Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyconeSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyconeSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyconeSide.cc (Version 9.4.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4PolyconeSide, the face  << 
 27 // one conical side of a polycone              << 
 28 //                                                 26 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  27 // $Id: G4PolyconeSide.cc,v 1.25 2010-07-12 15:25:37 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-04-patch-02 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 // --------------------------------------------------------------------
                                                   >>  32 // GEANT 4 class source file
                                                   >>  33 //
                                                   >>  34 //
                                                   >>  35 // G4PolyconeSide.cc
                                                   >>  36 //
                                                   >>  37 // Implementation of the face representing one conical side of a polycone
                                                   >>  38 //
 30 // -------------------------------------------     39 // --------------------------------------------------------------------
 31                                                    40 
 32 #include "G4PolyconeSide.hh"                       41 #include "G4PolyconeSide.hh"
 33 #include "meshdefs.hh"                         << 
 34 #include "G4PhysicalConstants.hh"              << 
 35 #include "G4IntersectingCone.hh"                   42 #include "G4IntersectingCone.hh"
 36 #include "G4ClippablePolygon.hh"                   43 #include "G4ClippablePolygon.hh"
 37 #include "G4AffineTransform.hh"                    44 #include "G4AffineTransform.hh"
                                                   >>  45 #include "meshdefs.hh"
 38 #include "G4SolidExtentList.hh"                    46 #include "G4SolidExtentList.hh"
 39 #include "G4GeometryTolerance.hh"                  47 #include "G4GeometryTolerance.hh"
 40                                                    48 
 41 #include "Randomize.hh"                            49 #include "Randomize.hh"
 42                                                    50 
 43 // This new field helps to use the class G4PlS << 
 44 //                                                 51 //
 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 
 46                                                << 
 47 // This macro changes the references to fields << 
 48 // in the class G4PlSideData.                  << 
 49 //                                             << 
 50 #define G4MT_pcphix ((subInstanceManager.offse << 
 51 #define G4MT_pcphiy ((subInstanceManager.offse << 
 52 #define G4MT_pcphiz ((subInstanceManager.offse << 
 53 #define G4MT_pcphik ((subInstanceManager.offse << 
 54                                                << 
 55 // Returns the private data instance manager.  << 
 56 //                                             << 
 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 
 58 {                                              << 
 59   return subInstanceManager;                   << 
 60 }                                              << 
 61                                                << 
 62 // Constructor                                     52 // Constructor
 63 //                                                 53 //
 64 // Values for r1,z1 and r2,z2 should be specif     54 // Values for r1,z1 and r2,z2 should be specified in clockwise
 65 // order in (r,z).                                 55 // order in (r,z).
 66 //                                                 56 //
 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco <<  57 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ,
 68                                 const G4Polyco <<  58                                 const G4PolyconeSideRZ *tail,
 69                                 const G4Polyco <<  59                                 const G4PolyconeSideRZ *head,
 70                                 const G4Polyco <<  60                                 const G4PolyconeSideRZ *nextRZ,
 71                                       G4double     61                                       G4double thePhiStart, 
 72                                       G4double     62                                       G4double theDeltaPhi, 
 73                                       G4bool t     63                                       G4bool thePhiIsOpen, 
 74                                       G4bool i     64                                       G4bool isAllBehind )
                                                   >>  65   : ncorners(0), corners(0)
 75 {                                                  66 {
 76   instanceID = subInstanceManager.CreateSubIns << 
 77                                                << 
 78   kCarTolerance = G4GeometryTolerance::GetInst     67   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p <<  68   fSurfaceArea = 0.0;
                                                   >>  69   fPhi.first = G4ThreeVector(0,0,0);
                                                   >>  70   fPhi.second= 0.0;
 80                                                    71 
 81   //                                               72   //
 82   // Record values                                 73   // Record values
 83   //                                               74   //
 84   r[0] = tail->r; z[0] = tail->z;                  75   r[0] = tail->r; z[0] = tail->z;
 85   r[1] = head->r; z[1] = head->z;                  76   r[1] = head->r; z[1] = head->z;
 86                                                    77   
 87   phiIsOpen = thePhiIsOpen;                        78   phiIsOpen = thePhiIsOpen;
 88   if (phiIsOpen)                                   79   if (phiIsOpen)
 89   {                                                80   {
 90     deltaPhi = theDeltaPhi;                        81     deltaPhi = theDeltaPhi;
 91     startPhi = thePhiStart;                        82     startPhi = thePhiStart;
 92                                                    83 
 93     //                                             84     //
 94     // Set phi values to our conventions           85     // Set phi values to our conventions
 95     //                                             86     //
 96     while (deltaPhi < 0.0)    // Loop checking <<  87     while (deltaPhi < 0.0) deltaPhi += twopi;
 97      deltaPhi += twopi;                        <<  88     while (startPhi < 0.0) startPhi += twopi;
 98     while (startPhi < 0.0)    // Loop checking << 
 99      startPhi += twopi;                        << 
100                                                    89     
101     //                                             90     //
102     // Calculate corner coordinates                91     // Calculate corner coordinates
103     //                                             92     //
104     ncorners = 4;                                  93     ncorners = 4;
105     corners = new G4ThreeVector[ncorners];         94     corners = new G4ThreeVector[ncorners];
106                                                    95     
107     corners[0] = G4ThreeVector( tail->r*std::c     96     corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108                                 tail->r*std::s     97                                 tail->r*std::sin(startPhi), tail->z );
109     corners[1] = G4ThreeVector( head->r*std::c     98     corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110                                 head->r*std::s     99                                 head->r*std::sin(startPhi), head->z );
111     corners[2] = G4ThreeVector( tail->r*std::c    100     corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112                                 tail->r*std::s    101                                 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113     corners[3] = G4ThreeVector( head->r*std::c    102     corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114                                 head->r*std::s    103                                 head->r*std::sin(startPhi+deltaPhi), head->z );
115   }                                               104   }
116   else                                            105   else
117   {                                               106   {
118     deltaPhi = twopi;                             107     deltaPhi = twopi;
119     startPhi = 0.0;                               108     startPhi = 0.0;
120   }                                               109   }
121                                                   110   
122   allBehind = isAllBehind;                        111   allBehind = isAllBehind;
123                                                   112     
124   //                                              113   //
125   // Make our intersecting cone                   114   // Make our intersecting cone
126   //                                              115   //
127   cone = new G4IntersectingCone( r, z );          116   cone = new G4IntersectingCone( r, z );
128                                                   117   
129   //                                              118   //
130   // Calculate vectors in r,z space               119   // Calculate vectors in r,z space
131   //                                              120   //
132   rS = r[1]-r[0]; zS = z[1]-z[0];                 121   rS = r[1]-r[0]; zS = z[1]-z[0];
133   length = std::sqrt( rS*rS + zS*zS);             122   length = std::sqrt( rS*rS + zS*zS);
134   rS /= length; zS /= length;                     123   rS /= length; zS /= length;
135                                                   124   
136   rNorm = +zS;                                    125   rNorm = +zS;
137   zNorm = -rS;                                    126   zNorm = -rS;
138                                                   127   
139   G4double lAdj;                                  128   G4double lAdj;
140                                                   129   
141   prevRS = r[0]-prevRZ->r;                        130   prevRS = r[0]-prevRZ->r;
142   prevZS = z[0]-prevRZ->z;                        131   prevZS = z[0]-prevRZ->z;
143   lAdj = std::sqrt( prevRS*prevRS + prevZS*pre    132   lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144   prevRS /= lAdj;                                 133   prevRS /= lAdj;
145   prevZS /= lAdj;                                 134   prevZS /= lAdj;
146                                                   135 
147   rNormEdge[0] = rNorm + prevZS;                  136   rNormEdge[0] = rNorm + prevZS;
148   zNormEdge[0] = zNorm - prevRS;                  137   zNormEdge[0] = zNorm - prevRS;
149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0]     138   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150   rNormEdge[0] /= lAdj;                           139   rNormEdge[0] /= lAdj;
151   zNormEdge[0] /= lAdj;                           140   zNormEdge[0] /= lAdj;
152                                                   141 
153   nextRS = nextRZ->r-r[1];                        142   nextRS = nextRZ->r-r[1];
154   nextZS = nextRZ->z-z[1];                        143   nextZS = nextRZ->z-z[1];
155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nex    144   lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156   nextRS /= lAdj;                                 145   nextRS /= lAdj;
157   nextZS /= lAdj;                                 146   nextZS /= lAdj;
158                                                   147 
159   rNormEdge[1] = rNorm + nextZS;                  148   rNormEdge[1] = rNorm + nextZS;
160   zNormEdge[1] = zNorm - nextRS;                  149   zNormEdge[1] = zNorm - nextRS;
161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1]     150   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162   rNormEdge[1] /= lAdj;                           151   rNormEdge[1] /= lAdj;
163   zNormEdge[1] /= lAdj;                           152   zNormEdge[1] /= lAdj;
164 }                                                 153 }
165                                                   154 
                                                   >> 155 
                                                   >> 156 //
166 // Fake default constructor - sets only member    157 // Fake default constructor - sets only member data and allocates memory
167 //                            for usage restri    158 //                            for usage restricted to object persistency.
