Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyconeSide, the face << 27 // one conical side of a polycone << 28 // 26 // 29 // Author: David C. Williams (davidw@scipp.ucs << 27 // $Id: G4PolyconeSide.cc,v 1.22.2.1 2010/03/18 11:04:57 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-03-patch-01 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4PolyconeSide.cc >> 36 // >> 37 // Implementation of the face representing one conical side of a polycone >> 38 // 30 // ------------------------------------------- 39 // -------------------------------------------------------------------- 31 40 32 #include "G4PolyconeSide.hh" 41 #include "G4PolyconeSide.hh" 33 #include "meshdefs.hh" << 34 #include "G4PhysicalConstants.hh" << 35 #include "G4IntersectingCone.hh" 42 #include "G4IntersectingCone.hh" 36 #include "G4ClippablePolygon.hh" 43 #include "G4ClippablePolygon.hh" 37 #include "G4AffineTransform.hh" 44 #include "G4AffineTransform.hh" >> 45 #include "meshdefs.hh" 38 #include "G4SolidExtentList.hh" 46 #include "G4SolidExtentList.hh" 39 #include "G4GeometryTolerance.hh" 47 #include "G4GeometryTolerance.hh" 40 48 41 #include "Randomize.hh" 49 #include "Randomize.hh" 42 50 43 // This new field helps to use the class G4PlS << 44 // 51 // 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 46 << 47 // This macro changes the references to fields << 48 // in the class G4PlSideData. << 49 // << 50 #define G4MT_pcphix ((subInstanceManager.offse << 51 #define G4MT_pcphiy ((subInstanceManager.offse << 52 #define G4MT_pcphiz ((subInstanceManager.offse << 53 #define G4MT_pcphik ((subInstanceManager.offse << 54 << 55 // Returns the private data instance manager. << 56 // << 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 58 { << 59 return subInstanceManager; << 60 } << 61 << 62 // Constructor 52 // Constructor 63 // 53 // 64 // Values for r1,z1 and r2,z2 should be specif 54 // Values for r1,z1 and r2,z2 should be specified in clockwise 65 // order in (r,z). 55 // order in (r,z). 66 // 56 // 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 57 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ, 68 const G4Polyco << 58 const G4PolyconeSideRZ *tail, 69 const G4Polyco << 59 const G4PolyconeSideRZ *head, 70 const G4Polyco << 60 const G4PolyconeSideRZ *nextRZ, 71 G4double 61 G4double thePhiStart, 72 G4double 62 G4double theDeltaPhi, 73 G4bool t 63 G4bool thePhiIsOpen, 74 G4bool i 64 G4bool isAllBehind ) >> 65 : ncorners(0), corners(0) 75 { 66 { 76 instanceID = subInstanceManager.CreateSubIns << 77 << 78 kCarTolerance = G4GeometryTolerance::GetInst 67 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 79 G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p << 68 fSurfaceArea = 0.0; >> 69 fPhi.first = G4ThreeVector(0,0,0); >> 70 fPhi.second= 0.0; 80 71 81 // 72 // 82 // Record values 73 // Record values 83 // 74 // 84 r[0] = tail->r; z[0] = tail->z; 75 r[0] = tail->r; z[0] = tail->z; 85 r[1] = head->r; z[1] = head->z; 76 r[1] = head->r; z[1] = head->z; 86 77 87 phiIsOpen = thePhiIsOpen; 78 phiIsOpen = thePhiIsOpen; 88 if (phiIsOpen) 79 if (phiIsOpen) 89 { 80 { 90 deltaPhi = theDeltaPhi; 81 deltaPhi = theDeltaPhi; 91 startPhi = thePhiStart; 82 startPhi = thePhiStart; 92 83 93 // 84 // 94 // Set phi values to our conventions 85 // Set phi values to our conventions 95 // 86 // 96 while (deltaPhi < 0.0) // Loop checking << 87 while (deltaPhi < 0.0) deltaPhi += twopi; 97 deltaPhi += twopi; << 88 while (startPhi < 0.0) startPhi += twopi; 98 while (startPhi < 0.0) // Loop checking << 99 startPhi += twopi; << 100 89 101 // 90 // 102 // Calculate corner coordinates 91 // Calculate corner coordinates 103 // 92 // 104 ncorners = 4; 93 ncorners = 4; 105 corners = new G4ThreeVector[ncorners]; 94 corners = new G4ThreeVector[ncorners]; 106 95 107 corners[0] = G4ThreeVector( tail->r*std::c 96 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi), 108 tail->r*std::s 97 tail->r*std::sin(startPhi), tail->z ); 109 corners[1] = G4ThreeVector( head->r*std::c 98 corners[1] = G4ThreeVector( head->r*std::cos(startPhi), 110 head->r*std::s 99 head->r*std::sin(startPhi), head->z ); 111 corners[2] = G4ThreeVector( tail->r*std::c 100 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi), 112 tail->r*std::s 101 tail->r*std::sin(startPhi+deltaPhi), tail->z ); 113 corners[3] = G4ThreeVector( head->r*std::c 102 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi), 114 head->r*std::s 103 head->r*std::sin(startPhi+deltaPhi), head->z ); 115 } 104 } 116 else 105 else 117 { 106 { 118 deltaPhi = twopi; 107 deltaPhi = twopi; 119 startPhi = 0.0; 108 startPhi = 0.0; 120 } 109 } 121 110 122 allBehind = isAllBehind; 111 allBehind = isAllBehind; 123 112 124 // 113 // 125 // Make our intersecting cone 114 // Make our intersecting cone 126 // 115 // 127 cone = new G4IntersectingCone( r, z ); 116 cone = new G4IntersectingCone( r, z ); 128 117 129 // 118 // 130 // Calculate vectors in r,z space 119 // Calculate vectors in r,z space 131 // 120 // 132 rS = r[1]-r[0]; zS = z[1]-z[0]; 121 rS = r[1]-r[0]; zS = z[1]-z[0]; 133 length = std::sqrt( rS*rS + zS*zS); 122 length = std::sqrt( rS*rS + zS*zS); 134 rS /= length; zS /= length; 123 rS /= length; zS /= length; 135 124 136 rNorm = +zS; 125 rNorm = +zS; 137 zNorm = -rS; 126 zNorm = -rS; 138 127 139 G4double lAdj; 128 G4double lAdj; 140 129 141 prevRS = r[0]-prevRZ->r; 130 prevRS = r[0]-prevRZ->r; 142 prevZS = z[0]-prevRZ->z; 131 prevZS = z[0]-prevRZ->z; 143 lAdj = std::sqrt( prevRS*prevRS + prevZS*pre 132 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS ); 144 prevRS /= lAdj; 133 prevRS /= lAdj; 145 prevZS /= lAdj; 134 prevZS /= lAdj; 146 135 147 rNormEdge[0] = rNorm + prevZS; 136 rNormEdge[0] = rNorm + prevZS; 148 zNormEdge[0] = zNorm - prevRS; 137 zNormEdge[0] = zNorm - prevRS; 149 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] 138 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] ); 150 rNormEdge[0] /= lAdj; 139 rNormEdge[0] /= lAdj; 151 zNormEdge[0] /= lAdj; 140 zNormEdge[0] /= lAdj; 152 141 153 nextRS = nextRZ->r-r[1]; 142 nextRS = nextRZ->r-r[1]; 154 nextZS = nextRZ->z-z[1]; 143 nextZS = nextRZ->z-z[1]; 155 lAdj = std::sqrt( nextRS*nextRS + nextZS*nex 144 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS ); 156 nextRS /= lAdj; 145 nextRS /= lAdj; 157 nextZS /= lAdj; 146 nextZS /= lAdj; 158 147 159 rNormEdge[1] = rNorm + nextZS; 148 rNormEdge[1] = rNorm + nextZS; 160 zNormEdge[1] = zNorm - nextRS; 149 zNormEdge[1] = zNorm - nextRS; 161 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] 150 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] ); 162 rNormEdge[1] /= lAdj; 151 rNormEdge[1] /= lAdj; 163 zNormEdge[1] /= lAdj; 152 zNormEdge[1] /= lAdj; 164 } 153 } 165 154 >> 155 >> 156 // 166 // Fake default constructor - sets only member 157 // Fake default constructor - sets only member data and allocates memory 167 // for usage restri 158 // for usage restricted to object persistency. 168 // 159 // 169 G4PolyconeSide::G4PolyconeSide( __void__& ) 160 G4PolyconeSide::G4PolyconeSide( __void__& ) 170 : startPhi(0.), deltaPhi(0.), << 161 : phiIsOpen(false), cone(0), ncorners(0), corners(0) 171 rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 172 prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 173 kCarTolerance(0.), instanceID(0) << 174 { 162 { 175 r[0] = r[1] = 0.; << 176 z[0] = z[1] = 0.; << 177 rNormEdge[0]= rNormEdge[1] = 0.; << 178 zNormEdge[0]= zNormEdge[1] = 0.; << 179 } 163 } 180 164 >> 165 >> 166 // 181 // Destructor 167 // Destructor 182 // 168 // 183 G4PolyconeSide::~G4PolyconeSide() 169 G4PolyconeSide::~G4PolyconeSide() 184 { 170 { 185 delete cone; 171 delete cone; 186 if (phiIsOpen) { delete [] corners; } << 172 if (phiIsOpen) delete [] corners; 187 } 173 } 188 174 >> 175 >> 176 // 189 // Copy constructor 177 // Copy constructor 190 // 178 // 191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 179 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source ) >> 180 : G4VCSGface() 192 { 181 { 193 instanceID = subInstanceManager.CreateSubIns << 194 << 195 CopyStuff( source ); 182 CopyStuff( source ); 196 } 183 } 197 184 >> 185 >> 186 // 198 // Assignment operator 187 // Assignment operator 199 // 188 // 200 G4PolyconeSide& G4PolyconeSide::operator=( con << 189 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source ) 201 { 190 { 202 if (this == &source) { return *this; } << 191 if (this == &source) return *this; 203 192 204 delete cone; 193 delete cone; 205 if (phiIsOpen) { delete [] corners; } << 194 if (phiIsOpen) delete [] corners; 206 195 207 CopyStuff( source ); 196 CopyStuff( source ); 208 197 209 return *this; 198 return *this; 210 } 199 } 211 200 >> 201 >> 202 // 212 // CopyStuff 203 // CopyStuff 213 // 204 // 214 void G4PolyconeSide::CopyStuff( const G4Polyco << 205 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source ) 215 { 206 { 216 r[0] = source.r[0]; 207 r[0] = source.r[0]; 217 r[1] = source.r[1]; 208 r[1] = source.r[1]; 218 z[0] = source.z[0]; 