen ? numSide+1 : numSide]; 118 118 119 // 119 // 120 // ...this is where we start 120 // ...this is where we start 121 // 121 // 122 G4double phi = startPhi; 122 G4double phi = startPhi; 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*s 123 G4ThreeVector a1( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ), 124 b1( r[1]*std::cos(phi), r[1]*std::si 124 b1( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ), 125 c1( prevRZ->r*std::cos(phi), prevRZ- 125 c1( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ), 126 d1( nextRZ->r*std::cos(phi), nextRZ- 126 d1( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ), 127 a2, b2, c2, d2; 127 a2, b2, c2, d2; 128 G4PolyhedraSideEdge *edge = edges; 128 G4PolyhedraSideEdge *edge = edges; 129 129 130 G4PolyhedraSideVec *vec = vecs; 130 G4PolyhedraSideVec *vec = vecs; 131 do // Loop checking, 13.08.2015, G.Cosmo 131 do // Loop checking, 13.08.2015, G.Cosmo 132 { 132 { 133 // 133 // 134 // ...this is where we are going 134 // ...this is where we are going 135 // 135 // 136 phi += deltaPhi; 136 phi += deltaPhi; 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[ 137 a2 = G4ThreeVector( r[0]*std::cos(phi), r[0]*std::sin(phi), z[0] ); 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[ 138 b2 = G4ThreeVector( r[1]*std::cos(phi), r[1]*std::sin(phi), z[1] ); 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi 139 c2 = G4ThreeVector( prevRZ->r*std::cos(phi), prevRZ->r*std::sin(phi), prevRZ->z ); 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi 140 d2 = G4ThreeVector( nextRZ->r*std::cos(phi), nextRZ->r*std::sin(phi), nextRZ->z ); 141 141 142 G4ThreeVector tt; 142 G4ThreeVector tt; 143 143 144 // 144 // 145 // ...build some relevant vectors. 145 // ...build some relevant vectors. 146 // the point is to sacrifice a little m 146 // the point is to sacrifice a little memory with precalcs 147 // to gain speed 147 // to gain speed 148 // 148 // 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 149 vec->center = 0.25*( a1 + a2 + b1 + b2 ); 150 150 151 tt = b2 + b1 - a2 - a1; 151 tt = b2 + b1 - a2 - a1; 152 vec->surfRZ = tt.unit(); 152 vec->surfRZ = tt.unit(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 153 if (vec==vecs) lenRZ = 0.25*tt.mag(); 154 154 155 tt = b2 - b1 + a2 - a1; 155 tt = b2 - b1 + a2 - a1; 156 vec->surfPhi = tt.unit(); 156 vec->surfPhi = tt.unit(); 157 if (vec==vecs) 157 if (vec==vecs) 158 { 158 { 159 lenPhi[0] = 0.25*tt.mag(); 159 lenPhi[0] = 0.25*tt.mag(); 160 tt = b2 - b1; 160 tt = b2 - b1; 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/len 161 lenPhi[1] = (0.5*tt.mag()-lenPhi[0])/lenRZ; 162 } 162 } 163 163 164 tt = vec->surfPhi.cross(vec->surfRZ); 164 tt = vec->surfPhi.cross(vec->surfRZ); 165 vec->normal = tt.unit(); 165 vec->normal = tt.unit(); 166 166 167 // 167 // 168 // ...edge normals are the average of the 168 // ...edge normals are the average of the normals of 169 // the two faces they connect. 169 // the two faces they connect. 170 // 170 // 171 // ...edge normals are necessary if we are 171 // ...edge normals are necessary if we are to accurately 172 // decide if a point is "inside" a face 172 // decide if a point is "inside" a face. For non-convex 173 // shapes, it is absolutely necessary t 173 // shapes, it is absolutely necessary to know information 174 // on adjacent faces to accurate determ 174 // on adjacent faces to accurate determine this. 175 // 175 // 176 // ...we don't need them for the phi edges 176 // ...we don't need them for the phi edges, since that 177 // information is taken care of interna 177 // information is taken care of internally. The r/z edges, 178 // however, depend on the adjacent G4Po 178 // however, depend on the adjacent G4PolyhedraSide. 179 // 179 // 180 G4ThreeVector a12, adj; 180 G4ThreeVector a12, adj; 181 181 182 a12 = a2-a1; 182 a12 = a2-a1; 183 183 184 adj = 0.5*(c1+c2-a1-a2); 184 adj = 0.5*(c1+c2-a1-a2); 185 adj = adj.cross(a12); 185 adj = adj.cross(a12); 186 adj = adj.unit() + vec->normal; 186 adj = adj.unit() + vec->normal; 187 vec->edgeNorm[0] = adj.unit(); 187 vec->edgeNorm[0] = adj.unit(); 188 188 189 a12 = b1-b2; 189 a12 = b1-b2; 190 adj = 0.5*(d1+d2-b1-b2); 190 adj = 0.5*(d1+d2-b1-b2); 191 adj = adj.cross(a12); 191 adj = adj.cross(a12); 192 adj = adj.unit() + vec->normal; 192 adj = adj.unit() + vec->normal; 193 vec->edgeNorm[1] = adj.unit(); 193 vec->edgeNorm[1] = adj.unit(); 194 194 195 // 195 // 196 // ...the corners are crucial. It is impor 196 // ...the corners are crucial. It is important that 197 // they are calculated consistently for 197 // they are calculated consistently for adjacent 198 // G4PolyhedraSides, to avoid gaps caus 198 // G4PolyhedraSides, to avoid gaps caused by roundoff. 199 // 199 // 200 vec->edges[0] = edge; 200 vec->edges[0] = edge; 201 edge->corner[0] = a1; 201 edge->corner[0] = a1; 202 edge->corner[1] = b1; 202 edge->corner[1] = b1; 203 edge++; 203 edge++; 204 vec->edges[1] = edge; 204 vec->edges[1] = edge; 205 205 206 a1 = a2; 206 a1 = a2; 207 b1 = b2; 207 b1 = b2; 208 c1 = c2; 208 c1 = c2; 209 d1 = d2; 209 d1 = d2; 210 } while( ++vec < vecs+maxSides ); << 210 } while( ++vec < vecs+numSide ); 211 211 212 // 212 // 213 // Clean up hanging edge 213 // Clean up hanging edge 214 // 214 // 215 if (phiIsOpen) 215 if (phiIsOpen) 216 { 216 { 217 edge->corner[0] = a2; 217 edge->corner[0] = a2; 218 edge->corner[1] = b2; 218 edge->corner[1] = b2; 219 } 219 } 220 else 220 else 221 { 221 { 222 vecs[maxSides-1].edges[1] = edges; << 222 vecs[numSide-1].edges[1] = edges; 223 } 223 } 224 224 225 // 225 // 226 // Go back and fill in remaining fields in e 226 // Go back and fill in remaining fields in edges 227 // 227 // 228 vec = vecs; 228 vec = vecs; 229 G4PolyhedraSideVec *prev = vecs+maxSides-1; << 229 G4PolyhedraSideVec *prev = vecs+numSide-1; 230 do // Loop checking, 13.08.2015, G.Cosmo 230 do // Loop checking, 13.08.2015, G.Cosmo 231 { 231 { 232 edge = vec->edges[0]; // The edge betwe 232 edge = vec->edges[0]; // The edge between prev and vec 233 233 234 // 234 // 235 // Okay: edge normal is average of normals 235 // Okay: edge normal is average of normals of adjacent faces 236 // 236 // 237 G4ThreeVector eNorm = vec->normal + prev-> 237 G4ThreeVector eNorm = vec->normal + prev->normal; 238 edge->normal = eNorm.unit(); 238 edge->normal = eNorm.unit(); 239 239 240 // 240 // 241 // Vertex normal is average of norms of ad 241 // Vertex normal is average of norms of adjacent surfaces (all four) 242 // However, vec->edgeNorm is unit vector i 242 // However, vec->edgeNorm is unit vector in some direction 243 // as the sum of normals of adjacent Polyh 243 // as the sum of normals of adjacent PolyhedraSide with vec. 244 // The normalization used for this vector 244 // The normalization used for this vector should be the same 245 // for vec and prev. 245 // for vec and prev. 246 // 246 // 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[ 247 eNorm = vec->edgeNorm[0] + prev->edgeNorm[0]; 248 edge->cornNorm[0] = eNorm.unit(); 248 edge->cornNorm[0] = eNorm.unit(); 249 249 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[ 250 eNorm = vec->edgeNorm[1] + prev->edgeNorm[1]; 251 edge->cornNorm[1] = eNorm.unit(); 251 edge->cornNorm[1] = eNorm.unit(); 252 } while( prev=vec, ++vec < vecs + maxSides ) << 252 } while( prev=vec, ++vec < vecs + numSide ); 253 253 254 if (phiIsOpen) 254 if (phiIsOpen) 255 { 255 { 256 // G4double rFact = std::cos(0.5*deltaPhi) 256 // G4double rFact = std::cos(0.5*deltaPhi); 257 // 257 // 258 // If phi is open, we need to patch up nor 258 // If phi is open, we need to patch up normals of the 259 // first and last edges and their correspo 259 // first and last edges and their corresponding 260 // vertices. 