168 //                                                159 //
169 G4PolyconeSide::G4PolyconeSide( __void__& )       160 G4PolyconeSide::G4PolyconeSide( __void__& )
170   : startPhi(0.), deltaPhi(0.),                << 161   : startPhi(0.), deltaPhi(0.), phiIsOpen(false), allBehind(false),
171     rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 162     cone(0), rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 163     prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.), ncorners(0), corners(0),
173     kCarTolerance(0.), instanceID(0)           << 164     kCarTolerance(0.), fSurfaceArea(0.)
174 {                                                 165 {
175   r[0] = r[1] = 0.;                               166   r[0] = r[1] = 0.;
176   z[0] = z[1] = 0.;                               167   z[0] = z[1] = 0.;
177   rNormEdge[0]= rNormEdge[1] = 0.;                168   rNormEdge[0]= rNormEdge[1] = 0.;
178   zNormEdge[0]= zNormEdge[1] = 0.;                169   zNormEdge[0]= zNormEdge[1] = 0.;
179 }                                                 170 }
180                                                   171 
                                                   >> 172 
                                                   >> 173 //
181 // Destructor                                     174 // Destructor
182 //                                                175 //  
183 G4PolyconeSide::~G4PolyconeSide()                 176 G4PolyconeSide::~G4PolyconeSide()
184 {                                                 177 {
185   delete cone;                                    178   delete cone;
186   if (phiIsOpen)  { delete [] corners; }          179   if (phiIsOpen)  { delete [] corners; }
187 }                                                 180 }
188                                                   181 
                                                   >> 182 
                                                   >> 183 //
189 // Copy constructor                               184 // Copy constructor
190 //                                                185 //
191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 186 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source )
                                                   >> 187   : G4VCSGface(), ncorners(0), corners(0)
192 {                                                 188 {
193   instanceID = subInstanceManager.CreateSubIns << 
194                                                << 
195   CopyStuff( source );                            189   CopyStuff( source );
196 }                                                 190 }
197                                                   191 
                                                   >> 192 
                                                   >> 193 //
198 // Assignment operator                            194 // Assignment operator
199 //                                                195 //
200 G4PolyconeSide& G4PolyconeSide::operator=( con << 196 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source )
201 {                                                 197 {
202   if (this == &source)  { return *this; }         198   if (this == &source)  { return *this; }
203                                                   199 
204   delete cone;                                    200   delete cone;
205   if (phiIsOpen)  { delete [] corners; }          201   if (phiIsOpen)  { delete [] corners; }
206                                                   202   
207   CopyStuff( source );                            203   CopyStuff( source );
208                                                   204   
209   return *this;                                   205   return *this;
210 }                                                 206 }
211                                                   207 
                                                   >> 208 
                                                   >> 209 //
212 // CopyStuff                                      210 // CopyStuff
213 //                                                211 //
214 void G4PolyconeSide::CopyStuff( const G4Polyco << 212 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source )
215 {                                                 213 {
216   r[0]    = source.r[0];                          214   r[0]    = source.r[0];
217   r[1]    = source.r[1];                          215   r[1]    = source.r[1];
218   z[0]    = source.z[0];                          216   z[0]    = source.z[0];
219   z[1]    = source.z[1];                          217   z[1]    = source.z[1];
220                                                   218   
221   startPhi  = source.startPhi;                    219   startPhi  = source.startPhi;
222   deltaPhi  = source.deltaPhi;                    220   deltaPhi  = source.deltaPhi;
223   phiIsOpen  = source.phiIsOpen;                  221   phiIsOpen  = source.phiIsOpen;
224   allBehind  = source.allBehind;                  222   allBehind  = source.allBehind;
225                                                   223 
226   kCarTolerance = source.kCarTolerance;           224   kCarTolerance = source.kCarTolerance;
227   fSurfaceArea = source.fSurfaceArea;             225   fSurfaceArea = source.fSurfaceArea;
228                                                   226   
229   cone    = new G4IntersectingCone( *source.co    227   cone    = new G4IntersectingCone( *source.cone );
230                                                   228   
231   rNorm    = source.rNorm;                        229   rNorm    = source.rNorm;
232   zNorm    = source.zNorm;                        230   zNorm    = source.zNorm;
233   rS    = source.rS;                              231   rS    = source.rS;
234   zS    = source.zS;                              232   zS    = source.zS;
235   length    = source.length;                      233   length    = source.length;
236   prevRS    = source.prevRS;                      234   prevRS    = source.prevRS;
237   prevZS    = source.prevZS;                      235   prevZS    = source.prevZS;
238   nextRS    = source.nextRS;                      236   nextRS    = source.nextRS;
239   nextZS    = source.nextZS;                      237   nextZS    = source.nextZS;
240                                                   238   
241   rNormEdge[0]   = source.rNormEdge[0];           239   rNormEdge[0]   = source.rNormEdge[0];
242   rNormEdge[1]  = source.rNormEdge[1];            240   rNormEdge[1]  = source.rNormEdge[1];
243   zNormEdge[0]  = source.zNormEdge[0];            241   zNormEdge[0]  = source.zNormEdge[0];
244   zNormEdge[1]  = source.zNormEdge[1];            242   zNormEdge[1]  = source.zNormEdge[1];
245                                                   243   
246   if (phiIsOpen)                                  244   if (phiIsOpen)
247   {                                               245   {
248     ncorners = 4;                                 246     ncorners = 4;
249     corners = new G4ThreeVector[ncorners];        247     corners = new G4ThreeVector[ncorners];
250                                                   248     
251     corners[0] = source.corners[0];               249     corners[0] = source.corners[0];
252     corners[1] = source.corners[1];               250     corners[1] = source.corners[1];
253     corners[2] = source.corners[2];               251     corners[2] = source.corners[2];
254     corners[3] = source.corners[3];               252     corners[3] = source.corners[3];
255   }                                               253   }
256 }                                                 254 }
257                                                   255 
                                                   >> 256 
                                                   >> 257 //
258 // Intersect                                      258 // Intersect
259 //                                                259 //
260 G4bool G4PolyconeSide::Intersect( const G4Thre << 260 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p,
261                                   const G4Thre << 261                                   const G4ThreeVector &v,  
262                                         G4bool    262                                         G4bool outgoing,
263                                         G4doub    263                                         G4double surfTolerance,
264                                         G4doub << 264                                         G4double &distance,
265                                         G4doub << 265                                         G4double &distFromSurface,
266                                         G4Thre << 266                                         G4ThreeVector &normal,
267                                         G4bool << 267                                         G4bool &isAllBehind )
268 {                                                 268 {
269   G4double s1=0., s2=0.;                       << 269   G4double s1, s2;
270   G4double normSign = outgoing ? +1 : -1;         270   G4double normSign = outgoing ? +1 : -1;
271                                                   271   
272   isAllBehind = allBehind;                        272   isAllBehind = allBehind;
273                                                   273 
274   //                                              274   //
275   // Check for two possible intersections         275   // Check for two possible intersections
276   //                                              276   //
277   G4int nside = cone->LineHitsCone( p, v, &s1,    277   G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278   if (nside == 0) return false;                   278   if (nside == 0) return false;
279                                                   279     
280   //                                              280   //
281   // Check the first side first, since it is (    281   // Check the first side first, since it is (supposed to be) closest
282   //                                              282   //
283   G4ThreeVector hit = p + s1*v;                   283   G4ThreeVector hit = p + s1*v;
284                                                   284   
285   if (PointOnCone( hit, normSign, p, v, normal    285   if (PointOnCone( hit, normSign, p, v, normal ))
286   {                                               286   {
287     //                                            287     //
288     // Good intersection! What about the norma    288     // Good intersection! What about the normal? 