209 z[0] = source.z[0]; 219 z[1] = source.z[1]; 210 z[1] = source.z[1]; 220 211 221 startPhi = source.startPhi; 212 startPhi = source.startPhi; 222 deltaPhi = source.deltaPhi; 213 deltaPhi = source.deltaPhi; 223 phiIsOpen = source.phiIsOpen; 214 phiIsOpen = source.phiIsOpen; 224 allBehind = source.allBehind; 215 allBehind = source.allBehind; 225 216 226 kCarTolerance = source.kCarTolerance; 217 kCarTolerance = source.kCarTolerance; 227 fSurfaceArea = source.fSurfaceArea; 218 fSurfaceArea = source.fSurfaceArea; 228 219 229 cone = new G4IntersectingCone( *source.co 220 cone = new G4IntersectingCone( *source.cone ); 230 221 231 rNorm = source.rNorm; 222 rNorm = source.rNorm; 232 zNorm = source.zNorm; 223 zNorm = source.zNorm; 233 rS = source.rS; 224 rS = source.rS; 234 zS = source.zS; 225 zS = source.zS; 235 length = source.length; 226 length = source.length; 236 prevRS = source.prevRS; 227 prevRS = source.prevRS; 237 prevZS = source.prevZS; 228 prevZS = source.prevZS; 238 nextRS = source.nextRS; 229 nextRS = source.nextRS; 239 nextZS = source.nextZS; 230 nextZS = source.nextZS; 240 231 241 rNormEdge[0] = source.rNormEdge[0]; 232 rNormEdge[0] = source.rNormEdge[0]; 242 rNormEdge[1] = source.rNormEdge[1]; 233 rNormEdge[1] = source.rNormEdge[1]; 243 zNormEdge[0] = source.zNormEdge[0]; 234 zNormEdge[0] = source.zNormEdge[0]; 244 zNormEdge[1] = source.zNormEdge[1]; 235 zNormEdge[1] = source.zNormEdge[1]; 245 236 246 if (phiIsOpen) 237 if (phiIsOpen) 247 { 238 { 248 ncorners = 4; 239 ncorners = 4; 249 corners = new G4ThreeVector[ncorners]; 240 corners = new G4ThreeVector[ncorners]; 250 241 251 corners[0] = source.corners[0]; 242 corners[0] = source.corners[0]; 252 corners[1] = source.corners[1]; 243 corners[1] = source.corners[1]; 253 corners[2] = source.corners[2]; 244 corners[2] = source.corners[2]; 254 corners[3] = source.corners[3]; 245 corners[3] = source.corners[3]; 255 } 246 } 256 } 247 } 257 248 >> 249 >> 250 // 258 // Intersect 251 // Intersect 259 // 252 // 260 G4bool G4PolyconeSide::Intersect( const G4Thre << 253 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p, 261 const G4Thre << 254 const G4ThreeVector &v, 262 G4bool 255 G4bool outgoing, 263 G4doub 256 G4double surfTolerance, 264 G4doub << 257 G4double &distance, 265 G4doub << 258 G4double &distFromSurface, 266 G4Thre << 259 G4ThreeVector &normal, 267 G4bool << 260 G4bool &isAllBehind ) 268 { 261 { 269 G4double s1=0., s2=0.; << 262 G4double s1, s2; 270 G4double normSign = outgoing ? +1 : -1; 263 G4double normSign = outgoing ? +1 : -1; 271 264 272 isAllBehind = allBehind; 265 isAllBehind = allBehind; 273 266 274 // 267 // 275 // Check for two possible intersections 268 // Check for two possible intersections 276 // 269 // 277 G4int nside = cone->LineHitsCone( p, v, &s1, 270 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 ); 278 if (nside == 0) return false; 271 if (nside == 0) return false; 279 272 280 // 273 // 281 // Check the first side first, since it is ( 274 // Check the first side first, since it is (supposed to be) closest 282 // 275 // 283 G4ThreeVector hit = p + s1*v; 276 G4ThreeVector hit = p + s1*v; 284 277 285 if (PointOnCone( hit, normSign, p, v, normal 278 if (PointOnCone( hit, normSign, p, v, normal )) 286 { 279 { 287 // 280 // 288 // Good intersection! What about the norma 281 // Good intersection! What about the normal? 289 // 282 // 290 if (normSign*v.dot(normal) > 0) 283 if (normSign*v.dot(normal) > 0) 291 { 284 { 292 // 285 // 293 // We have a valid intersection, but it 286 // We have a valid intersection, but it could very easily 294 // be behind the point. To decide if we 287 // be behind the point. To decide if we tolerate this, 295 // we have to see if the point p is on t 288 // we have to see if the point p is on the surface near 296 // the intersecting point. 289 // the intersecting point. 