260 // vertices. 261 // 261 // 262 // We use vectors that are in the plane of 262 // We use vectors that are in the plane of the 263 // face. This should be safe. 263 // face. This should be safe. 264 // 264 // 265 vec = vecs; 265 vec = vecs; 266 266 267 G4ThreeVector normvec = vec->edges[0]->cor 267 G4ThreeVector normvec = vec->edges[0]->corner[0] 268 - vec->edges[0]->cor 268 - vec->edges[0]->corner[1]; 269 normvec = normvec.cross(vec->normal); 269 normvec = normvec.cross(vec->normal); 270 if (normvec.dot(vec->surfPhi) > 0) normvec 270 if (normvec.dot(vec->surfPhi) > 0) normvec = -normvec; 271 271 272 vec->edges[0]->normal = normvec.unit(); 272 vec->edges[0]->normal = normvec.unit(); 273 273 274 vec->edges[0]->cornNorm[0] = (vec->edges[0 274 vec->edges[0]->cornNorm[0] = (vec->edges[0]->corner[0] 275 - vec->center) 275 - vec->center).unit(); 276 vec->edges[0]->cornNorm[1] = (vec->edges[0 276 vec->edges[0]->cornNorm[1] = (vec->edges[0]->corner[1] 277 - vec->center) 277 - vec->center).unit(); 278 278 279 // 279 // 280 // Repeat for ending phi 280 // Repeat for ending phi 281 // 281 // 282 vec = vecs + maxSides - 1; << 282 vec = vecs + numSide - 1; 283 283 284 normvec = vec->edges[1]->corner[0] - vec-> 284 normvec = vec->edges[1]->corner[0] - vec->edges[1]->corner[1]; 285 normvec = normvec.cross(vec->normal); 285 normvec = normvec.cross(vec->normal); 286 if (normvec.dot(vec->surfPhi) < 0) normvec 286 if (normvec.dot(vec->surfPhi) < 0) normvec = -normvec; 287 287 288 vec->edges[1]->normal = normvec.unit(); 288 vec->edges[1]->normal = normvec.unit(); 289 289 290 vec->edges[1]->cornNorm[0] = (vec->edges[1 290 vec->edges[1]->cornNorm[0] = (vec->edges[1]->corner[0] 291 - vec->center) 291 - vec->center).unit(); 292 vec->edges[1]->cornNorm[1] = (vec->edges[1 292 vec->edges[1]->cornNorm[1] = (vec->edges[1]->corner[1] 293 - vec->center) 293 - vec->center).unit(); 294 } 294 } 295 295 296 // 296 // 297 // edgeNorm is the factor one multiplies the 297 // edgeNorm is the factor one multiplies the distance along vector phi 298 // on the surface of one of our sides in ord 298 // on the surface of one of our sides in order to calculate the distance 299 // from the edge. (see routine DistanceAway) 299 // from the edge. (see routine DistanceAway) 300 // 300 // 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*le 301 edgeNorm = 1.0/std::sqrt( 1.0 + lenPhi[1]*lenPhi[1] ); 302 } 302 } 303 303 304 // Fake default constructor - sets only member 304 // Fake default constructor - sets only member data and allocates memory 305 // for usage restri 305 // for usage restricted to object persistency. 306 // 306 // 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) 307 G4PolyhedraSide::G4PolyhedraSide( __void__&) 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), 308 : startPhi(0.), deltaPhi(0.), endPhi(0.), 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.) 309 lenRZ(0.), edgeNorm(0.), kCarTolerance(0.), instanceID(0) 310 { 310 { 311 r[0] = r[1] = 0.; 311 r[0] = r[1] = 0.; 312 z[0] = z[1] = 0.; 312 z[0] = z[1] = 0.; 313 lenPhi[0] = lenPhi[1] = 0.; 313 lenPhi[0] = lenPhi[1] = 0.; 314 } 314 } 315 315 316 316 317 // Destructor 317 // Destructor 318 // 318 // 319 G4PolyhedraSide::~G4PolyhedraSide() 319 G4PolyhedraSide::~G4PolyhedraSide() 320 { 320 { 321 delete cone; 321 delete cone; 322 delete [] vecs; 322 delete [] vecs; 323 delete [] edges; 323 delete [] edges; 324 } 324 } 325 325 326 // Copy constructor 326 // Copy constructor 327 // 327 // 328 G4PolyhedraSide::G4PolyhedraSide( const G4Poly 328 G4PolyhedraSide::G4PolyhedraSide( const G4PolyhedraSide& source ) >> 329 : G4VCSGface() 329 { 330 { 330 instanceID = subInstanceManager.CreateSubIns 331 instanceID = subInstanceManager.CreateSubInstance(); 331 332 332 CopyStuff( source ); 333 CopyStuff( source ); 333 } 334 } 334 335 335 336 336 // 337 // 337 // Assignment operator 338 // Assignment operator 338 // 339 // 339 G4PolyhedraSide& G4PolyhedraSide::operator=( c 340 G4PolyhedraSide& G4PolyhedraSide::operator=( const G4PolyhedraSide& source ) 340 { 341 { 341 if (this == &source) return *this; 342 if (this == &source) return *this; 342 343 343 delete cone; 344 delete cone; 344 delete [] vecs; 345 delete [] vecs; 345 delete [] edges; 346 delete [] edges; 346 347 347 CopyStuff( source ); 348 CopyStuff( source ); 348 349 349 return *this; 350 return *this; 350 } 351 } 351 352 352 // CopyStuff 353 // CopyStuff 353 // 354 // 354 void G4PolyhedraSide::CopyStuff( const G4Polyh 355 void G4PolyhedraSide::CopyStuff( const G4PolyhedraSide& source ) 355 { 356 { 356 // 357 // 357 // The simple stuff 358 // The simple stuff 358 // 359 // >> 360 numSide = source.numSide; 359 r[0] = source.r[0]; 361 r[0] = source.r[0]; 360 r[1] = source.r[1]; 362 r[1] = source.r[1]; 361 z[0] = source.z[0]; 363 z[0] = source.z[0]; 362 z[1] = source.z[1]; 364 z[1] = source.z[1]; 363 numSide = source.numSide; << 364 startPhi = source.startPhi; 365 startPhi = source.startPhi; 365 deltaPhi = source.deltaPhi; 366 deltaPhi = source.deltaPhi; 366 endPhi = source.endPhi; 367 endPhi = source.endPhi; 367 phiIsOpen = source.phiIsOpen; 368 phiIsOpen = source.phiIsOpen; 368 allBehind = source.allBehind; 369 allBehind = source.allBehind; 369 370 370 lenRZ = source.lenRZ; 371 lenRZ = source.lenRZ; 371 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[0] = source.lenPhi[0]; 372 lenPhi[1] = source.lenPhi[1]; 373 lenPhi[1] = source.lenPhi[1]; 373 edgeNorm = source.edgeNorm; 374 edgeNorm = source.edgeNorm; 374 375 375 kCarTolerance = source.kCarTolerance; 376 kCarTolerance = source.kCarTolerance; 376 fSurfaceArea = source.fSurfaceArea; 377 fSurfaceArea = source.fSurfaceArea; 377 378 378 cone = new G4IntersectingCone( *source.cone 379 cone = new G4IntersectingCone( *source.cone ); 379 380 380 // 381 // 381 // Duplicate edges 382 // Duplicate edges 382 // 383 // 383 const std::size_t numSides = (numSide > 0) ? << 384 G4int numEdges = phiIsOpen ? numSide+1 : numSide; 384 const std::size_t numEdges = phiIsOpen ? num << 385 edges = new G4PolyhedraSideEdge[numEdges]; 385 edges = new G4PolyhedraSideEdge[numEdges]; 386 386 387 G4PolyhedraSideEdge *edge = edges, 387 G4PolyhedraSideEdge *edge = edges, 388 *sourceEdge = source.edges; 388 *sourceEdge = source.edges; 389 do // Loop checking, 13.08.2015, G.Cosmo 389 do // Loop checking, 13.08.2015, G.Cosmo 390 { 390 { 391 *edge = *sourceEdge; 391 *edge = *sourceEdge; 392 } while( ++sourceEdge, ++edge < edges + numE 392 } while( ++sourceEdge, ++edge < edges + numEdges); 393 393 394 // 394 // 395 // Duplicate vecs 395 // Duplicate vecs 396 // 396 // 397 vecs = new G4PolyhedraSideVec[numSides]; << 397 vecs = new G4PolyhedraSideVec[numSide]; 398 398 399 G4PolyhedraSideVec *vec = vecs, 399 G4PolyhedraSideVec *vec = vecs, 400 *sourceVec = source.vecs; 400 *sourceVec = source.vecs; 401 do // Loop checking, 13.08.2015, G.Cosmo 401 do // Loop checking, 13.08.2015, G.Cosmo 402 { 402 { 403 *vec = *sourceVec; 403 *vec = *sourceVec; 404 vec->edges[0] = edges + (sourceVec->edges[ 404 vec->edges[0] = edges + (sourceVec->edges[0] - source.edges); 405 vec->edges[1] = edges + (sourceVec->edges[ 405 vec->edges[1] = edges + (sourceVec->edges[1] - source.edges); 406 } while( ++sourceVec, ++vec < vecs + numSide << 406 } while( ++sourceVec, ++vec < vecs + numSide ); 407 } 407 } 408 408 409 // Intersect 409 // Intersect 410 // 410 // 411 // Decide if a line intersects the face. 411 // Decide if a line