289     //                                            289     //
290     if (normSign*v.dot(normal) > 0)               290     if (normSign*v.dot(normal) > 0)
291     {                                             291     {
292       //                                          292       //
293       // We have a valid intersection, but it     293       // We have a valid intersection, but it could very easily
294       // be behind the point. To decide if we     294       // be behind the point. To decide if we tolerate this,
295       // we have to see if the point p is on t    295       // we have to see if the point p is on the surface near
296       // the intersecting point.                  296       // the intersecting point.
297       //                                          297       //
298       // What does it mean exactly for the poi    298       // What does it mean exactly for the point p to be "near"
299       // the intersection? It means that if we    299       // the intersection? It means that if we draw a line from
300       // p to the hit, the line remains entire    300       // p to the hit, the line remains entirely within the
301       // tolerance bounds of the cone. To test    301       // tolerance bounds of the cone. To test this, we can
302       // ask if the normal is correct near p.     302       // ask if the normal is correct near p.
303       //                                          303       //
304       G4double pr = p.perp();                     304       G4double pr = p.perp();
305       if (pr < DBL_MIN) pr = DBL_MIN;             305       if (pr < DBL_MIN) pr = DBL_MIN;
306       G4ThreeVector pNormal( rNorm*p.x()/pr, r    306       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307       if (normSign*v.dot(pNormal) > 0)            307       if (normSign*v.dot(pNormal) > 0)
308       {                                           308       {
309         //                                        309         //
310         // p and intersection in same hemisphe    310         // p and intersection in same hemisphere
311         //                                        311         //
312         G4double distOutside2;                    312         G4double distOutside2;
313         distFromSurface = -normSign*DistanceAw    313         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314         if (distOutside2 < surfTolerance*surfT    314         if (distOutside2 < surfTolerance*surfTolerance)
315         {                                         315         {
316           if (distFromSurface > -surfTolerance    316           if (distFromSurface > -surfTolerance)
317           {                                       317           {
318             //                                    318             //
319             // We are just inside or away from    319             // We are just inside or away from the
320             // surface. Accept *any* value of     320             // surface. Accept *any* value of distance.
321             //                                    321             //
322             distance = s1;                        322             distance = s1;
323             return true;                          323             return true;
324           }                                       324           }
325         }                                         325         }
326       }                                           326       }
327       else                                        327       else 
328         distFromSurface = s1;                     328         distFromSurface = s1;
329                                                   329       
330       //                                          330       //
331       // Accept positive distances                331       // Accept positive distances
332       //                                          332       //
333       if (s1 > 0)                                 333       if (s1 > 0)
334       {                                           334       {
335         distance = s1;                            335         distance = s1;
336         return true;                              336         return true;
337       }                                           337       }
338     }                                             338     }
339   }                                               339   }  
340                                                   340   
341   if (nside==1) return false;                     341   if (nside==1) return false;
342                                                   342   
343   //                                              343   //
344   // Well, try the second hit                     344   // Well, try the second hit
345   //                                              345   //  
346   hit = p + s2*v;                                 346   hit = p + s2*v;
347                                                   347   
348   if (PointOnCone( hit, normSign, p, v, normal    348   if (PointOnCone( hit, normSign, p, v, normal ))
349   {                                               349   {
350     //                                            350     //
351     // Good intersection! What about the norma    351     // Good intersection! What about the normal? 
352     //                                            352     //
353     if (normSign*v.dot(normal) > 0)               353     if (normSign*v.dot(normal) > 0)
354     {                                             354     {
355       G4double pr = p.perp();                     355       G4double pr = p.perp();
356       if (pr < DBL_MIN) pr = DBL_MIN;             356       if (pr < DBL_MIN) pr = DBL_MIN;
357       G4ThreeVector pNormal( rNorm*p.x()/pr, r    357       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358       if (normSign*v.dot(pNormal) > 0)            358       if (normSign*v.dot(pNormal) > 0)
359       {                                           359       {
360         G4double distOutside2;                    360         G4double distOutside2;
361         distFromSurface = -normSign*DistanceAw    361         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362         if (distOutside2 < surfTolerance*surfT    362         if (distOutside2 < surfTolerance*surfTolerance)
363         {                                         363         {
364           if (distFromSurface > -surfTolerance    364           if (distFromSurface > -surfTolerance)
365           {                                       365           {
366             distance = s2;                        366             distance = s2;
367             return true;                          367             return true;
368           }                                       368           }
369         }                                         369         }
370       }                                           370       }
371       else                                        371       else 
372         distFromSurface = s2;                     372         distFromSurface = s2;
373                                                   373       
374       if (s2 > 0)                                 374       if (s2 > 0)
375       {                                           375       {
376         distance = s2;                            376         distance = s2;
377         return true;                              377         return true;
378       }                                           378       }
379     }                                             379     }
380   }                                               380   }  
381                                                   381 
382   //                                              382   //
383   // Better luck next time                        383   // Better luck next time
384   //                                              384   //
385   return false;                                   385   return false;
386 }                                                 386 }
387                                                   387 
388 // Distance                                    << 388 
389 //                                             << 389 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing )
390 G4double G4PolyconeSide::Distance( const G4Thr << 
391 {                                                 390 {
392   G4double normSign = outgoing ? -1 : +1;         391   G4double normSign = outgoing ? -1 : +1;
393   G4double distFrom, distOut2;                    392   G4double distFrom, distOut2;
394                                                   393   
395   //                                              394   //
396   // We have two tries for each hemisphere. Tr    395   // We have two tries for each hemisphere. Try the closest first.
397   //                                              396   //
398   distFrom = normSign*DistanceAway( p, false,     397   distFrom = normSign*DistanceAway( p, false, distOut2 );
399   if (distFrom > -0.5*kCarTolerance )             398   if (distFrom > -0.5*kCarTolerance )
400   {                                               399   {
401     //                                            400     //
402     // Good answer                                401     // Good answer
403     //                                            402     //
404     if (distOut2 > 0)                             403     if (distOut2 > 0) 
405       return std::sqrt( distFrom*distFrom + di    404       return std::sqrt( distFrom*distFrom + distOut2 );
406     else                                          405     else 
407       return std::fabs(distFrom);                 406       return std::fabs(distFrom);
408   }                                               407   }
409                                                   408   
410   //                                              409   //
411   // Try second side.                             410   // Try second side. 
412   //                                              411   //
413   distFrom = normSign*DistanceAway( p,  true,     412   distFrom = normSign*DistanceAway( p,  true, distOut2 );
414   if (distFrom > -0.5*kCarTolerance)              413   if (distFrom > -0.5*kCarTolerance)
415   {                                               414   {
416                                                   415 
417     if (distOut2 > 0)                             416     if (distOut2 > 0) 
418       return std::sqrt( distFrom*distFrom + di    417       return std::sqrt( distFrom*distFrom + distOut2 );
419     else                                          418     else
420       return std::fabs(distFrom);                 419       return std::fabs(distFrom);
421   }                                               420   }
422                                                   421   
423   return kInfinity;                               422   return kInfinity;
424 }                                                 423 }
425                                                   424 
                                                   >> 425 
                                                   >> 426 //
426 // Inside                                         427 // Inside
427 //                                                428 //
428 EInside G4PolyconeSide::Inside( const G4ThreeV << 429 EInside G4PolyconeSide::Inside( const G4ThreeVector &p,
429                                       G4double    430                                       G4double tolerance, 
430                                       G4double << 431                                       G4double *bestDistance )
431 {                                                 432 {
432   G4double distFrom, distOut2, dist2;          << 433   //
433   G4double edgeRZnorm;                         << 434   // Check both sides
                                                   >> 435   //
                                                   >> 436   G4double distFrom[2], distOut2[2], dist2[2];
                                                   >> 437   G4double edgeRZnorm[2];
434                                                   438      
435   distFrom =  DistanceAway( p, distOut2, &edge << 439   distFrom[0] =  DistanceAway( p, false, distOut2[0], edgeRZnorm   );
436   dist2 = distFrom*distFrom + distOut2;        << 440   distFrom[1] =  DistanceAway( p,  true, distOut2[1], edgeRZnorm+1 );
437                                                << 
438   *bestDistance = std::sqrt( dist2);           << 
439                                                   441   
                                                   >> 442   dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
                                                   >> 443   dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
                                                   >> 444   
                                                   >> 445   //
                                                   >> 446   // Who's closest?
                                                   >> 447   //
                                                   >> 448   G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
                                                   >> 449   
                                                   >> 450   *bestDistance = std::sqrt( dist2[i] );
                                                   >> 451   
                                                   >> 452   //
440   // Okay then, inside or out?                    453   // Okay then, inside or out?