297 // 290 // 298 // What does it mean exactly for the poi 291 // What does it mean exactly for the point p to be "near" 299 // the intersection? It means that if we 292 // the intersection? It means that if we draw a line from 300 // p to the hit, the line remains entire 293 // p to the hit, the line remains entirely within the 301 // tolerance bounds of the cone. To test 294 // tolerance bounds of the cone. To test this, we can 302 // ask if the normal is correct near p. 295 // ask if the normal is correct near p. 303 // 296 // 304 G4double pr = p.perp(); 297 G4double pr = p.perp(); 305 if (pr < DBL_MIN) pr = DBL_MIN; 298 if (pr < DBL_MIN) pr = DBL_MIN; 306 G4ThreeVector pNormal( rNorm*p.x()/pr, r 299 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 307 if (normSign*v.dot(pNormal) > 0) 300 if (normSign*v.dot(pNormal) > 0) 308 { 301 { 309 // 302 // 310 // p and intersection in same hemisphe 303 // p and intersection in same hemisphere 311 // 304 // 312 G4double distOutside2; 305 G4double distOutside2; 313 distFromSurface = -normSign*DistanceAw 306 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 314 if (distOutside2 < surfTolerance*surfT 307 if (distOutside2 < surfTolerance*surfTolerance) 315 { 308 { 316 if (distFromSurface > -surfTolerance 309 if (distFromSurface > -surfTolerance) 317 { 310 { 318 // 311 // 319 // We are just inside or away from 312 // We are just inside or away from the 320 // surface. Accept *any* value of 313 // surface. Accept *any* value of distance. 321 // 314 // 322 distance = s1; 315 distance = s1; 323 return true; 316 return true; 324 } 317 } 325 } 318 } 326 } 319 } 327 else 320 else 328 distFromSurface = s1; 321 distFromSurface = s1; 329 322 330 // 323 // 331 // Accept positive distances 324 // Accept positive distances 332 // 325 // 333 if (s1 > 0) 326 if (s1 > 0) 334 { 327 { 335 distance = s1; 328 distance = s1; 336 return true; 329 return true; 337 } 330 } 338 } 331 } 339 } 332 } 340 333 341 if (nside==1) return false; 334 if (nside==1) return false; 342 335 343 // 336 // 344 // Well, try the second hit 337 // Well, try the second hit 345 // 338 // 346 hit = p + s2*v; 339 hit = p + s2*v; 347 340 348 if (PointOnCone( hit, normSign, p, v, normal 341 if (PointOnCone( hit, normSign, p, v, normal )) 349 { 342 { 350 // 343 // 351 // Good intersection! What about the norma 344 // Good intersection! What about the normal? 352 // 345 // 353 if (normSign*v.dot(normal) > 0) 346 if (normSign*v.dot(normal) > 0) 354 { 347 { 355 G4double pr = p.perp(); 348 G4double pr = p.perp(); 356 if (pr < DBL_MIN) pr = DBL_MIN; 349 if (pr < DBL_MIN) pr = DBL_MIN; 357 G4ThreeVector pNormal( rNorm*p.x()/pr, r 350 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 358 if (normSign*v.dot(pNormal) > 0) 351 if (normSign*v.dot(pNormal) > 0) 359 { 352 { 360 G4double distOutside2; 353 G4double distOutside2; 361 distFromSurface = -normSign*DistanceAw 354 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 362 if (distOutside2 < surfTolerance*surfT 355 if (distOutside2 < surfTolerance*surfTolerance) 363 { 356 { 364 if (distFromSurface > -surfTolerance 357 if (distFromSurface > -surfTolerance) 365 { 358 { 366 distance = s2; 359 distance = s2; 367 return true; 360 return true; 368 } 361 } 369 } 362 } 370 } 363 } 371 else 364 else 372 distFromSurface = s2; 365 distFromSurface = s2; 373 366 374 if (s2 > 0) 367 if (s2 > 0) 375 { 368 { 376 distance = s2; 369 distance = s2; 377 return true; 370 return true; 378 } 371 } 379 } 372 } 380 } 373 } 381 374 382 // 375 // 383 // Better luck next time 376 // Better luck next time 384 // 377 // 385 return false; 378 return false; 386 } 379 } 387 380 388 // Distance << 381 389 // << 382 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 390 G4double G4PolyconeSide::Distance( const G4Thr << 391 { 383 { 392 G4double normSign = outgoing ? -1 : +1; 384 G4double normSign = outgoing ? -1 : +1; 393 G4double distFrom, distOut2; 385 G4double distFrom, distOut2; 394 386 395 // 387 // 396 // We have two tries for each hemisphere. Tr 388 // We have two tries for each hemisphere. Try the closest first. 397 // 389 // 398 distFrom = normSign*DistanceAway( p, false, 390 distFrom = normSign*DistanceAway( p, false, distOut2 ); 399 if (distFrom > -0.5*kCarTolerance ) 391 if (distFrom > -0.5*kCarTolerance ) 400 { 392 { 401 // 393 // 402 // Good answer 394 // Good answer 403 // 395 // 404 if (distOut2 > 0) 396 if (distOut2 > 0) 405 return std::sqrt( distFrom*distFrom + di 397 return std::sqrt( distFrom*distFrom + distOut2 ); 406 else 398 else 407 return std::fabs(distFrom); 399 return std::fabs(distFrom); 408 } 400 } 409 401 410 // 402 // 411 // Try second side. 403 // Try second side. 412 // 404 // 413 distFrom = normSign*DistanceAway( p, true, 405 distFrom = normSign*DistanceAway( p, true, distOut2 ); 414 if (distFrom > -0.5*kCarTolerance) 406 if (distFrom > -0.5*kCarTolerance) 415 { 407 { 416 408 417 if (distOut2 > 0) 409 if (distOut2 > 0) 418 return std::sqrt( distFrom*distFrom + di 410 return std::sqrt( distFrom*distFrom + distOut2 ); 419 else 411 else 420 return std::fabs(distFrom); 412 return std::fabs(distFrom); 