intersects the face. 412 // 412 // 413 // Arguments: 413 // Arguments: 414 // p = (in) starting point of line segment 414 // p = (in) starting point of line segment 415 // v = (in) direction of line segment (ass 415 // v = (in) direction of line segment (assumed a unit vector) 416 // A, B = (in) 2d transform variables (see 416 // A, B = (in) 2d transform variables (see note top of file) 417 // normSign = (in) desired sign for dot prod 417 // normSign = (in) desired sign for dot product with normal (see below) 418 // surfTolerance = (in) minimum distance fro 418 // surfTolerance = (in) minimum distance from the surface 419 // vecs = (in) Vector set array 419 // vecs = (in) Vector set array 420 // distance = (out) distance to surface furf 420 // distance = (out) distance to surface furfilling all requirements 421 // distFromSurface = (out) distance from the 421 // distFromSurface = (out) distance from the surface 422 // thisNormal = (out) normal vector of the i 422 // thisNormal = (out) normal vector of the intersecting surface 423 // 423 // 424 // Return value: 424 // Return value: 425 // true if an intersection is found. Otherwis 425 // true if an intersection is found. Otherwise, output parameters are 426 // undefined. 426 // undefined. 427 // 427 // 428 // Notes: 428 // Notes: 429 // * normSign: if we are "inside" the shape an 429 // * normSign: if we are "inside" the shape and only want to find out how far 430 // to leave the shape, we only want to consi 430 // to leave the shape, we only want to consider intersections with surfaces in 431 // which the trajectory is leaving the shape 431 // which the trajectory is leaving the shape. Since the normal vectors to the 432 // surface always point outwards from the in 432 // surface always point outwards from the inside, this means we want the dot 433 // product of the trajectory direction v and 433 // product of the trajectory direction v and the normal of the side normals[i] 434 // to be positive. Thus, we should specify n 434 // to be positive. Thus, we should specify normSign as +1.0. Otherwise, if 435 // we are outside and want to go in, normSig 435 // we are outside and want to go in, normSign should be set to -1.0. 436 // Don't set normSign to zero, or you will g 436 // Don't set normSign to zero, or you will get no intersections! 437 // 437 // 438 // * surfTolerance: see notes on argument "sur 438 // * surfTolerance: see notes on argument "surfTolerance" in routine 439 // "IntersectSidePlane". 439 // "IntersectSidePlane". 440 // ----HOWEVER---- We should *not* apply thi 440 // ----HOWEVER---- We should *not* apply this surface tolerance if the 441 // starting point is not within phi or z of 441 // starting point is not within phi or z of the surface. Specifically, 442 // if the starting point p angle in x/y plac 442 // if the starting point p angle in x/y places it on a separate side from the 443 // intersection or if the starting point p i 443 // intersection or if the starting point p is outside the z bounds of the 444 // segment, surfTolerance must be ignored or 444 // segment, surfTolerance must be ignored or we should *always* accept the 445 // intersection! 445 // intersection! 446 // This is simply because the sides do not h 446 // This is simply because the sides do not have infinite extent. 447 // 447 // 448 // 448 // 449 G4bool G4PolyhedraSide::Intersect( const G4Thr 449 G4bool G4PolyhedraSide::Intersect( const G4ThreeVector& p, 450 const G4Thr 450 const G4ThreeVector& v, 451 G4boo 451 G4bool outgoing, 452 G4dou 452 G4double surfTolerance, 453 G4dou 453 G4double& distance, 454 G4dou 454 G4double& distFromSurface, 455 G4Thr 455 G4ThreeVector& normal, 456 G4boo 456 G4bool& isAllBehind ) 457 { 457 { 458 G4double normSign = outgoing ? +1 : -1; 458 G4double normSign = outgoing ? +1 : -1; 459 459 460 // 460 // 461 // ------------------TO BE IMPLEMENTED------ 461 // ------------------TO BE IMPLEMENTED--------------------- 462 // Testing the intersection of individual ph 462 // Testing the intersection of individual phi faces is 463 // pretty straight forward. The simple thing 463 // pretty straight forward. The simple thing therefore is to 464 // form a loop and check them all in sequenc 464 // form a loop and check them all in sequence. 465 // 465 // 466 // But, I worry about one day someone making 466 // But, I worry about one day someone making 467 // a polygon with a thousands sides. A linea 467 // a polygon with a thousands sides. A linear search 468 // would not be ideal in such a case. 468 // would not be ideal in such a case. 469 // 469 // 470 // So, it would be nice to be able to quickl 470 // So, it would be nice to be able to quickly decide 471 // which face would be intersected. One can 471 // which face would be intersected. One can make a very 472 // good guess by using the intersection with 472 // good guess by using the intersection with a cone. 473 // However, this is only reliable in 99% of 473 // However, this is only reliable in 99% of the cases. 474 // 474 // 475 // My solution: make a decent guess as to th 475 // My solution: make a decent guess as to the one or 476 // two potential faces might get intersected 476 // two potential faces might get intersected, and then 477 // test them. If we have the wrong face, use 477 // test them. If we have the wrong face, use the test 478 // to make a better guess. 478 // to make a better guess. 479 // 479 // 480 // Since we might have two guesses, form a q 480 // Since we might have two guesses, form a queue of 481 // potential intersecting faces. Keep an arr 481 // potential intersecting faces. Keep an array of 482 // already tested faces to avoid doing one m 482 // already tested faces to avoid doing one more than 483 // once. 483 // once. 484 // 484 // 485 // Result: at worst, an iterative search. On 485 // Result: at worst, an iterative search. On average, 486 // a little more than two tests would be req 486 // a little more than two tests would be required. 487 // 487 // 488 G4ThreeVector q = p + v; 488 G4ThreeVector q = p + v; 489 489 490 G4int face = 0; 490 G4int face = 0; 491 G4PolyhedraSideVec* vec = vecs; 491 G4PolyhedraSideVec* vec = vecs; 492 do // Loop checking, 13.08.2015, G.Cosmo 492 do // Loop checking, 13.08.2015, G.Cosmo 493 { 493 { 494 // 494 // 495 // Correct normal? 495 // Correct normal? 496 // 496 // 497 G4double dotProd = normSign*v.dot(vec->nor 497 G4double dotProd = normSign*v.dot(vec->normal); 498 if (dotProd <= 0) continue; 498 if (dotProd <= 0) continue; 499 499 500 // 500 // 501 // Is this face in front of the point alon 501 // Is this face in front of the point along the trajectory? 502 // 502 // 503 G4ThreeVector delta = p - vec->center; 503 G4ThreeVector delta = p - vec->center; 504 distFromSurface = -normSign*delta.dot(vec- 504 distFromSurface = -normSign*delta.dot(vec->normal); 505 505 506 if (distFromSurface < -surfTolerance) cont 506 if (distFromSurface < -surfTolerance) continue; 507 507 508 // 508 // 509 // phi 509 // phi 510 // c -------- d ^ 510 // c -------- d ^ 511 // | | | 511 // | | | 512 // a -------- b +---> r/z 512 // a -------- b +---> r/z 513 // 513 // 514 // 514 // 515 // Do we remain on this particular segment 515 // Do we remain on this particular segment? 