441   //                                              454   //
442   if ( (std::fabs(edgeRZnorm) < tolerance)     << 455   if ( (std::fabs(edgeRZnorm[i]) < tolerance)
443     && (distOut2< tolerance*tolerance) )       << 456     && (distOut2[i] < tolerance*tolerance) )
444     return kSurface;                              457     return kSurface;
445   else if (edgeRZnorm < 0)                     << 458   else if (edgeRZnorm[i] < 0)
446     return kInside;                               459     return kInside;
447   else                                            460   else
448     return kOutside;                              461     return kOutside;
449 }                                                 462 }
450                                                   463 
                                                   >> 464 
                                                   >> 465 //
451 // Normal                                         466 // Normal
452 //                                                467 //
453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 468 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p,
454                                             G4 << 469                                             G4double *bestDistance )
455 {                                                 470 {
456   if (p == G4ThreeVector(0.,0.,0.))  { return     471   if (p == G4ThreeVector(0.,0.,0.))  { return p; }
457                                                   472 
458   G4double dFrom, dOut2;                          473   G4double dFrom, dOut2;
459                                                   474   
460   dFrom = DistanceAway( p, false, dOut2 );        475   dFrom = DistanceAway( p, false, dOut2 );
461                                                   476   
462   *bestDistance = std::sqrt( dFrom*dFrom + dOu    477   *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
463                                                   478   
464   G4double rds = p.perp();                     << 479   G4double rad = p.perp();
465   if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 480   if (rad!=0.) { return G4ThreeVector(rNorm*p.x()/rad,rNorm*p.y()/rad,zNorm); }
466   return G4ThreeVector( 0.,0., zNorm ).unit();    481   return G4ThreeVector( 0.,0., zNorm ).unit();
467 }                                                 482 }
468                                                   483 
                                                   >> 484 
                                                   >> 485 //
469 // Extent                                         486 // Extent
470 //                                                487 //
471 G4double G4PolyconeSide::Extent( const G4Three    488 G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
472 {                                                 489 {
473   if (axis.perp2() < DBL_MIN)                     490   if (axis.perp2() < DBL_MIN)
474   {                                               491   {
475     //                                            492     //
476     // Special case                               493     // Special case
477     //                                            494     //
478     return axis.z() < 0 ? -cone->ZLo() : cone-    495     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
479   }                                               496   }
480                                                   497 
481   //                                              498   //
482   // Is the axis pointing inside our phi gap?     499   // Is the axis pointing inside our phi gap?
483   //                                              500   //
484   if (phiIsOpen)                                  501   if (phiIsOpen)
485   {                                               502   {
486     G4double phi = GetPhi(axis);                  503     G4double phi = GetPhi(axis);
487     while( phi < startPhi )    // Loop checkin << 504     while( phi < startPhi ) phi += twopi;
488       phi += twopi;                            << 
489                                                   505     
490     if (phi > deltaPhi+startPhi)                  506     if (phi > deltaPhi+startPhi)
491     {                                             507     {
492       //                                          508       //
493       // Yeah, looks so. Make four three vecto    509       // Yeah, looks so. Make four three vectors defining the phi
494       // opening                                  510       // opening
495       //                                          511       //
496       G4double cosP = std::cos(startPhi), sinP    512       G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
497       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z    513       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
498       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z    514       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
499       cosP = std::cos(startPhi+deltaPhi); sinP    515       cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
500       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z    516       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
501       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z    517       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
502                                                   518       
503       G4double ad = axis.dot(a),                  519       G4double ad = axis.dot(a),
504                bd = axis.dot(b),               << 520          bd = axis.dot(b),
505                cd = axis.dot(c),               << 521          cd = axis.dot(c),
506                dd = axis.dot(d);               << 522          dd = axis.dot(d);
507                                                   523       
508       if (bd > ad) ad = bd;                       524       if (bd > ad) ad = bd;
509       if (cd > ad) ad = cd;                       525       if (cd > ad) ad = cd;
510       if (dd > ad) ad = dd;                       526       if (dd > ad) ad = dd;
511                                                   527       
512       return ad;                                  528       return ad;
513     }                                             529     }
514   }                                               530   }
515                                                   531 
516   //                                              532   //
517   // Check either end                             533   // Check either end
518   //                                              534   //
519   G4double aPerp = axis.perp();                   535   G4double aPerp = axis.perp();
520                                                   536   
521   G4double a = aPerp*r[0] + axis.z()*z[0];        537   G4double a = aPerp*r[0] + axis.z()*z[0];
522   G4double b = aPerp*r[1] + axis.z()*z[1];        538   G4double b = aPerp*r[1] + axis.z()*z[1];
523                                                   539   
524   if (b > a) a = b;                               540   if (b > a) a = b;
525                                                   541   
526   return a;                                       542   return a;
527 }                                                 543 }
528                                                   544 
                                                   >> 545 
                                                   >> 546 
                                                   >> 547 //
529 // CalculateExtent                                548 // CalculateExtent
530 //                                                549 //
531 // See notes in G4VCSGface                        550 // See notes in G4VCSGface
532 //                                                551 //
533 void G4PolyconeSide::CalculateExtent( const EA    552 void G4PolyconeSide::CalculateExtent( const EAxis axis, 
534                                       const G4 << 553                                       const G4VoxelLimits &voxelLimit,
535                                       const G4 << 554                                       const G4AffineTransform &transform,
536                                             G4 << 555                                             G4SolidExtentList &extentList )
537 {                                                 556 {
538   G4ClippablePolygon polygon;                     557   G4ClippablePolygon polygon;
539                                                   558   
540   //                                              559   //
541   // Here we will approximate (ala G4Cons) and    560   // Here we will approximate (ala G4Cons) and divide our conical section
542   // into segments, like G4Polyhedra. When doi    561   // into segments, like G4Polyhedra. When doing so, the radius
543   // is extented far enough such that the segm    562   // is extented far enough such that the segments always lie
544   // just outside the surface of the conical s    563   // just outside the surface of the conical section we are
545   // approximating.                               564   // approximating.
546   //                                              565   //
547                                                   566   
548   //                                              567   //
549   // Choose phi size of our segment(s) based o    568   // Choose phi size of our segment(s) based on constants as
550   // defined in meshdefs.hh                       569   // defined in meshdefs.hh
551   //                                              570   //
552   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe    571   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
553   if (numPhi < kMinMeshSections)                  572   if (numPhi < kMinMeshSections) 
554     numPhi = kMinMeshSections;                    573     numPhi = kMinMeshSections;
555   else if (numPhi > kMaxMeshSections)             574   else if (numPhi > kMaxMeshSections)
556     numPhi = kMaxMeshSections;                    575     numPhi = kMaxMeshSections;
557                                                   576     
558   G4double sigPhi = deltaPhi/numPhi;              577   G4double sigPhi = deltaPhi/numPhi;
559                                                   578   
560   //                                              579   //
561   // Determine radius factor to keep segments     580   // Determine radius factor to keep segments outside
562   //                                              581   //
563   G4double rFudge = 1.0/std::cos(0.5*sigPhi);     582   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
564                                                   583   
565   //                                              584   //
566   // Decide which radius to use on each end of    585   // Decide which radius to use on each end of the side,
567   // and whether a transition mesh is required    586   // and whether a transition mesh is required
568   //                                              587   //
569   // {r0,z0}  - Beginning of this side            588   // {r0,z0}  - Beginning of this side
570   // {r1,z1}  - Ending of this side               589   // {r1,z1}  - Ending of this side
571   // {r2,z0}  - Beginning of transition piece     590   // {r2,z0}  - Beginning of transition piece connecting previous
572   //            side (and ends at beginning of    591   //            side (and ends at beginning of this side)
573   //                                              592   //
574   // So, order is 2 --> 0 --> 1.                  593   // So, order is 2 --> 0 --> 1.