421 } 413 } 422 414 423 return kInfinity; 415 return kInfinity; 424 } 416 } 425 417 >> 418 >> 419 // 426 // Inside 420 // Inside 427 // 421 // 428 EInside G4PolyconeSide::Inside( const G4ThreeV << 422 EInside G4PolyconeSide::Inside( const G4ThreeVector &p, 429 G4double 423 G4double tolerance, 430 G4double << 424 G4double *bestDistance ) 431 { 425 { 432 G4double distFrom, distOut2, dist2; << 426 // 433 G4double edgeRZnorm; << 427 // Check both sides >> 428 // >> 429 G4double distFrom[2], distOut2[2], dist2[2]; >> 430 G4double edgeRZnorm[2]; 434 431 435 distFrom = DistanceAway( p, distOut2, &edge << 432 distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm ); 436 dist2 = distFrom*distFrom + distOut2; << 433 distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 ); 437 << 438 *bestDistance = std::sqrt( dist2); << 439 434 >> 435 dist2[0] = distFrom[0]*distFrom[0] + distOut2[0]; >> 436 dist2[1] = distFrom[1]*distFrom[1] + distOut2[1]; >> 437 >> 438 // >> 439 // Who's closest? >> 440 // >> 441 G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1; >> 442 >> 443 *bestDistance = std::sqrt( dist2[i] ); >> 444 >> 445 // 440 // Okay then, inside or out? 446 // Okay then, inside or out? 441 // 447 // 442 if ( (std::fabs(edgeRZnorm) < tolerance) << 448 if ( (std::fabs(edgeRZnorm[i]) < tolerance) 443 && (distOut2< tolerance*tolerance) ) << 449 && (distOut2[i] < tolerance*tolerance) ) 444 return kSurface; 450 return kSurface; 445 else if (edgeRZnorm < 0) << 451 else if (edgeRZnorm[i] < 0) 446 return kInside; 452 return kInside; 447 else 453 else 448 return kOutside; 454 return kOutside; 449 } 455 } 450 456 >> 457 >> 458 // 451 // Normal 459 // Normal 452 // 460 // 453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 461 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p, 454 G4 << 462 G4double *bestDistance ) 455 { 463 { 456 if (p == G4ThreeVector(0.,0.,0.)) { return 464 if (p == G4ThreeVector(0.,0.,0.)) { return p; } 457 465 458 G4double dFrom, dOut2; 466 G4double dFrom, dOut2; 459 467 460 dFrom = DistanceAway( p, false, dOut2 ); 468 dFrom = DistanceAway( p, false, dOut2 ); 461 469 462 *bestDistance = std::sqrt( dFrom*dFrom + dOu 470 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 ); 463 471 464 G4double rds = p.perp(); << 472 G4double rad = p.perp(); 465 if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 473 if (rad!=0.) { return G4ThreeVector(rNorm*p.x()/rad,rNorm*p.y()/rad,zNorm); } 466 return G4ThreeVector( 0.,0., zNorm ).unit(); 474 return G4ThreeVector( 0.,0., zNorm ).unit(); 467 } 475 } 468 476 >> 477 >> 478 // 469 // Extent 479 // Extent 470 // 480 // 471 G4double G4PolyconeSide::Extent( const G4Three 481 G4double G4PolyconeSide::Extent( const G4ThreeVector axis ) 472 { 482 { 473 if (axis.perp2() < DBL_MIN) 483 if (axis.perp2() < DBL_MIN) 474 { 484 { 475 // 485 // 476 // Special case 486 // Special case 477 // 487 // 478 return axis.z() < 0 ? -cone->ZLo() : cone- 488 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 479 } 489 } 480 490 481 // 491 // 482 // Is the axis pointing inside our phi gap? 492 // Is the axis pointing inside our phi gap? 483 // 493 // 484 if (phiIsOpen) 494 if (phiIsOpen) 485 { 495 { 486 G4double phi = GetPhi(axis); 496 G4double phi = GetPhi(axis); 487 while( phi < startPhi ) // Loop checkin << 497 while( phi < startPhi ) phi += twopi; 488 phi += twopi; << 489 498 490 if (phi > deltaPhi+startPhi) 499 if (phi > deltaPhi+startPhi) 491 { 500 { 492 // 501 // 493 // Yeah, looks so. Make four three vecto 502 // Yeah, looks so. Make four three vectors defining the phi 494 // opening 503 // opening 495 // 504 // 496 G4double cosP = std::cos(startPhi), sinP 505 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi); 497 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z 506 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] ); 498 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z 507 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] ); 499 cosP = std::cos(startPhi+deltaPhi); sinP 508 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi); 500 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z 509 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] ); 501 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z 510 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] ); 502 511 503 G4double ad = axis.dot(a), 512 G4double ad = axis.dot(a), 504 bd = axis.dot(b), << 513 bd = axis.dot(b), 505 cd = axis.dot(c), << 514 cd = axis.dot(c), 506 dd = axis.dot(d); << 