516 // 516 // 517 G4ThreeVector qc = q - vec->edges[1]->corn 517 G4ThreeVector qc = q - vec->edges[1]->corner[0]; 518 G4ThreeVector qd = q - vec->edges[1]->corn 518 G4ThreeVector qd = q - vec->edges[1]->corner[1]; 519 519 520 if (normSign*qc.cross(qd).dot(v) < 0) cont 520 if (normSign*qc.cross(qd).dot(v) < 0) continue; 521 521 522 G4ThreeVector qa = q - vec->edges[0]->corn 522 G4ThreeVector qa = q - vec->edges[0]->corner[0]; 523 G4ThreeVector qb = q - vec->edges[0]->corn 523 G4ThreeVector qb = q - vec->edges[0]->corner[1]; 524 524 525 if (normSign*qa.cross(qb).dot(v) > 0) cont 525 if (normSign*qa.cross(qb).dot(v) > 0) continue; 526 526 527 // 527 // 528 // We found the one and only segment we mi 528 // We found the one and only segment we might be intersecting. 529 // Do we remain within r/z bounds? 529 // Do we remain within r/z bounds? 530 // 530 // 531 531 532 if (r[0] > 1/kInfinity && normSign*qa.cros 532 if (r[0] > 1/kInfinity && normSign*qa.cross(qc).dot(v) < 0) return false; 533 if (r[1] > 1/kInfinity && normSign*qb.cros 533 if (r[1] > 1/kInfinity && normSign*qb.cross(qd).dot(v) > 0) return false; 534 534 535 // 535 // 536 // We allow the face to be slightly behind 536 // We allow the face to be slightly behind the trajectory 537 // (surface tolerance) only if the point p 537 // (surface tolerance) only if the point p is within 538 // the vicinity of the face 538 // the vicinity of the face 539 // 539 // 540 if (distFromSurface < 0) 540 if (distFromSurface < 0) 541 { 541 { 542 G4ThreeVector ps = p - vec->center; 542 G4ThreeVector ps = p - vec->center; 543 543 544 G4double rz = ps.dot(vec->surfRZ); 544 G4double rz = ps.dot(vec->surfRZ); 545 if (std::fabs(rz) > lenRZ+surfTolerance) 545 if (std::fabs(rz) > lenRZ+surfTolerance) return false; 546 546 547 G4double pp = ps.dot(vec->surfPhi); 547 G4double pp = ps.dot(vec->surfPhi); 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]* 548 if (std::fabs(pp) > lenPhi[0]+lenPhi[1]*rz+surfTolerance) return false; 549 } 549 } 550 550 551 551 552 // 552 // 553 // Intersection found. Return answer. 553 // Intersection found. Return answer. 554 // 554 // 555 distance = distFromSurface/dotProd; 555 distance = distFromSurface/dotProd; 556 normal = vec->normal; 556 normal = vec->normal; 557 isAllBehind = allBehind; 557 isAllBehind = allBehind; 558 return true; 558 return true; 559 } while( ++vec, ++face < numSide ); 559 } while( ++vec, ++face < numSide ); 560 560 561 // 561 // 562 // Oh well. Better luck next time. 562 // Oh well. Better luck next time. 563 // 563 // 564 return false; 564 return false; 565 } 565 } 566 566 567 // Distance 567 // Distance 568 // 568 // 569 G4double G4PolyhedraSide::Distance( const G4Th 569 G4double G4PolyhedraSide::Distance( const G4ThreeVector& p, G4bool outgoing ) 570 { 570 { 571 G4double normSign = outgoing ? -1 : +1; 571 G4double normSign = outgoing ? -1 : +1; 572 572 573 // 573 // 574 // Try the closest phi segment first 574 // Try the closest phi segment first 575 // 575 // 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 576 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 577 577 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 578 G4ThreeVector pdotc = p - vecs[iPhi].center; 579 G4double normDist = pdotc.dot(vecs[iPhi].nor 579 G4double normDist = pdotc.dot(vecs[iPhi].normal); 580 580 581 if (normSign*normDist > -0.5*kCarTolerance) 581 if (normSign*normDist > -0.5*kCarTolerance) 582 { 582 { 583 return DistanceAway( p, vecs[iPhi], &normD 583 return DistanceAway( p, vecs[iPhi], &normDist ); 584 } 584 } 585 585 586 // 586 // 587 // Now we have an interesting problem... do 587 // Now we have an interesting problem... do we try to find the 588 // closest facing side?? 588 // closest facing side?? 589 // 589 // 590 // Considered carefully, the answer is no. W 590 // Considered carefully, the answer is no. We know that if we 591 // are asking for the distance out, we are s 591 // are asking for the distance out, we are supposed to be inside, 592 // and vice versa. 592 // and vice versa. 593 // 593 // 594 594 595 return kInfinity; 595 return kInfinity; 596 } 596 } 597 597 598 // Inside 598 // Inside 599 // 599 // 600 EInside G4PolyhedraSide::Inside( const G4Three 600 EInside G4PolyhedraSide::Inside( const G4ThreeVector& p, 601 G4doubl 601 G4double tolerance, 602 G4doubl 602 G4double* bestDistance ) 603 { 603 { 604 // 604 // 605 // Which phi segment is closest to this poin 605 // Which phi segment is closest to this point? 606 // 606 // 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 607 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 608 608 609 G4double norm; 609 G4double norm; 610 610 611 // 611 // 612 // Get distance to this segment 612 // Get distance to this segment 613 // 613 // 614 *bestDistance = DistanceToOneSide( p, vecs[i 614 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 615 615 616 // 616 // 617 // Use distance along normal to decide retur 617 // Use distance along normal to decide return value 618 // 618 // 619 if ( (std::fabs(norm) > tolerance) || (*best 619 if ( (std::fabs(norm) > tolerance) || (*bestDistance > 2.0*tolerance) ) 620 return (norm < 0) ? kInside : kOutside; 620 return (norm < 0) ? kInside : kOutside; 621 else 621 else 622 return kSurface; 622 return kSurface; 623 } 623 } 624 624 625 // Normal 625 // Normal 626 // 626 // 627 G4ThreeVector G4PolyhedraSide::Normal( const G 627 G4ThreeVector G4PolyhedraSide::Normal( const G4ThreeVector& p, 628 G 628 G4double* bestDistance ) 629 { 629 { 630 // 630 // 631 // Which phi segment is closest to this poin 631 // Which phi segment is closest to this point? 632 // 632 // 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 633 G4int iPhi = ClosestPhiSegment( GetPhi(p) ); 634 634 635 // 635 // 636 // Get distance to this segment 636 // Get distance to this segment 637 // 637 // 638 G4double norm; 638 G4double norm; 639 *bestDistance = DistanceToOneSide( p, vecs[i 639 *bestDistance = DistanceToOneSide( p, vecs[iPhi], &norm ); 640 640 641 return vecs[iPhi].normal; 641 return vecs[iPhi].normal; 642 } 642 } 643 643 644 // Extent 644 // Extent 645 // 645 // 646 G4double G4PolyhedraSide::Extent( const G4Thre 646 G4double G4PolyhedraSide::Extent( const G4ThreeVector axis ) 647 { 647 { 648 if (axis.perp2() < DBL_MIN) 648 if (axis.perp2() < DBL_MIN) 649 { 649 { 650 // 650 // 651 // Special case 651 // Special case 652 // 652 // 653 return axis.z() < 0 ? -cone->ZLo() : cone- 653 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 654 } 654 } 655 655 656 G4int iPhi, i1, i2; 656 G4int iPhi, i1, i2; 657 G4double best; 657 G4double best; 658 G4ThreeVector* list[4]; 658 G4ThreeVector* list[4]; 659 659 660 // 660 // 661 // Which phi segment, if any, does the axis 661 // Which phi segment, if any, does the axis belong to 662 // 662 // 663 iPhi = PhiSegment( GetPhi(axis) ); 663 iPhi = PhiSegment( GetPhi(axis) ); 664 664 665 if (iPhi < 0) 665 if (iPhi < 0) 666 { 666 { 667 // 667 // 668 // No phi segment? Check front edge of fir 668 // No phi segment? Check front edge of first side and 669 // last edge of second side 669 // last edge of second side 670 // 670 // 671 i1 = 0; i2 = numSide-1; 671 i1 = 0; i2 = numSide-1; 672 } 672 } 673 else 673 else 674 { 674 { 675 // 675 // 676 // Check all corners of matching phi side 676 // Check all corners of matching phi side 677 // 677 // 678 i1 = iPhi; i2 = iPhi; 678 i1 = iPhi; i2 = iPhi; 679 } 679 } 680 680 681 list[0] = vecs[i1].edges[0]->corner; 681 list[0] = vecs[i1].edges[0]->corner; 682 list[1] = vecs[i1].edges[0]->corner+1; 682 list[1] = vecs[i1].edges[0]->corner+1; 683 list[2] = vecs[i2].edges[1]->corner; 683 list[2] = vecs[i2].edges[1]->corner; 684 list[3] = vecs[i2].edges[1]->corner+1; 684 list[3] = vecs[i2].edges[1]->corner+1; 685 685 686 // 686 // 687 // Who's biggest? 687 // Who's biggest? 