575   //                    -------                   594   //                    -------
576   //                                              595   //
577   // r2 < 0 indicates that no transition piece    596   // r2 < 0 indicates that no transition piece is required
578   //                                              597   //
579   G4double r0, r1, r2, z0, z1;                    598   G4double r0, r1, r2, z0, z1;
580                                                   599   
581   r2 = -1;  // By default: no transition piece    600   r2 = -1;  // By default: no transition piece
582                                                   601   
583   if (rNorm < -DBL_MIN)                           602   if (rNorm < -DBL_MIN)
584   {                                               603   {
585     //                                            604     //
586     // This side faces *inward*, and so our me    605     // This side faces *inward*, and so our mesh has
587     // the same radius                            606     // the same radius
588     //                                            607     //
589     r1 = r[1];                                    608     r1 = r[1];
590     z1 = z[1];                                    609     z1 = z[1];
591     z0 = z[0];                                    610     z0 = z[0];
592     r0 = r[0];                                    611     r0 = r[0];
593                                                   612     
594     r2 = -1;                                      613     r2 = -1;
595                                                   614     
596     if (prevZS > DBL_MIN)                         615     if (prevZS > DBL_MIN)
597     {                                             616     {
598       //                                          617       //
599       // The previous side is facing outwards     618       // The previous side is facing outwards
600       //                                          619       //
601       if ( prevRS*zS - prevZS*rS > 0 )            620       if ( prevRS*zS - prevZS*rS > 0 )
602       {                                           621       {
603         //                                        622         //
604         // Transition was convex: build transi    623         // Transition was convex: build transition piece
605         //                                        624         //
606         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;     625         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
607       }                                           626       }
608       else                                        627       else
609       {                                           628       {
610         //                                        629         //
611         // Transition was concave: short this     630         // Transition was concave: short this side
612         //                                        631         //
613         FindLineIntersect( z0, r0, zS, rS,        632         FindLineIntersect( z0, r0, zS, rS,
614                            z0, r0*rFudge, prev    633                            z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
615       }                                           634       }
616     }                                             635     }
617                                                   636     
618     if ( nextZS > DBL_MIN && (rS*nextZS - zS*n    637     if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
619     {                                             638     {
620       //                                          639       //
621       // The next side is facing outwards, for    640       // The next side is facing outwards, forming a 
622       // concave transition: short this side      641       // concave transition: short this side
623       //                                          642       //
624       FindLineIntersect( z1, r1, zS, rS,          643       FindLineIntersect( z1, r1, zS, rS,
625                          z1, r1*rFudge, nextZS    644                          z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
626     }                                             645     }
627   }                                               646   }
628   else if (rNorm > DBL_MIN)                       647   else if (rNorm > DBL_MIN)
629   {                                               648   {
630     //                                            649     //
631     // This side faces *outward* and is given     650     // This side faces *outward* and is given a boost to
632     // it radius                                  651     // it radius
633     //                                            652     //
634     r0 = r[0]*rFudge;                             653     r0 = r[0]*rFudge;
635     z0 = z[0];                                    654     z0 = z[0];
636     r1 = r[1]*rFudge;                             655     r1 = r[1]*rFudge;
637     z1 = z[1];                                    656     z1 = z[1];
638                                                   657     
639     if (prevZS < -DBL_MIN)                        658     if (prevZS < -DBL_MIN)
640     {                                             659     {
641       //                                          660       //
642       // The previous side is facing inwards      661       // The previous side is facing inwards
643       //                                          662       //
644       if ( prevRS*zS - prevZS*rS > 0 )            663       if ( prevRS*zS - prevZS*rS > 0 )
645       {                                           664       {
646         //                                        665         //
647         // Transition was convex: build transi    666         // Transition was convex: build transition piece
648         //                                        667         //
649         if (r[0] > DBL_MIN) r2 = r[0];            668         if (r[0] > DBL_MIN) r2 = r[0];
650       }                                           669       }
651       else                                        670       else
652       {                                           671       {
653         //                                        672         //
654         // Transition was concave: short this     673         // Transition was concave: short this side
655         //                                        674         //
656         FindLineIntersect( z0, r0, zS, rS*rFud    675         FindLineIntersect( z0, r0, zS, rS*rFudge,
657                            z0, r[0], prevZS, p    676                            z0, r[0], prevZS, prevRS, z0, r0 );
658       }                                           677       }
659     }                                             678     }
660                                                   679     
661     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*    680     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
662     {                                             681     {
663       //                                          682       //
664       // The next side is facing inwards, form    683       // The next side is facing inwards, forming a 
665       // concave transition: short this side      684       // concave transition: short this side
666       //                                          685       //
667       FindLineIntersect( z1, r1, zS, rS*rFudge    686       FindLineIntersect( z1, r1, zS, rS*rFudge,
668                          z1, r[1], nextZS, nex    687                          z1, r[1], nextZS, nextRS, z1, r1 );
669     }                                             688     }
670   }                                               689   }
671   else                                            690   else
672   {                                               691   {
673     //                                            692     //
674     // This side is perpendicular to the z axi    693     // This side is perpendicular to the z axis (is a disk)
675     //                                            694     //
676     // Whether or not r0 needs a rFudge factor    695     // Whether or not r0 needs a rFudge factor depends
677     // on the normal of the previous edge. Sim    696     // on the normal of the previous edge. Similar with r1
678     // and the next edge. No transition piece     697     // and the next edge. No transition piece is required.
679     //                                            698     //
680     r0 = r[0];                                    699     r0 = r[0];
681     r1 = r[1];                                    700     r1 = r[1];
682     z0 = z[0];                                    701     z0 = z[0];
683     z1 = z[1];                                    702     z1 = z[1];
684                                                   703     
685     if (prevZS > DBL_MIN) r0 *= rFudge;           704     if (prevZS > DBL_MIN) r0 *= rFudge;
686     if (nextZS > DBL_MIN) r1 *= rFudge;           705     if (nextZS > DBL_MIN) r1 *= rFudge;
687   }                                               706   }
688                                                   707   
689   //                                              708   //
690   // Loop                                         709   // Loop
691   //                                              710   //
692   G4double phi = startPhi,                        711   G4double phi = startPhi, 
693            cosPhi = std::cos(phi),                712            cosPhi = std::cos(phi), 
694            sinPhi = std::sin(phi);                713            sinPhi = std::sin(phi);
695                                                   714   
696   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 )    715   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
697                     v1( r1*cosPhi, r1*sinPhi,     716                     v1( r1*cosPhi, r1*sinPhi, z1 ),
698   v2, w0, w1, w2;                                 717   v2, w0, w1, w2;
699   transform.ApplyPointTransform( v0 );            718   transform.ApplyPointTransform( v0 );
700   transform.ApplyPointTransform( v1 );            719   transform.ApplyPointTransform( v1 );
701                                                   720   
702   if (r2 >= 0)                                    721   if (r2 >= 0)
703   {                                               722   {
704     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi,     723     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
705     transform.ApplyPointTransform( v2 );          724     transform.ApplyPointTransform( v2 );
706   }                                               725   }
707                                                   726 
708   do    // Loop checking, 13.08.2015, G.Cosmo  << 727   do
709   {                                               728   {
710     phi += sigPhi;                                729     phi += sigPhi;
711     if (numPhi == 1) phi = startPhi+deltaPhi;     730     if (numPhi == 1) phi = startPhi+deltaPhi;  // Try to avoid roundoff
712     cosPhi = std::cos(phi),                       731     cosPhi = std::cos(phi), 
713     sinPhi = std::sin(phi);                       732     sinPhi = std::sin(phi);
714                                                   733     
715     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     734     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
716     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     735     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
717     transform.ApplyPointTransform( w0 );          736     transform.ApplyPointTransform( w0 );
718     transform.ApplyPointTransform( w1 );          737     transform.ApplyPointTransform( w1 );
719                                                   738     
720     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w    739     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
721                                                   740     
722     //                                            741     //
723     // Build polygon, taking special care to k    742     // Build polygon, taking special care to keep the vertices
724     // in order                                   743     // in order
725     //                                            744     //
726     polygon.ClearAllVertices();                   745     polygon.ClearAllVertices();
727                                                   746 
728     polygon.AddVertexInOrder( v0 );               747     polygon.AddVertexInOrder( v0 );
729     polygon.AddVertexInOrder( v1 );               748     polygon.AddVertexInOrder( v1 );
730     polygon.AddVertexInOrder( w1 );               749     polygon.AddVertexInOrder( w1 );
731     polygon.AddVertexInOrder( w0 );               750     polygon.AddVertexInOrder( w0 );
732                                                   751 
733     //                                            752     //
734     // Get extent                                 753     // Get extent
735     //                                            754     //
736     if (polygon.PartialClip( voxelLimit, axis     755     if (polygon.PartialClip( voxelLimit, axis ))
737     {                                             756     {
738       //                                          757       //
739       // Get dot product of normal with target    758       // Get dot product of normal with target axis
740       //                                          759       //
741       polygon.SetNormal( deltaV.cross(v1-v0).u    760       polygon.SetNormal( deltaV.cross(v1-v0).unit() );
742                                                   761       
743       extentList.AddSurface( polygon );           762       extentList.AddSurface( polygon );
744     }                                             763     }
745                                                   764     
746     if (r2 >= 0)                                  765     if (r2 >= 0)
747     {                                             766     {
748       //                                          767       //
749       // Repeat, for transition piece             768       // Repeat, for transition piece
750       //                                          769       //
751       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi    770       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
752       transform.ApplyPointTransform( w2 );        771       transform.ApplyPointTransform( w2 );
753                                                   772 
754       polygon.ClearAllVertices();                 773       polygon.ClearAllVertices();
755                                                   774 
756       polygon.AddVertexInOrder( v2 );             775       polygon.AddVertexInOrder( v2 );
757       polygon.AddVertexInOrder( v0 );             776       polygon.AddVertexInOrder( v0 );
758       polygon.AddVertexInOrder( w0 );             777       polygon.AddVertexInOrder( w0 );
759       polygon.AddVertexInOrder( w2 );             778       polygon.AddVertexInOrder( w2 );
760                                                   779 
761       if (polygon.PartialClip( voxelLimit, axi    780       if (polygon.PartialClip( voxelLimit, axis ))
762       {                                           781       {
763         polygon.SetNormal( deltaV.cross(v0-v2)    782         polygon.SetNormal( deltaV.cross(v0-v2).unit() );
764                                                   783         
765         extentList.AddSurface( polygon );         784         extentList.AddSurface( polygon );
766       }                                           785       }
767                                                   786       
768       v2 = w2;                                    787       v2 = w2;
769     }                                             788     }
770                                                   789     
771     //                                            790     //
772     // Next vertex                                791     // Next vertex
773     //                                            792     //    
774     v0 = w0;                                      793     v0 = w0;
775     v1 = w1;                                      794     v1 = w1;
776   } while( --numPhi > 0 );                        795   } while( --numPhi > 0 );
777                                                   796   
778   //                                              797   //
779   // We are almost done. But, it is important     798   // We are almost done. But, it is important that we leave no
780   // gaps in the surface of our solid. By usin    799   // gaps in the surface of our solid. By using rFudge, however,
781   // we've done exactly that, if we have a phi    800   // we've done exactly that, if we have a phi segment. 