515 dd = axis.dot(d); 507 516 508 if (bd > ad) ad = bd; 517 if (bd > ad) ad = bd; 509 if (cd > ad) ad = cd; 518 if (cd > ad) ad = cd; 510 if (dd > ad) ad = dd; 519 if (dd > ad) ad = dd; 511 520 512 return ad; 521 return ad; 513 } 522 } 514 } 523 } 515 524 516 // 525 // 517 // Check either end 526 // Check either end 518 // 527 // 519 G4double aPerp = axis.perp(); 528 G4double aPerp = axis.perp(); 520 529 521 G4double a = aPerp*r[0] + axis.z()*z[0]; 530 G4double a = aPerp*r[0] + axis.z()*z[0]; 522 G4double b = aPerp*r[1] + axis.z()*z[1]; 531 G4double b = aPerp*r[1] + axis.z()*z[1]; 523 532 524 if (b > a) a = b; 533 if (b > a) a = b; 525 534 526 return a; 535 return a; 527 } 536 } 528 537 >> 538 >> 539 >> 540 // 529 // CalculateExtent 541 // CalculateExtent 530 // 542 // 531 // See notes in G4VCSGface 543 // See notes in G4VCSGface 532 // 544 // 533 void G4PolyconeSide::CalculateExtent( const EA 545 void G4PolyconeSide::CalculateExtent( const EAxis axis, 534 const G4 << 546 const G4VoxelLimits &voxelLimit, 535 const G4 << 547 const G4AffineTransform &transform, 536 G4 << 548 G4SolidExtentList &extentList ) 537 { 549 { 538 G4ClippablePolygon polygon; 550 G4ClippablePolygon polygon; 539 551 540 // 552 // 541 // Here we will approximate (ala G4Cons) and 553 // Here we will approximate (ala G4Cons) and divide our conical section 542 // into segments, like G4Polyhedra. When doi 554 // into segments, like G4Polyhedra. When doing so, the radius 543 // is extented far enough such that the segm 555 // is extented far enough such that the segments always lie 544 // just outside the surface of the conical s 556 // just outside the surface of the conical section we are 545 // approximating. 557 // approximating. 546 // 558 // 547 559 548 // 560 // 549 // Choose phi size of our segment(s) based o 561 // Choose phi size of our segment(s) based on constants as 550 // defined in meshdefs.hh 562 // defined in meshdefs.hh 551 // 563 // 552 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe 564 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1; 553 if (numPhi < kMinMeshSections) 565 if (numPhi < kMinMeshSections) 554 numPhi = kMinMeshSections; 566 numPhi = kMinMeshSections; 555 else if (numPhi > kMaxMeshSections) 567 else if (numPhi > kMaxMeshSections) 556 numPhi = kMaxMeshSections; 568 numPhi = kMaxMeshSections; 557 569 558 G4double sigPhi = deltaPhi/numPhi; 570 G4double sigPhi = deltaPhi/numPhi; 559 571 560 // 572 // 561 // Determine radius factor to keep segments 573 // Determine radius factor to keep segments outside 562 // 574 // 563 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 575 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 564 576 565 // 577 // 566 // Decide which radius to use on each end of 578 // Decide which radius to use on each end of the side, 567 // and whether a transition mesh is required 579 // and whether a transition mesh is required 568 // 580 // 569 // {r0,z0} - Beginning of this side 581 // {r0,z0} - Beginning of this side 570 // {r1,z1} - Ending of this side 582 // {r1,z1} - Ending of this side 571 // {r2,z0} - Beginning of transition piece 583 // {r2,z0} - Beginning of transition piece connecting previous 572 // side (and ends at beginning of 584 // side (and ends at beginning of this side) 573 // 585 // 574 // So, order is 2 --> 0 --> 1. 586 // So, order is 2 --> 0 --> 1. 575 // ------- 587 // ------- 576 // 588 // 577 // r2 < 0 indicates that no transition piece 589 // r2 < 0 indicates that no transition piece is required 578 // 590 // 579 G4double r0, r1, r2, z0, z1; 591 G4double r0, r1, r2, z0, z1; 580 592 581 r2 = -1; // By default: no transition piece 593 r2 = -1; // By default: no transition piece 582 594 583 if (rNorm < -DBL_MIN) 595 if (rNorm < -DBL_MIN) 584 { 596 { 585 // 597 // 586 // This side faces *inward*, and so our me 598 // This side faces *inward*, and so our mesh has 587 // the same radius 599 // the same radius 588 // 600 // 589 r1 = r[1]; 601 r1 = r[1]; 590 z1 = z[1]; 602 z1 = z[1]; 591 z0 = z[0]; 603 z0 = z[0]; 592 r0 = r[0]; 604 r0 = r[0]; 593 605 594 r2 = -1; 606 r2 = -1; 595 607 596 if (prevZS > DBL_MIN) 608 if (prevZS > DBL_MIN) 597 { 609 { 598 // 610 // 599 // The previous side is facing outwards 611 // The previous side is facing outwards 600 // 612 // 601 if ( prevRS*zS - prevZS*rS > 0 ) 613 if ( prevRS*zS - prevZS*rS > 0 ) 602 { 614 { 603 // 615 // 604 // Transition was convex: build transi 616 // Transition was convex: build transition piece 