688 // 688 // 689 best = -kInfinity; 689 best = -kInfinity; 690 G4ThreeVector** vec = list; 690 G4ThreeVector** vec = list; 691 do // Loop checking, 13.08.2015, G.Cosmo 691 do // Loop checking, 13.08.2015, G.Cosmo 692 { 692 { 693 G4double answer = (*vec)->dot(axis); 693 G4double answer = (*vec)->dot(axis); 694 if (answer > best) best = answer; 694 if (answer > best) best = answer; 695 } while( ++vec < list+4 ); 695 } while( ++vec < list+4 ); 696 696 697 return best; 697 return best; 698 } 698 } 699 699 700 // CalculateExtent 700 // CalculateExtent 701 // 701 // 702 // See notes in G4VCSGface 702 // See notes in G4VCSGface 703 // 703 // 704 void G4PolyhedraSide::CalculateExtent( const E 704 void G4PolyhedraSide::CalculateExtent( const EAxis axis, 705 const G 705 const G4VoxelLimits& voxelLimit, 706 const G 706 const G4AffineTransform& transform, 707 G 707 G4SolidExtentList& extentList ) 708 { 708 { 709 // 709 // 710 // Loop over all sides 710 // Loop over all sides 711 // 711 // 712 G4PolyhedraSideVec *vec = vecs; 712 G4PolyhedraSideVec *vec = vecs; 713 do // Loop checking, 13.08.2015, G.Cosmo 713 do // Loop checking, 13.08.2015, G.Cosmo 714 { 714 { 715 // 715 // 716 // Fill our polygon with the four corners 716 // Fill our polygon with the four corners of 717 // this side, after the specified transfor 717 // this side, after the specified transformation 718 // 718 // 719 G4ClippablePolygon polygon; 719 G4ClippablePolygon polygon; 720 720 721 polygon.AddVertexInOrder(transform. 721 polygon.AddVertexInOrder(transform. 722 TransformPoint(ve 722 TransformPoint(vec->edges[0]->corner[0])); 723 polygon.AddVertexInOrder(transform. 723 polygon.AddVertexInOrder(transform. 724 TransformPoint(ve 724 TransformPoint(vec->edges[0]->corner[1])); 725 polygon.AddVertexInOrder(transform. 725 polygon.AddVertexInOrder(transform. 726 TransformPoint(ve 726 TransformPoint(vec->edges[1]->corner[1])); 727 polygon.AddVertexInOrder(transform. 727 polygon.AddVertexInOrder(transform. 728 TransformPoint(ve 728 TransformPoint(vec->edges[1]->corner[0])); 729 729 730 // 730 // 731 // Get extent 731 // Get extent 732 // 732 // 733 if (polygon.PartialClip( voxelLimit, axis 733 if (polygon.PartialClip( voxelLimit, axis )) 734 { 734 { 735 // 735 // 736 // Get dot product of normal along targe 736 // Get dot product of normal along target axis 737 // 737 // 738 polygon.SetNormal( transform.TransformAx 738 polygon.SetNormal( transform.TransformAxis(vec->normal) ); 739 739 740 extentList.AddSurface( polygon ); 740 extentList.AddSurface( polygon ); 741 } 741 } 742 } while( ++vec < vecs+numSide ); 742 } while( ++vec < vecs+numSide ); 743 743 744 return; 744 return; 745 } 745 } 746 746 747 // IntersectSidePlane 747 // IntersectSidePlane 748 // 748 // 749 // Decide if a line correctly intersects one s 749 // Decide if a line correctly intersects one side plane of our segment. 750 // It is assumed that the correct side has bee 750 // It is assumed that the correct side has been chosen, and thus only 751 // the z bounds (of the entire segment) are ch 751 // the z bounds (of the entire segment) are checked. 752 // 752 // 753 // normSign - To be multiplied against normal: 753 // normSign - To be multiplied against normal: 754 // = +1.0 normal is unchanged 754 // = +1.0 normal is unchanged 755 // = -1.0 normal is reversed (now p 755 // = -1.0 normal is reversed (now points inward) 756 // 756 // 757 // Arguments: 757 // Arguments: 758 // p - (in) Point 758 // p - (in) Point 759 // v - (in) Direction 759 // v - (in) Direction 760 // vec - (in) Description record of the si 760 // vec - (in) Description record of the side plane 761 // normSign - (in) Sign (+/- 1) to apply to 761 // normSign - (in) Sign (+/- 1) to apply to normal 762 // surfTolerance - (in) Surface tolerance (g 762 // surfTolerance - (in) Surface tolerance (generally > 0, see below) 763 // distance - (out) Distance along v to inte 763 // distance - (out) Distance along v to intersection 764 // distFromSurface - (out) Distance from surf 764 // distFromSurface - (out) Distance from surface normal 765 // 765 // 766 // Notes: 766 // Notes: 767 // surfTolerance - Used to decide if a poin 767 // surfTolerance - Used to decide if a point is behind the surface, 768 // a point is allow to be -surfToleranc 768 // a point is allow to be -surfTolerance behind the 769 // surface (as measured along the norma 769 // surface (as measured along the normal), but *only* 770 // if the point is within the r/z bound 770 // if the point is within the r/z bounds + surfTolerance 771 // of the segment. 771 // of the segment. 772 // 772 // 773 G4bool G4PolyhedraSide::IntersectSidePlane( co 773 G4bool G4PolyhedraSide::IntersectSidePlane( const G4ThreeVector& p, 774 co 774 const G4ThreeVector& v, 775 co 775 const G4PolyhedraSideVec& vec, 776 776 G4double normSign, 777 777 G4double surfTolerance, 778 778 G4double& distance, 779 779 G4double& distFromSurface ) 780 { 780 { 781 // 781 // 782 // Correct normal? Here we have straight sid 782 // Correct normal? Here we have straight sides, and can safely ignore 783 // intersections where the dot product with 783 // intersections where the dot product with the normal is zero. 784 // 784 // 785 G4double dotProd = normSign*v.dot(vec.normal 785 G4double dotProd = normSign*v.dot(vec.normal); 786 786 787 if (dotProd <= 0) return false; 787 if (dotProd <= 0) return false; 788 788 789 // 789 // 790 // Calculate distance to surface. If the sid 790 // Calculate distance to surface. If the side is too far 791 // behind the point, we must reject it. 791 // behind the point, we must reject it. 792 // 792 // 793 G4ThreeVector delta = p - vec.center; 793 G4ThreeVector delta = p - vec.center; 794 distFromSurface = -normSign*delta.dot(vec.no 794 distFromSurface = -normSign*delta.dot(vec.normal); 795 795 796 if (distFromSurface < -surfTolerance) return 796 if (distFromSurface < -surfTolerance) return false; 797 797 798 // 798 // 799 // Calculate precise distance to intersectio 799 // Calculate precise distance to intersection with the side 800 // (along the trajectory, not normal to the 800 // (along the trajectory, not normal to the surface) 801 // 801 // 802 distance = distFromSurface/dotProd; 802 distance = distFromSurface/dotProd; 803 803 804 // 804 // 805 // Do we fall off the r/z extent of the segm 805 // Do we fall off the r/z extent of the segment? 806 // 806 // 807 // Calculate this very, very carefully! Why? 807 // Calculate this very, very carefully! Why? 808 // 1. If a RZ end is at R=0, you can 808 // 1. If a RZ end is at R=0, you can't miss! 809 // 2. If you just fall off in RZ, th 809 // 2. If you just fall off in RZ, the answer must 810 // be consistent with adjacent G4 810 // be consistent with adjacent G4PolyhedraSide faces. 811 // (2) implies that only variables used by o 811 // (2) implies that only variables used by other G4PolyhedraSide 812 // faces may be used, which includes only: p 812 // faces may be used, which includes only: p, v, and the edge corners. 813 // It also means that one side is a ">" or " 813 // It also means that one side is a ">" or "<", which the other 814 // must be ">=" or "<=". Fortunately, this i 814 // must be ">=" or "<=". Fortunately, this isn't a new problem. 