782   // Add two additional faces if necessary        801   // Add two additional faces if necessary
783   //                                              802   //
784   if (phiIsOpen && rNorm > DBL_MIN)               803   if (phiIsOpen && rNorm > DBL_MIN)
785   {                                               804   {    
786     cosPhi = std::cos(startPhi);               << 805     G4double cosPhi = std::cos(startPhi),
787     sinPhi = std::sin(startPhi);               << 806        sinPhi = std::sin(startPhi);
788                                                   807 
789     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi    808     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
790                   a1( r[1]*cosPhi, r[1]*sinPhi    809                   a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
791                   b0( r0*cosPhi, r0*sinPhi, z[    810                   b0( r0*cosPhi, r0*sinPhi, z[0] ),
792                   b1( r1*cosPhi, r1*sinPhi, z[    811                   b1( r1*cosPhi, r1*sinPhi, z[1] );
793                                                   812   
794     transform.ApplyPointTransform( a0 );          813     transform.ApplyPointTransform( a0 );
795     transform.ApplyPointTransform( a1 );          814     transform.ApplyPointTransform( a1 );
796     transform.ApplyPointTransform( b0 );          815     transform.ApplyPointTransform( b0 );
797     transform.ApplyPointTransform( b1 );          816     transform.ApplyPointTransform( b1 );
798                                                   817 
799     polygon.ClearAllVertices();                   818     polygon.ClearAllVertices();
800                                                   819 
801     polygon.AddVertexInOrder( a0 );               820     polygon.AddVertexInOrder( a0 );
802     polygon.AddVertexInOrder( a1 );               821     polygon.AddVertexInOrder( a1 );
803     polygon.AddVertexInOrder( b0 );               822     polygon.AddVertexInOrder( b0 );
804     polygon.AddVertexInOrder( b1 );               823     polygon.AddVertexInOrder( b1 );
805                                                   824     
806     if (polygon.PartialClip( voxelLimit , axis    825     if (polygon.PartialClip( voxelLimit , axis))
807     {                                             826     {
808       G4ThreeVector normal( sinPhi, -cosPhi, 0    827       G4ThreeVector normal( sinPhi, -cosPhi, 0 );
809       polygon.SetNormal( transform.TransformAx    828       polygon.SetNormal( transform.TransformAxis( normal ) );
810                                                   829         
811       extentList.AddSurface( polygon );           830       extentList.AddSurface( polygon );
812     }                                             831     }
813                                                   832     
814     cosPhi = std::cos(startPhi+deltaPhi);         833     cosPhi = std::cos(startPhi+deltaPhi);
815     sinPhi = std::sin(startPhi+deltaPhi);         834     sinPhi = std::sin(startPhi+deltaPhi);
816                                                   835     
817     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP    836     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
818     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP    837     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
819     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     838     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
820     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     839     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
821     transform.ApplyPointTransform( a0 );          840     transform.ApplyPointTransform( a0 );
822     transform.ApplyPointTransform( a1 );          841     transform.ApplyPointTransform( a1 );
823     transform.ApplyPointTransform( b0 );          842     transform.ApplyPointTransform( b0 );
824     transform.ApplyPointTransform( b1 );          843     transform.ApplyPointTransform( b1 );
825                                                   844 
826     polygon.ClearAllVertices();                   845     polygon.ClearAllVertices();
827                                                   846 
828     polygon.AddVertexInOrder( a0 );               847     polygon.AddVertexInOrder( a0 );
829     polygon.AddVertexInOrder( a1 );               848     polygon.AddVertexInOrder( a1 );
830     polygon.AddVertexInOrder( b0 );               849     polygon.AddVertexInOrder( b0 );
831     polygon.AddVertexInOrder( b1 );               850     polygon.AddVertexInOrder( b1 );
832                                                   851     
833     if (polygon.PartialClip( voxelLimit, axis     852     if (polygon.PartialClip( voxelLimit, axis ))
834     {                                             853     {
835       G4ThreeVector normal( -sinPhi, cosPhi, 0    854       G4ThreeVector normal( -sinPhi, cosPhi, 0 );
836       polygon.SetNormal( transform.TransformAx    855       polygon.SetNormal( transform.TransformAxis( normal ) );
837                                                   856         
838       extentList.AddSurface( polygon );           857       extentList.AddSurface( polygon );
839     }                                             858     }
840   }                                               859   }
841                                                   860     
842   return;                                         861   return;
843 }                                                 862 }
844                                                   863 
                                                   >> 864 //
845 // GetPhi                                         865 // GetPhi
846 //                                                866 //
847 // Calculate Phi for a given 3-vector (point),    867 // Calculate Phi for a given 3-vector (point), if not already cached for the
848 // same point, in the attempt to avoid consecu    868 // same point, in the attempt to avoid consecutive computation of the same
849 // quantity                                       869 // quantity
850 //                                                870 //
851 G4double G4PolyconeSide::GetPhi( const G4Three    871 G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p )
852 {                                                 872 {
853   G4double val=0.;                                873   G4double val=0.;
854   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 
855                                                   874 
856   if (vphi != p)                               << 875   if (fPhi.first != p)
857   {                                               876   {
858     val = p.phi();                                877     val = p.phi();
859     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y();  << 878     fPhi.first = p;
860     G4MT_pcphik = val;                         << 879     fPhi.second = val;
861   }                                               880   }
862   else                                            881   else
863   {                                               882   {
864     val = G4MT_pcphik;                         << 883     val = fPhi.second;
865   }                                               884   }
866   return val;                                     885   return val;
867 }                                                 886 }
868                                                   887 
                                                   >> 888 //
869 // DistanceAway                                   889 // DistanceAway
870 //                                                890 //
871 // Calculate distance of a point from our coni    891 // Calculate distance of a point from our conical surface, including the effect
872 // of any phi segmentation                        892 // of any phi segmentation
873 //                                                893 //
874 // Arguments:                                     894 // Arguments:
875 //  p             - (in) Point to check           895 //  p             - (in) Point to check
876 //  opposite      - (in) If true, check opposi    896 //  opposite      - (in) If true, check opposite hemisphere (see below)
877 //  distOutside   - (out) Additional distance     897 //  distOutside   - (out) Additional distance outside the edges of the surface
878 //  edgeRZnorm    - (out) if negative, point i    898 //  edgeRZnorm    - (out) if negative, point is inside
879 //                                                899 //
880 //  return value = distance from the conical p    900 //  return value = distance from the conical plane, if extrapolated beyond edges,
881 //                 signed by whether the point    901 //                 signed by whether the point is in inside or outside the shape
882 //                                                902 //
883 // Notes:                                         903 // Notes:
884 //  * There are two answers, depending on whic    904 //  * There are two answers, depending on which hemisphere is considered.