605 // 617 // 606 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 618 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 607 } 619 } 608 else 620 else 609 { 621 { 610 // 622 // 611 // Transition was concave: short this 623 // Transition was concave: short this side 612 // 624 // 613 FindLineIntersect( z0, r0, zS, rS, 625 FindLineIntersect( z0, r0, zS, rS, 614 z0, r0*rFudge, prev 626 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 ); 615 } 627 } 616 } 628 } 617 629 618 if ( nextZS > DBL_MIN && (rS*nextZS - zS*n 630 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 619 { 631 { 620 // 632 // 621 // The next side is facing outwards, for 633 // The next side is facing outwards, forming a 622 // concave transition: short this side 634 // concave transition: short this side 623 // 635 // 624 FindLineIntersect( z1, r1, zS, rS, 636 FindLineIntersect( z1, r1, zS, rS, 625 z1, r1*rFudge, nextZS 637 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 ); 626 } 638 } 627 } 639 } 628 else if (rNorm > DBL_MIN) 640 else if (rNorm > DBL_MIN) 629 { 641 { 630 // 642 // 631 // This side faces *outward* and is given 643 // This side faces *outward* and is given a boost to 632 // it radius 644 // it radius 633 // 645 // 634 r0 = r[0]*rFudge; 646 r0 = r[0]*rFudge; 635 z0 = z[0]; 647 z0 = z[0]; 636 r1 = r[1]*rFudge; 648 r1 = r[1]*rFudge; 637 z1 = z[1]; 649 z1 = z[1]; 638 650 639 if (prevZS < -DBL_MIN) 651 if (prevZS < -DBL_MIN) 640 { 652 { 641 // 653 // 642 // The previous side is facing inwards 654 // The previous side is facing inwards 643 // 655 // 644 if ( prevRS*zS - prevZS*rS > 0 ) 656 if ( prevRS*zS - prevZS*rS > 0 ) 645 { 657 { 646 // 658 // 647 // Transition was convex: build transi 659 // Transition was convex: build transition piece 648 // 660 // 649 if (r[0] > DBL_MIN) r2 = r[0]; 661 if (r[0] > DBL_MIN) r2 = r[0]; 650 } 662 } 651 else 663 else 652 { 664 { 653 // 665 // 654 // Transition was concave: short this 666 // Transition was concave: short this side 655 // 667 // 656 FindLineIntersect( z0, r0, zS, rS*rFud 668 FindLineIntersect( z0, r0, zS, rS*rFudge, 657 z0, r[0], prevZS, p 669 z0, r[0], prevZS, prevRS, z0, r0 ); 658 } 670 } 659 } 671 } 660 672 661 if ( nextZS < -DBL_MIN && (rS*nextZS - zS* 673 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 662 { 674 { 663 // 675 // 664 // The next side is facing inwards, form 676 // The next side is facing inwards, forming a 665 // concave transition: short this side 677 // concave transition: short this side 666 // 678 // 667 FindLineIntersect( z1, r1, zS, rS*rFudge 679 FindLineIntersect( z1, r1, zS, rS*rFudge, 668 z1, r[1], nextZS, nex 680 z1, r[1], nextZS, nextRS, z1, r1 ); 669 } 681 } 670 } 682 } 671 else 683 else 672 { 684 { 673 // 685 // 674 // This side is perpendicular to the z axi 686 // This side is perpendicular to the z axis (is a disk) 675 // 687 // 676 // Whether or not r0 needs a rFudge factor 688 // Whether or not r0 needs a rFudge factor depends 677 // on the normal of the previous edge. Sim 689 // on the normal of the previous edge. Similar with r1 678 // and the next edge. No transition piece 690 // and the next edge. No transition piece is required. 679 // 691 // 680 r0 = r[0]; 692 r0 = r[0]; 681 r1 = r[1]; 693 r1 = r[1]; 682 z0 = z[0]; 694 z0 = z[0]; 683 z1 = z[1]; 695 z1 = z[1]; 684 696 685 if (prevZS > DBL_MIN) r0 *= rFudge; 697 if (prevZS > DBL_MIN) r0 *= rFudge; 686 if (nextZS > DBL_MIN) r1 *= rFudge; 698 if (nextZS > DBL_MIN) r1 *= rFudge; 687 } 699 } 688 700 689 // 701 // 690 // Loop 702 // Loop 691 // 703 // 692 G4double phi = startPhi, 704 G4double phi = startPhi, 693 cosPhi = std::cos(phi), 705 cosPhi = std::cos(phi), 694 sinPhi = std::sin(phi); 706 sinPhi = std::sin(phi); 695 707 696 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ) 708 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ), 697 v1( r1*cosPhi, r1*sinPhi, 709 v1( r1*cosPhi, r1*sinPhi, z1 ), 698 v2, w0, w1, w2; 710 v2, w0, w1, w2; 699 transform.ApplyPointTransform( v0 ); 711 transform.ApplyPointTransform( v0 ); 700 transform.ApplyPointTransform( v1 ); 712 transform.ApplyPointTransform( v1 ); 701 713 702 if (r2 >= 0) 714 if (r2 >= 0) 703 { 715 { 704 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, 716 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 705 transform.ApplyPointTransform( v2 ); 717 transform.ApplyPointTransform( v2 ); 706 } 718 } 707 719 708 do // Loop checking, 13.08.2015, G.Cosmo << 720 do 709 { 721 { 710 phi += sigPhi; 722 phi += sigPhi; 