815 // The solution below I borrowed from Joseph 815 // The solution below I borrowed from Joseph O'Rourke, 816 // "Computational Geometry in C (Second Edit 816 // "Computational Geometry in C (Second Edition)" 817 // See: http://cs.smith.edu/~orourke/ 817 // See: http://cs.smith.edu/~orourke/ 818 // 818 // 819 G4ThreeVector ic = p + distance*v - vec.cent 819 G4ThreeVector ic = p + distance*v - vec.center; 820 G4double atRZ = vec.surfRZ.dot(ic); 820 G4double atRZ = vec.surfRZ.dot(ic); 821 821 822 if (atRZ < 0) 822 if (atRZ < 0) 823 { 823 { 824 if (r[0]==0) return true; // Can't miss 824 if (r[0]==0) return true; // Can't miss! 825 825 826 if (atRZ < -lenRZ*1.2) return false; // F 826 if (atRZ < -lenRZ*1.2) return false; // Forget it! Missed by a mile. 827 827 828 G4ThreeVector q = p + v; 828 G4ThreeVector q = p + v; 829 G4ThreeVector qa = q - vec.edges[0]->corne 829 G4ThreeVector qa = q - vec.edges[0]->corner[0], 830 qb = q - vec.edges[1]->corne 830 qb = q - vec.edges[1]->corner[0]; 831 G4ThreeVector qacb = qa.cross(qb); 831 G4ThreeVector qacb = qa.cross(qb); 832 if (normSign*qacb.dot(v) < 0) return false 832 if (normSign*qacb.dot(v) < 0) return false; 833 833 834 if (distFromSurface < 0) 834 if (distFromSurface < 0) 835 { 835 { 836 if (atRZ < -lenRZ-surfTolerance) return 836 if (atRZ < -lenRZ-surfTolerance) return false; 837 } 837 } 838 } 838 } 839 else if (atRZ > 0) 839 else if (atRZ > 0) 840 { 840 { 841 if (r[1]==0) return true; // Can't miss 841 if (r[1]==0) return true; // Can't miss! 842 842 843 if (atRZ > lenRZ*1.2) return false; // Mi 843 if (atRZ > lenRZ*1.2) return false; // Missed by a mile 844 844 845 G4ThreeVector q = p + v; 845 G4ThreeVector q = p + v; 846 G4ThreeVector qa = q - vec.edges[0]->corne 846 G4ThreeVector qa = q - vec.edges[0]->corner[1], 847 qb = q - vec.edges[1]->corne 847 qb = q - vec.edges[1]->corner[1]; 848 G4ThreeVector qacb = qa.cross(qb); 848 G4ThreeVector qacb = qa.cross(qb); 849 if (normSign*qacb.dot(v) >= 0) return fals 849 if (normSign*qacb.dot(v) >= 0) return false; 850 850 851 if (distFromSurface < 0) 851 if (distFromSurface < 0) 852 { 852 { 853 if (atRZ > lenRZ+surfTolerance) return f 853 if (atRZ > lenRZ+surfTolerance) return false; 854 } 854 } 855 } 855 } 856 856 857 return true; 857 return true; 858 } 858 } 859 859 860 // LineHitsSegments 860 // LineHitsSegments 861 // 861 // 862 // Calculate which phi segments a line interse 862 // Calculate which phi segments a line intersects in three dimensions. 863 // No check is made as to whether the intersec 863 // No check is made as to whether the intersections are within the z bounds of 864 // the segment. 864 // the segment. 865 // 865 // 866 G4int G4PolyhedraSide::LineHitsSegments( const 866 G4int G4PolyhedraSide::LineHitsSegments( const G4ThreeVector& p, 867 const 867 const G4ThreeVector& v, 868 868 G4int* i1, G4int* i2 ) 869 { 869 { 870 G4double s1, s2; 870 G4double s1, s2; 871 // 871 // 872 // First, decide if and where the line inter 872 // First, decide if and where the line intersects the cone 873 // 873 // 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 874 G4int n = cone->LineHitsCone( p, v, &s1, &s2 ); 875 875 876 if (n==0) return 0; 876 if (n==0) return 0; 877 877 878 // 878 // 879 // Try first intersection. 879 // Try first intersection. 880 // 880 // 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y 881 *i1 = PhiSegment( std::atan2( p.y() + s1*v.y(), p.x() + s1*v.x() ) ); 882 if (n==1) 882 if (n==1) 883 { 883 { 884 return (*i1 < 0) ? 0 : 1; 884 return (*i1 < 0) ? 0 : 1; 885 } 885 } 886 886 887 // 887 // 888 // Try second intersection 888 // Try second intersection 889 // 889 // 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y 890 *i2 = PhiSegment( std::atan2( p.y() + s2*v.y(), p.x() + s2*v.x() ) ); 891 if (*i1 == *i2) return 0; 891 if (*i1 == *i2) return 0; 892 892 893 if (*i1 < 0) 893 if (*i1 < 0) 894 { 894 { 895 if (*i2 < 0) return 0; 895 if (*i2 < 0) return 0; 896 *i1 = *i2; 896 *i1 = *i2; 897 return 1; 897 return 1; 898 } 898 } 899 899 900 if (*i2 < 0) return 1; 900 if (*i2 < 0) return 1; 901 901 902 return 2; 902 return 2; 903 } 903 } 904 904 905 // ClosestPhiSegment 905 // ClosestPhiSegment 906 // 906 // 907 // Decide which phi segment is closest in phi 907 // Decide which phi segment is closest in phi to the point. 908 // The result is the same as PhiSegment if the 908 // The result is the same as PhiSegment if there is no phi opening. 909 // 909 // 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4do 910 G4int G4PolyhedraSide::ClosestPhiSegment( G4double phi0 ) 911 { 911 { 912 G4int iPhi = PhiSegment( phi0 ); 912 G4int iPhi = PhiSegment( phi0 ); 913 if (iPhi >= 0) return iPhi; 913 if (iPhi >= 0) return iPhi; 914 914 915 // 915 // 916 // Boogers! The points falls inside the phi 916 // Boogers! The points falls inside the phi segment. 917 // Look for the closest point: the start, or 917 // Look for the closest point: the start, or end 918 // 918 // 919 G4double phi = phi0; 919 G4double phi = phi0; 920 920 921 while( phi < startPhi ) // Loop checking, 921 while( phi < startPhi ) // Loop checking, 13.08.2015, G.Cosmo 922 phi += twopi; 922 phi += twopi; 923 G4double d1 = phi-endPhi; 923 G4double d1 = phi-endPhi; 924 924 925 while( phi > startPhi ) // Loop checking, 925 while( phi > startPhi ) // Loop checking, 13.08.2015, G.Cosmo 926 phi -= twopi; 926 phi -= twopi; 927 G4double d2 = startPhi-phi; 927 G4double d2 = startPhi-phi; 928 928 929 return (d2 < d1) ? 0 : numSide-1; 929 return (d2 < d1) ? 0 : numSide-1; 930 } 930 } 931 931 932 // PhiSegment 932 // PhiSegment 933 // 933 // 934 // Decide which phi segment an angle belongs t 934 // Decide which phi segment an angle belongs to, counting from zero. 935 // A value of -1 indicates that the phi value 935 // A value of -1 indicates that the phi value is outside the shape 936 // (only possible if phiTotal < 360 degrees). 936 // (only possible if phiTotal < 360 degrees). 937 // 937 // 938 G4int G4PolyhedraSide::PhiSegment( G4double ph 938 G4int G4PolyhedraSide::PhiSegment( G4double phi0 ) 939 { 939 { 940 // 940 // 941 // How far are we from phiStart? Come up wit 941 // How far are we from phiStart? Come up with a positive answer 942 // that is less than 2*PI 942 // that is less than 2*PI 943 // 943 // 944 G4double phi = phi0 - startPhi; 944 G4double phi = phi0 - startPhi; 945 while( phi < 0 ) // Loop checking, 13.08. 945 while( phi < 0 ) // Loop checking, 13.08.2015, G.Cosmo 946 phi += twopi; 946 phi += twopi; 947 while( phi > twopi ) // Loop checking, 13 947 while( phi > twopi ) // Loop checking, 13.08.2015, G.Cosmo 948 phi -= twopi; 948 phi -= twopi; 949 949 950 // 950 // 951 // Divide 951 // Divide 952 // 952 // 953 auto answer = (G4int)(phi/deltaPhi); << 953 G4int answer = (G4int)(phi/deltaPhi); 954 954 955 if (answer >= numSide) 955 if (answer >= numSide) 956 { 956 { 957 if (phiIsOpen) 957 if (phiIsOpen) 958 { 958 { 959 return -1; // Looks like we missed 959 return -1; // Looks like we missed 960 } 960 } 961 else 961 else 962 { 962 { 963 answer = numSide-1; // Probably just ro 963 answer = numSide-1; // Probably just roundoff 964 } 964 } 965 } 965 } 966 966 967 return answer; 967 return answer; 968 } 968 } 969 969 970 // GetPhi 970 // GetPhi 971 // 971 // 972 // Calculate Phi for a given 3-vector (point), 972 // Calculate Phi for a given 3-vector (point), if not already cached for the 973 // same point, in the attempt to avoid consecu 973 // same point, in the attempt to avoid consecutive computation of the same 974 // quantity 974 // quantity 975 // 975 // 976 G4double G4PolyhedraSide::GetPhi( const G4Thre 976 G4double G4PolyhedraSide::GetPhi( const G4ThreeVector& p ) 977 { 977 { 978 G4double val=0.; 978 G4double val=0.; 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, 979 G4ThreeVector vphi(G4MT_phphix, G4MT_phphiy, G4MT_phphiz); 980 980 981 if (vphi != p) 981 if (vphi != p) 982 { 982 { 983 val = p.phi(); 983 val = p.phi(); 