885 //                                                905 //
886 G4double G4PolyconeSide::DistanceAway( const G << 906 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p,
887                                              G    907                                              G4bool opposite,
888                                              G << 908                                              G4double &distOutside2,
889                                              G << 909                                              G4double *edgeRZnorm  )
890 {                                                 910 {
891   //                                              911   //
892   // Convert our point to r and z                 912   // Convert our point to r and z
893   //                                              913   //
894   G4double rx = p.perp(), zx = p.z();             914   G4double rx = p.perp(), zx = p.z();
895                                                   915   
896   //                                              916   //
897   // Change sign of r if opposite says we shou    917   // Change sign of r if opposite says we should
898   //                                              918   //
899   if (opposite) rx = -rx;                         919   if (opposite) rx = -rx;
900                                                   920   
901   //                                              921   //
902   // Calculate return value                       922   // Calculate return value
903   //                                              923   //
904   G4double deltaR  = rx - r[0], deltaZ = zx -     924   G4double deltaR  = rx - r[0], deltaZ = zx - z[0];
905   G4double answer = deltaR*rNorm + deltaZ*zNor    925   G4double answer = deltaR*rNorm + deltaZ*zNorm;
906                                                   926   
907   //                                              927   //
908   // Are we off the surface in r,z space?         928   // Are we off the surface in r,z space?
909   //                                              929   //
910   G4double q = deltaR*rS + deltaZ*zS;          << 930   G4double s = deltaR*rS + deltaZ*zS;
911   if (q < 0)                                   << 931   if (s < 0)
912   {                                               932   {
913     distOutside2 = q*q;                        << 933     distOutside2 = s*s;
914     if (edgeRZnorm != nullptr)                 << 934     if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
915       *edgeRZnorm = deltaR*rNormEdge[0] + delt << 
916   }                                               935   }
917   else if (q > length)                         << 936   else if (s > length)
918   {                                               937   {
919     distOutside2 = sqr( q-length );            << 938     distOutside2 = sqr( s-length );
920     if (edgeRZnorm != nullptr)                 << 939     if (edgeRZnorm)
921     {                                             940     {
922       deltaR = rx - r[1];                      << 941       G4double deltaR  = rx - r[1], deltaZ = zx - z[1];
923       deltaZ = zx - z[1];                      << 
924       *edgeRZnorm = deltaR*rNormEdge[1] + delt    942       *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
925     }                                             943     }
926   }                                               944   }
927   else                                            945   else
928   {                                               946   {
929     distOutside2 = 0.;                         << 947     distOutside2 = 0;
930     if (edgeRZnorm != nullptr) *edgeRZnorm = a << 948     if (edgeRZnorm) *edgeRZnorm = answer;
931   }                                               949   }
932                                                   950 
933   if (phiIsOpen)                                  951   if (phiIsOpen)
934   {                                               952   {
935     //                                            953     //
936     // Finally, check phi                         954     // Finally, check phi
937     //                                            955     //
938     G4double phi = GetPhi(p);                     956     G4double phi = GetPhi(p);
939     while( phi < startPhi )    // Loop checkin << 957     while( phi < startPhi ) phi += twopi;
940       phi += twopi;                            << 
941                                                   958     
942     if (phi > startPhi+deltaPhi)                  959     if (phi > startPhi+deltaPhi)
943     {                                             960     {
944       //                                          961       //
945       // Oops. Are we closer to the start phi     962       // Oops. Are we closer to the start phi or end phi?
946       //                                          963       //
947       G4double d1 = phi-startPhi-deltaPhi;        964       G4double d1 = phi-startPhi-deltaPhi;
948       while( phi > startPhi )    // Loop check << 965       while( phi > startPhi ) phi -= twopi;
949         phi -= twopi;                          << 
950       G4double d2 = startPhi-phi;                 966       G4double d2 = startPhi-phi;
951                                                   967       
952       if (d2 < d1) d1 = d2;                       968       if (d2 < d1) d1 = d2;
953                                                   969       
954       //                                          970       //
955       // Add result to our distance               971       // Add result to our distance
956       //                                          972       //
957       G4double dist = d1*rx;                      973       G4double dist = d1*rx;
958                                                   974       
959       distOutside2 += dist*dist;                  975       distOutside2 += dist*dist;
960       if (edgeRZnorm != nullptr)               << 976       if (edgeRZnorm)
961       {                                           977       {
962         *edgeRZnorm = std::max(std::fabs(*edge    978         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
963       }                                           979       }
964     }                                             980     }
965   }                                               981   }
966                                                   982 
967   return answer;                                  983   return answer;
968 }                                                 984 }
969                                                   985 
970 // DistanceAway                                << 
971 //                                             << 
972 // Special version of DistanceAway for Inside. << 
973 // Opposite parameter is not used, instead use << 
974 //                                             << 
975 G4double G4PolyconeSide::DistanceAway( const G << 
976                                              G << 
977                                              G << 
978 {                                              << 
979   //                                           << 
980   // Convert our point to r and z              << 
981   //                                           << 
982   G4double rx = p.perp(), zx = p.z();          << 
983                                                << 
984   //                                           << 
985   // Change sign of r if we should             << 
986   //                                           << 
987   G4int part = 1;                              << 
988   if (rx < 0) part = -1;                       << 
989                                                << 
990   //                                           << 
991   // Calculate return value                    << 
992   //                                           << 
993   G4double deltaR = rx - r[0]*part, deltaZ = z << 
994   G4double answer = deltaR*rNorm*part + deltaZ << 
995                                                << 
996   //                                           << 
997   // Are we off the surface in r,z space?      << 
998   //                                           << 
999   G4double q = deltaR*rS*part + deltaZ*zS;     << 
1000   if (q < 0)                                  << 
1001   {                                           << 
1002     distOutside2 = q*q;                       << 
1003     if (edgeRZnorm != nullptr)                << 
1004     {                                         << 
1005       *edgeRZnorm = deltaR*rNormEdge[0]*part  << 
1006     }                                         << 
1007   }                                           << 
1008   else if (q > length)                        << 
1009   {                                           << 
1010     distOutside2 = sqr( q-length );           << 
1011     if (edgeRZnorm != nullptr)                << 
1012     {                                         << 
1013       deltaR = rx - r[1]*part;                << 
1014       deltaZ = zx - z[1];                     << 
1015       *edgeRZnorm = deltaR*rNormEdge[1]*part  << 
1016     }                                         << 
1017   }                                           << 
1018   else                                        << 
1019   {                                           << 
1020     distOutside2 = 0.;                        << 
1021     if (edgeRZnorm != nullptr) *edgeRZnorm =  << 
1022   }                                           << 
1023                                               << 
1024   if (phiIsOpen)                              << 
1025   {                                           << 
1026     //                                        << 
1027     // Finally, check phi                     << 
1028     //                                        << 
1029     G4double phi = GetPhi(p);                 << 
1030     while( phi < startPhi )    // Loop checki << 
1031       phi += twopi;                           << 
1032                                               << 
1033     if (phi > startPhi+deltaPhi)              << 
1034     {                                         << 
1035       //                                      << 
1036       // Oops. Are we closer to the start phi << 
1037       //                                      << 
1038       G4double d1 = phi-startPhi-deltaPhi;    << 
1039       while( phi > startPhi )    // Loop chec << 
1040         phi -= twopi;                         << 
1041       G4double d2 = startPhi-phi;             << 
1042                                               << 
1043       if (d2 < d1) d1 = d2;                   << 
1044                                               << 
1045       //                                      << 
1046       // Add result to our distance           << 
1047       //                                      << 
1048       G4double dist = d1*rx*part;             << 
1049                                               << 
1050       distOutside2 += dist*dist;              << 
1051       if (edgeRZnorm != nullptr)              << 
1052       {                                       << 
1053         *edgeRZnorm = std::max(std::fabs(*edg << 
1054       }                                       << 
1055     }                                         << 
1056   }                                           << 
1057                                               << 
1058   return answer;                              << 
1059 }                                             << 
1060                                                  986 
                                                   >> 987 //
1061 // PointOnCone                                   988 // PointOnCone
1062 //                                               989 //
1063 // Decide if a point is on a cone and return     990 // Decide if a point is on a cone and return normal if it is
1064 //                                               991 //
1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 992 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit,
1066                                           G4d    993                                           G4double normSign,
1067                                     const G4T << 994                                     const G4ThreeVector &p,
1068                                     const G4T << 995                                     const G4ThreeVector &v,
1069                                           G4T << 996                                           G4ThreeVector &normal )
1070 {                                                997 {
1071   G4double rx = hit.perp();                      998   G4double rx = hit.perp();
1072   //                                             999   //
1073   // Check radial/z extent, as appropriate       1000   // Check radial/z extent, as appropriate
1074   //                                             1001   //
1075   if (!cone->HitOn( rx, hit.z() )) return fal    1002   if (!cone->HitOn( rx, hit.z() )) return false;
1076                                                  1003   
1077   if (phiIsOpen)                                 1004   if (phiIsOpen)
1078   {                                              1005   {
1079     G4double phiTolerant = 2.0*kCarTolerance/    1006     G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1080     //                                           1007     //
1081     // Check phi segment. Here we have to be     1008     // Check phi segment. Here we have to be careful
1082     // to use the standard method consistent     1009     // to use the standard method consistent with
1083     // PolyPhiFace. See PolyPhiFace::InsideEd    1010     // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1084     //                                           1011     //
1085     G4double phi = GetPhi(hit);                  1012     G4double phi = GetPhi(hit);
1086     while( phi < startPhi-phiTolerant )   //  << 1013     while( phi < startPhi-phiTolerant ) phi += twopi;
1087       phi += twopi;                           << 
1088                                                  1014     
1089     if (phi > startPhi+deltaPhi+phiTolerant)     1015     if (phi > startPhi+deltaPhi+phiTolerant) return false;
1090                                                  1016     
1091     if (phi > startPhi+deltaPhi-phiTolerant)     1017     if (phi > startPhi+deltaPhi-phiTolerant)
1092     {                                            1018     {
1093       //                                         1019       //
1094       // Exact treatment                         1020       // Exact treatment
1095       //                                         1021       //
1096       G4ThreeVector qx = p + v;                  1022       G4ThreeVector qx = p + v;
1097       G4ThreeVector qa = qx - corners[2],        1023       G4ThreeVector qa = qx - corners[2],
1098               qb = qx - corners[3];              1024               qb = qx - corners[3];
1099       G4ThreeVector qacb = qa.cross(qb);         1025       G4ThreeVector qacb = qa.cross(qb);
1100                                                  1026       
1101       if (normSign*qacb.dot(v) < 0) return fa    1027       if (normSign*qacb.dot(v) < 0) return false;
1102     }                                            1028     }
1103     else if (phi < phiTolerant)                  1029     else if (phi < phiTolerant)
1104     {                                            1030     {
1105       G4ThreeVector qx = p + v;                  1031       G4ThreeVector qx = p + v;
1106       G4ThreeVector qa = qx - corners[1],        1032       G4ThreeVector qa = qx - corners[1],
1107               qb = qx - corners[0];              1033               qb = qx - corners[0];
1108       G4ThreeVector qacb = qa.cross(qb);         1034       G4ThreeVector qacb = qa.cross(qb);
1109                                                  1035       
1110       if (normSign*qacb.dot(v) < 0) return fa    1036       if (normSign*qacb.dot(v) < 0) return false;
1111     }                                            1037     }
1112   }                                              1038   }
1113                                                  1039   
1114   //                                             1040   //
1115   // We have a good hit! Calculate normal        1041   // We have a good hit! Calculate normal
1116   //                                             1042   //
1117   if (rx < DBL_MIN)                              1043   if (rx < DBL_MIN) 
1118     normal = G4ThreeVector( 0, 0, zNorm < 0 ?    1044     normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1119   else                                           1045   else
1120     normal = G4ThreeVector( rNorm*hit.x()/rx,    1046     normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1121   return true;                                   1047   return true;
1122 }                                                1048 }
1123                                                  1049 
                                                   >> 1050 
                                                   >> 1051 //
1124 // FindLineIntersect                             1052 // FindLineIntersect
1125 //                                               1053 //
1126 // Decide the point at which two 2-dimensiona    1054 // Decide the point at which two 2-dimensional lines intersect
1127 //                                               1055 //
1128 // Equation of line: x = x1 + s*tx1              1056 // Equation of line: x = x1 + s*tx1
1129 //                   y = y1 + s*ty1              1057 //                   y = y1 + s*ty1
1130 //                                               1058 //
1131 // It is assumed that the lines are *not* par    1059 // It is assumed that the lines are *not* parallel
1132 //                                               1060 //
1133 void G4PolyconeSide::FindLineIntersect( G4dou    1061 void G4PolyconeSide::FindLineIntersect( G4double x1,  G4double y1,
1134                                         G4dou    1062                                         G4double tx1, G4double ty1,
1135                                         G4dou    1063                                         G4double x2,  G4double y2,
1136                                         G4dou    1064                                         G4double tx2, G4double ty2,
1137                                         G4dou << 1065                                         G4double &x,  G4double &y )
1138 {                                                1066 {
1139   //                                             1067   //
1140   // The solution is a simple linear equation    1068   // The solution is a simple linear equation
1141   //                                             1069   //
1142   G4double deter = tx1*ty2 - tx2*ty1;            1070   G4double deter = tx1*ty2 - tx2*ty1;
1143                                                  1071   
1144   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d    1072   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1145   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d    1073   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1146                                                  1074 
1147   //                                             1075   //
1148   // We want the answer to not depend on whic    1076   // We want the answer to not depend on which order the
1149   // lines were specified. Take average.         1077   // lines were specified. Take average.
1150   //                                             1078   //
1151   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );             1079   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1152   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );             1080   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1153 }                                                1081 }
1154                                                  1082 
                                                   >> 1083 //
1155 // Calculate surface area for GetPointOnSurfa    1084 // Calculate surface area for GetPointOnSurface()
1156 //                                               1085 //
1157 G4double G4PolyconeSide::SurfaceArea()           1086 G4double G4PolyconeSide::SurfaceArea() 
1158 {                                                1087 { 
1159   if(fSurfaceArea==0.)                        << 1088   if(fSurfaceArea==0)
1160   {                                              1089   {
1161     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr    1090     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1162     fSurfaceArea *= 0.5*(deltaPhi);              1091     fSurfaceArea *= 0.5*(deltaPhi);
1163   }                                              1092   }  
1164   return fSurfaceArea;                           1093   return fSurfaceArea;
1165 }                                                1094 }
1166                                                  1095 
                                                   >> 1096 //
1167 // GetPointOnFace                                1097 // GetPointOnFace
1168 //                                               1098 //
1169 G4ThreeVector G4PolyconeSide::GetPointOnFace(    1099 G4ThreeVector G4PolyconeSide::GetPointOnFace()
1170 {                                                1100 {
1171   G4double x,y,zz;                               1101   G4double x,y,zz;
1172   G4double rr,phi,dz,dr;                         1102   G4double rr,phi,dz,dr;
1173   dr=r[1]-r[0];dz=z[1]-z[0];                     1103   dr=r[1]-r[0];dz=z[1]-z[0];
1174   phi=startPhi+deltaPhi*G4UniformRand();         1104   phi=startPhi+deltaPhi*G4UniformRand();
1175   rr=r[0]+dr*G4UniformRand();                    1105   rr=r[0]+dr*G4UniformRand();
1176                                                  1106  
1177   x=rr*std::cos(phi);                            1107   x=rr*std::cos(phi);
1178   y=rr*std::sin(phi);                            1108   y=rr*std::sin(phi);
1179                                                  1109 
1180   // PolyconeSide has a Ring Form                1110   // PolyconeSide has a Ring Form
1181   //                                             1111   //
1182   if (dz==0.)                                    1112   if (dz==0.)
1183   {                                              1113   {
1184     zz=z[0];                                     1114     zz=z[0];
1185   }                                              1115   }
1186   else                                           1116   else
1187   {                                              1117   {
1188     if(dr==0.)  // PolyconeSide has a Tube Fo    1118     if(dr==0.)  // PolyconeSide has a Tube Form
1189     {                                            1119     {
1190       zz = z[0]+dz*G4UniformRand();              1120       zz = z[0]+dz*G4UniformRand();
1191     }                                            1121     }
1192     else                                         1122     else
1193     {                                            1123     {
1194       zz = z[0]+(rr-r[0])*dz/dr;                 1124       zz = z[0]+(rr-r[0])*dz/dr;
1195     }                                            1125     }
1196   }                                              1126   }
1197                                                  1127 
1198   return {x,y,zz};                            << 1128   return G4ThreeVector(x,y,zz);
1199 }                                                1129 }
1200                                                  1130