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); 984 G4MT_phphix = p.x(); G4MT_phphiy = p.y(); G4MT_phphiz = p.z(); 985 G4MT_phphik = val; 985 G4MT_phphik = val; 986 } 986 } 987 else 987 else 988 { 988 { 989 val = G4MT_phphik; 989 val = G4MT_phphik; 990 } 990 } 991 return val; 991 return val; 992 } 992 } 993 993 994 // DistanceToOneSide 994 // DistanceToOneSide 995 // 995 // 996 // Arguments: 996 // Arguments: 997 // p - (in) Point to check 997 // p - (in) Point to check 998 // vec - (in) vector set of this side 998 // vec - (in) vector set of this side 999 // normDist - (out) distance normal to the si 999 // normDist - (out) distance normal to the side or edge, as appropriate, signed 1000 // Return value = total distance from the sid 1000 // Return value = total distance from the side 1001 // 1001 // 1002 G4double G4PolyhedraSide::DistanceToOneSide( 1002 G4double G4PolyhedraSide::DistanceToOneSide( const G4ThreeVector& p, 1003 1003 const G4PolyhedraSideVec& vec, 1004 1004 G4double* normDist ) 1005 { 1005 { 1006 G4ThreeVector pct = p - vec.center; 1006 G4ThreeVector pct = p - vec.center; 1007 1007 1008 // 1008 // 1009 // Get normal distance 1009 // Get normal distance 1010 // 1010 // 1011 *normDist = vec.normal.dot(pct); 1011 *normDist = vec.normal.dot(pct); 1012 1012 1013 // 1013 // 1014 // Add edge penalty 1014 // Add edge penalty 1015 // 1015 // 1016 return DistanceAway( p, vec, normDist ); 1016 return DistanceAway( p, vec, normDist ); 1017 } 1017 } 1018 1018 1019 // DistanceAway 1019 // DistanceAway 1020 // 1020 // 1021 // Add distance from side edges, if necessary 1021 // Add distance from side edges, if necessary, to total distance, 1022 // and updates normDist appropriate depending 1022 // and updates normDist appropriate depending on edge normals. 1023 // 1023 // 1024 G4double G4PolyhedraSide::DistanceAway( const 1024 G4double G4PolyhedraSide::DistanceAway( const G4ThreeVector& p, 1025 const 1025 const G4PolyhedraSideVec& vec, 1026 1026 G4double* normDist ) 1027 { 1027 { 1028 G4double distOut2; 1028 G4double distOut2; 1029 G4ThreeVector pct = p - vec.center; 1029 G4ThreeVector pct = p - vec.center; 1030 G4double distFaceNorm = *normDist; 1030 G4double distFaceNorm = *normDist; 1031 1031 1032 // 1032 // 1033 // Okay, are we inside bounds? 1033 // Okay, are we inside bounds? 1034 // 1034 // 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); 1035 G4double pcDotRZ = pct.dot(vec.surfRZ); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); 1036 G4double pcDotPhi = pct.dot(vec.surfPhi); 1037 1037 1038 // 1038 // 1039 // Go through all permutations. 1039 // Go through all permutations. 1040 // 1040 // Phi 1041 // | | 1041 // | | ^ 1042 // B | H | E 1042 // B | H | E | 1043 // ------[1]------------[3]----- 1043 // ------[1]------------[3]----- | 1044 // |XXXXXXXXXXXXXX| 1044 // |XXXXXXXXXXXXXX| +----> RZ 1045 // C |XXXXXXXXXXXXXX| F 1045 // C |XXXXXXXXXXXXXX| F 1046 // |XXXXXXXXXXXXXX| 1046 // |XXXXXXXXXXXXXX| 1047 // ------[0]------------[2]---- 1047 // ------[0]------------[2]---- 1048 // A | G | D 1048 // A | G | D 1049 // | | 1049 // | | 1050 // 1050 // 1051 // It's real messy, but at least it's quick 1051 // It's real messy, but at least it's quick 1052 // 1052 // 1053 1053 1054 if (pcDotRZ < -lenRZ) 1054 if (pcDotRZ < -lenRZ) 1055 { 1055 { 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenP 1056 G4double lenPhiZ = lenPhi[0] - lenRZ*lenPhi[1]; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1057 G4double distOutZ = pcDotRZ+lenRZ; 1058 // 1058 // 1059 // Below in RZ 1059 // Below in RZ 1060 // 1060 // 1061 if (pcDotPhi < -lenPhiZ) 1061 if (pcDotPhi < -lenPhiZ) 1062 { 1062 { 1063 // 1063 // 1064 // ...and below in phi. Find distance t 1064 // ...and below in phi. Find distance to point (A) 1065 // 1065 // 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1066 G4double distOutPhi = pcDotPhi+lenPhiZ; 1067 distOut2 = distOutPhi*distOutPhi + dist 1067 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1068 G4ThreeVector pa = p - vec.edges[0]->co 1068 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1069 *normDist = pa.dot(vec.edges[0]->cornNo 1069 *normDist = pa.dot(vec.edges[0]->cornNorm[0]); 1070 } 1070 } 1071 else if (pcDotPhi > lenPhiZ) 1071 else if (pcDotPhi > lenPhiZ) 1072 { 1072 { 1073 // 1073 // 1074 // ...and above in phi. Find distance t 1074 // ...and above in phi. Find distance to point (B) 1075 // 1075 // 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1076 G4double distOutPhi = pcDotPhi-lenPhiZ; 1077 distOut2 = distOutPhi*distOutPhi + dist 1077 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1078 G4ThreeVector pb = p - vec.edges[1]->co 1078 G4ThreeVector pb = p - vec.edges[1]->corner[0]; 1079 *normDist = pb.dot(vec.edges[1]->cornNo 1079 *normDist = pb.dot(vec.edges[1]->cornNorm[0]); 1080 } 1080 } 1081 else 1081 else 1082 { 1082 { 1083 // 1083 // 1084 // ...and inside in phi. Find distance 1084 // ...and inside in phi. Find distance to line (C) 1085 // 1085 // 1086 G4ThreeVector pa = p - vec.edges[0]->co 1086 G4ThreeVector pa = p - vec.edges[0]->corner[0]; 1087 distOut2 = distOutZ*distOutZ; 1087 distOut2 = distOutZ*distOutZ; 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1088 *normDist = pa.dot(vec.edgeNorm[0]); 1089 } 1089 } 1090 } 1090 } 1091 else if (pcDotRZ > lenRZ) 1091 else if (pcDotRZ > lenRZ) 1092 { 1092 { 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenP 1093 G4double lenPhiZ = lenPhi[0] + lenRZ*lenPhi[1]; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1094 G4double distOutZ = pcDotRZ-lenRZ; 1095 // 1095 // 1096 // Above in RZ 1096 // Above in RZ 1097 // 1097 // 1098 if (pcDotPhi < -lenPhiZ) 1098 if (pcDotPhi < -lenPhiZ) 1099 { 1099 { 1100 // 1100 // 1101 // ...and below in phi. Find distance t 1101 // ...and below in phi. Find distance to point (D) 1102 // 1102 // 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1103 G4double distOutPhi = pcDotPhi+lenPhiZ; 1104 distOut2 = distOutPhi*distOutPhi + dist 1104 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1105 G4ThreeVector pd = p - vec.edges[0]->co 1105 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1106 *normDist = pd.dot(vec.edges[0]->cornNo 1106 *normDist = pd.dot(vec.edges[0]->cornNorm[1]); 1107 } 1107 } 1108 else if (pcDotPhi > lenPhiZ) 1108 else if (pcDotPhi > lenPhiZ) 1109 { 1109 { 1110 // 1110 // 1111 // ...and above in phi. Find distance t 1111 // ...and above in phi. Find distance to point (E) 1112 // 1112 // 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1113 G4double distOutPhi = pcDotPhi-lenPhiZ; 1114 distOut2 = distOutPhi*distOutPhi + dist 1114 distOut2 = distOutPhi*distOutPhi + distOutZ*distOutZ; 1115 G4ThreeVector pe = p - vec.edges[1]->co 1115 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1116 *normDist = pe.dot(vec.edges[1]->cornNo 1116 *normDist = pe.dot(vec.edges[1]->cornNorm[1]); 1117 } 1117 } 1118 else 1118 else 1119 { 1119 { 1120 // 1120 // 1121 // ...and inside in phi. Find distance 1121 // ...and inside in phi. Find distance to line (F) 1122 // 1122 // 1123 distOut2 = distOutZ*distOutZ; 1123 distOut2 = distOutZ*distOutZ; 1124 G4ThreeVector pd = p - vec.edges[0]->co 1124 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1125 *normDist = pd.dot(vec.edgeNorm[1]); 1126 } 1126 } 1127 } 1127 } 1128 else 1128 else 1129 { 1129 { 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*le 1130 G4double lenPhiZ = lenPhi[0] + pcDotRZ*lenPhi[1]; 1131 // 1131 // 1132 // We are inside RZ bounds 1132 // We are inside RZ bounds 1133 // 1133 // 1134 if (pcDotPhi < -lenPhiZ) 1134 if (pcDotPhi < -lenPhiZ) 1135 { 1135 { 1136 // 1136 // 1137 // ...and below in phi. Find distance t 1137 // ...and below in phi. Find distance to line (G) 1138 // 1138 // 1139 G4double distOut = edgeNorm*(pcDotPhi+l 1139 G4double distOut = edgeNorm*(pcDotPhi+lenPhiZ); 1140 distOut2 = distOut*distOut; 1140 distOut2 = distOut*distOut; 1141 G4ThreeVector pd = p - vec.edges[0]->co 1141 G4ThreeVector pd = p - vec.edges[0]->corner[1]; 1142 *normDist = pd.dot(vec.edges[0]->normal 1142 *normDist = pd.dot(vec.edges[0]->normal); 1143 } 1143 } 1144 else if (pcDotPhi > lenPhiZ) 1144 else if (pcDotPhi > lenPhiZ) 1145 { 1145 { 1146 // 1146 // 1147 // ...and above in phi. Find distance t 1147 // ...and above in phi. Find distance to line (H) 1148 // 1148 // 1149 G4double distOut = edgeNorm*(pcDotPhi-l 1149 G4double distOut = edgeNorm*(pcDotPhi-lenPhiZ); 1150 distOut2 = distOut*distOut; 1150 distOut2 = distOut*distOut; 1151 G4ThreeVector pe = p - vec.edges[1]->co 1151 G4ThreeVector pe = p - vec.edges[1]->corner[1]; 1152 *normDist = pe.dot(vec.edges[1]->normal 1152 *normDist = pe.dot(vec.edges[1]->normal); 1153 } 1153 } 1154 else 1154 else 1155 { 1155 { 1156 // 1156 // 1157 // Inside bounds! No penalty. 1157 // Inside bounds! No penalty. 1158 // 1158 // 1159 return std::fabs(distFaceNorm); 1159 return std::fabs(distFaceNorm); 1160 } 1160 } 1161 } 1161 } 1162 return std::sqrt( distFaceNorm*distFaceNorm 1162 return std::sqrt( distFaceNorm*distFaceNorm + distOut2 ); 1163 } 1163 } 1164 1164 1165 // Calculation of surface area of a triangle. 1165 // Calculation of surface area of a triangle. 1166 // At the same time a random point in the tri 1166 // At the same time a random point in the triangle is given 1167 // 1167 // 1168 G4double G4PolyhedraSide::SurfaceTriangle( co << 1168 G4double G4PolyhedraSide::SurfaceTriangle( G4ThreeVector p1, 1169 co << 1169 G4ThreeVector p2, 1170 co << 1170 G4ThreeVector p3, 1171 G4 1171 G4ThreeVector* p4 ) 1172 { 1172 { 1173 G4ThreeVector v, w; 1173 G4ThreeVector v, w; 1174 1174 1175 v = p3 - p1; 1175 v = p3 - p1; 1176 w = p1 - p2; 1176 w = p1 - p2; 1177 G4double lambda1 = G4UniformRand(); 1177 G4double lambda1 = G4UniformRand(); 1178 G4double lambda2 = lambda1*G4UniformRand(); 1178 G4double lambda2 = lambda1*G4UniformRand(); 1179 1179 1180 *p4=p2 + lambda1*w + lambda2*v; 1180 *p4=p2 + lambda1*w + lambda2*v; 1181 return 0.5*(v.cross(w)).mag(); 1181 return 0.5*(v.cross(w)).mag(); 1182 } 1182 } 1183 1183 1184 // GetPointOnPlane 1184 // GetPointOnPlane 1185 // 1185 // 1186 // Auxiliary method for GetPointOnSurface() 1186 // Auxiliary method for GetPointOnSurface() 1187 // 1187 // 1188 G4ThreeVector 1188 G4ThreeVector 1189 G4PolyhedraSide::GetPointOnPlane( const G4Thr << 1189 G4PolyhedraSide::GetPointOnPlane( G4ThreeVector p0, G4ThreeVector p1, 1190 const G4Thr << 1190 G4ThreeVector p2, G4ThreeVector p3, 1191 G4double* A 1191 G4double* Area ) 1192 { 1192 { 1193 G4double chose,aOne,aTwo; 1193 G4double chose,aOne,aTwo; 1194 G4ThreeVector point1,point2; 1194 G4ThreeVector point1,point2; 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1195 aOne = SurfaceTriangle(p0,p1,p2,&point1); 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1196 aTwo = SurfaceTriangle(p2,p3,p0,&point2); 1197 *Area= aOne+aTwo; 1197 *Area= aOne+aTwo; 1198 1198 1199 chose = G4UniformRand()*(aOne+aTwo); 1199 chose = G4UniformRand()*(aOne+aTwo); 1200 if( (chose>=0.) && (chose < aOne) ) 1200 if( (chose>=0.) && (chose < aOne) ) 1201 { 1201 { 1202 return (point1); 1202 return (point1); 1203 } 1203 } 1204 return (point2); 1204 return (point2); 1205 } 1205 } 1206 1206 1207 // SurfaceArea() 1207 // SurfaceArea() 1208 // 1208 // 1209 G4double G4PolyhedraSide::SurfaceArea() 1209 G4double G4PolyhedraSide::SurfaceArea() 1210 { 1210 { 1211 if( fSurfaceArea==0. ) 1211 if( fSurfaceArea==0. ) 1212 { 1212 { 1213 // Define the variables 1213 // Define the variables 1214 // 1214 // 1215 G4double area,areas; 1215 G4double area,areas; 1216 G4ThreeVector point1; 1216 G4ThreeVector point1; 1217 G4ThreeVector v1,v2,v3,v4; 1217 G4ThreeVector v1,v2,v3,v4; 1218 G4PolyhedraSideVec* vec = vecs; 1218 G4PolyhedraSideVec* vec = vecs; 1219 areas=0.; 1219 areas=0.; 1220 1220 1221 // Do a loop on all SideEdge 1221 // Do a loop on all SideEdge 1222 // 1222 // 1223 do // Loop checking, 13.08.2015, G.Cos 1223 do // Loop checking, 13.08.2015, G.Cosmo 1224 { 1224 { 1225 // Define 4points for a Plane or Triang 1225 // Define 4points for a Plane or Triangle 1226 // 1226 // 1227 v1=vec->edges[0]->corner[0]; 1227 v1=vec->edges[0]->corner[0]; 1228 v2=vec->edges[0]->corner[1]; 1228 v2=vec->edges[0]->corner[1]; 1229 v3=vec->edges[1]->corner[1]; 1229 v3=vec->edges[1]->corner[1]; 1230 v4=vec->edges[1]->corner[0]; 1230 v4=vec->edges[1]->corner[0]; 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&are 1231 point1=GetPointOnPlane(v1,v2,v3,v4,&area); 1232 areas+=area; 1232 areas+=area; 1233 } while( ++vec < vecs + numSide); 1233 } while( ++vec < vecs + numSide); 1234 1234 1235 fSurfaceArea=areas; 1235 fSurfaceArea=areas; 1236 } 1236 } 1237 return fSurfaceArea; 1237 return fSurfaceArea; 1238 } 1238 } 1239 1239 1240 // GetPointOnFace() 1240 // GetPointOnFace() 1241 // 1241 // 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace 1242 G4ThreeVector G4PolyhedraSide::GetPointOnFace() 1243 { 1243 { 1244 // Define the variables 1244 // Define the variables 1245 // 1245 // 1246 std::vector<G4double>areas; 1246 std::vector<G4double>areas; 1247 std::vector<G4ThreeVector>points; 1247 std::vector<G4ThreeVector>points; 1248 G4double area=0.; 1248 G4double area=0.; 1249 G4double result1; 1249 G4double result1; 1250 G4ThreeVector point1; 1250 G4ThreeVector point1; 1251 G4ThreeVector v1,v2,v3,v4; 1251 G4ThreeVector v1,v2,v3,v4; 1252 G4PolyhedraSideVec* vec = vecs; 1252 G4PolyhedraSideVec* vec = vecs; 1253 1253 1254 // Do a loop on all SideEdge 1254 // Do a loop on all SideEdge 1255 // 1255 // 1256 do // Loop checking, 13.08.2015, G.Cosmo 1256 do // Loop checking, 13.08.2015, G.Cosmo 1257 { 1257 { 1258 // Define 4points for a Plane or Triangle 1258 // Define 4points for a Plane or Triangle 1259 // 1259 // 1260 v1=vec->edges[0]->corner[0]; 1260 v1=vec->edges[0]->corner[0]; 1261 v2=vec->edges[0]->corner[1]; 1261 v2=vec->edges[0]->corner[1]; 1262 v3=vec->edges[1]->corner[1]; 1262 v3=vec->edges[1]->corner[1]; 1263 v4=vec->edges[1]->corner[0]; 1263 v4=vec->edges[1]->corner[0]; 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&resul 1264 point1=GetPointOnPlane(v1,v2,v3,v4,&result1); 1265 points.push_back(point1); 1265 points.push_back(point1); 1266 areas.push_back(result1); 1266 areas.push_back(result1); 1267 area+=result1; 1267 area+=result1; 1268 } while( ++vec < vecs+numSide ); 1268 } while( ++vec < vecs+numSide ); 1269 1269 1270 // Choose randomly one of the surfaces and 1270 // Choose randomly one of the surfaces and point on it 1271 // 1271 // 1272 G4double chose = area*G4UniformRand(); 1272 G4double chose = area*G4UniformRand(); 1273 G4double Achose1=0., Achose2=0.; 1273 G4double Achose1=0., Achose2=0.; 1274 G4int i=0; 1274 G4int i=0; 1275 do // Loop checking, 13.08.2015, G.Cosmo 1275 do // Loop checking, 13.08.2015, G.Cosmo 1276 { 1276 { 1277 Achose2+=areas[i]; 1277 Achose2+=areas[i]; 1278 if(chose>=Achose1 && chose<Achose2) 1278 if(chose>=Achose1 && chose<Achose2) 1279 { 1279 { 1280 point1=points[i] ; break; 1280 point1=points[i] ; break; 1281 } 1281 } 1282 ++i; Achose1=Achose2; 1282 ++i; Achose1=Achose2; 1283 } while( i<numSide ); 1283 } while( i<numSide ); 1284 1284 1285 return point1; 1285 return point1; 1286 } 1286 } 1287 1287