711 if (numPhi == 1) phi = startPhi+deltaPhi; 723 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff 712 cosPhi = std::cos(phi), 724 cosPhi = std::cos(phi), 713 sinPhi = std::sin(phi); 725 sinPhi = std::sin(phi); 714 726 715 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 727 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 ); 716 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 728 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 ); 717 transform.ApplyPointTransform( w0 ); 729 transform.ApplyPointTransform( w0 ); 718 transform.ApplyPointTransform( w1 ); 730 transform.ApplyPointTransform( w1 ); 719 731 720 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w 732 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1; 721 733 722 // 734 // 723 // Build polygon, taking special care to k 735 // Build polygon, taking special care to keep the vertices 724 // in order 736 // in order 725 // 737 // 726 polygon.ClearAllVertices(); 738 polygon.ClearAllVertices(); 727 739 728 polygon.AddVertexInOrder( v0 ); 740 polygon.AddVertexInOrder( v0 ); 729 polygon.AddVertexInOrder( v1 ); 741 polygon.AddVertexInOrder( v1 ); 730 polygon.AddVertexInOrder( w1 ); 742 polygon.AddVertexInOrder( w1 ); 731 polygon.AddVertexInOrder( w0 ); 743 polygon.AddVertexInOrder( w0 ); 732 744 733 // 745 // 734 // Get extent 746 // Get extent 735 // 747 // 736 if (polygon.PartialClip( voxelLimit, axis 748 if (polygon.PartialClip( voxelLimit, axis )) 737 { 749 { 738 // 750 // 739 // Get dot product of normal with target 751 // Get dot product of normal with target axis 740 // 752 // 741 polygon.SetNormal( deltaV.cross(v1-v0).u 753 polygon.SetNormal( deltaV.cross(v1-v0).unit() ); 742 754 743 extentList.AddSurface( polygon ); 755 extentList.AddSurface( polygon ); 744 } 756 } 745 757 746 if (r2 >= 0) 758 if (r2 >= 0) 747 { 759 { 748 // 760 // 749 // Repeat, for transition piece 761 // Repeat, for transition piece 750 // 762 // 751 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi 763 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 752 transform.ApplyPointTransform( w2 ); 764 transform.ApplyPointTransform( w2 ); 753 765 754 polygon.ClearAllVertices(); 766 polygon.ClearAllVertices(); 755 767 756 polygon.AddVertexInOrder( v2 ); 768 polygon.AddVertexInOrder( v2 ); 757 polygon.AddVertexInOrder( v0 ); 769 polygon.AddVertexInOrder( v0 ); 758 polygon.AddVertexInOrder( w0 ); 770 polygon.AddVertexInOrder( w0 ); 759 polygon.AddVertexInOrder( w2 ); 771 polygon.AddVertexInOrder( w2 ); 760 772 761 if (polygon.PartialClip( voxelLimit, axi 773 if (polygon.PartialClip( voxelLimit, axis )) 762 { 774 { 763 polygon.SetNormal( deltaV.cross(v0-v2) 775 polygon.SetNormal( deltaV.cross(v0-v2).unit() ); 764 776 765 extentList.AddSurface( polygon ); 777 extentList.AddSurface( polygon ); 766 } 778 } 767 779 768 v2 = w2; 780 v2 = w2; 769 } 781 } 770 782 771 // 783 // 772 // Next vertex 784 // Next vertex 773 // 785 // 774 v0 = w0; 786 v0 = w0; 775 v1 = w1; 787 v1 = w1; 776 } while( --numPhi > 0 ); 788 } while( --numPhi > 0 ); 777 789 778 // 790 // 779 // We are almost done. But, it is important 791 // We are almost done. But, it is important that we leave no 780 // gaps in the surface of our solid. By usin 792 // gaps in the surface of our solid. By using rFudge, however, 781 // we've done exactly that, if we have a phi 793 // we've done exactly that, if we have a phi segment. 782 // Add two additional faces if necessary 794 // Add two additional faces if necessary 783 // 795 // 784 if (phiIsOpen && rNorm > DBL_MIN) 796 if (phiIsOpen && rNorm > DBL_MIN) 785 { 797 { 786 cosPhi = std::cos(startPhi); << 798 G4double cosPhi = std::cos(startPhi), 787 sinPhi = std::sin(startPhi); << 799 sinPhi = std::sin(startPhi); 788 800 789 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi 801 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 790 a1( r[1]*cosPhi, r[1]*sinPhi 802 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 791 b0( r0*cosPhi, r0*sinPhi, z[ 803 b0( r0*cosPhi, r0*sinPhi, z[0] ), 792 b1( r1*cosPhi, r1*sinPhi, z[ 804 b1( r1*cosPhi, r1*sinPhi, z[1] ); 793 805 794 transform.ApplyPointTransform( a0 ); 806 transform.ApplyPointTransform( a0 ); 795 transform.ApplyPointTransform( a1 ); 807 transform.ApplyPointTransform( a1 ); 796 transform.ApplyPointTransform( b0 ); 808 transform.ApplyPointTransform( b0 ); 797 transform.ApplyPointTransform( b1 ); 809 transform.ApplyPointTransform( b1 ); 798 810 799 polygon.ClearAllVertices(); 811 polygon.ClearAllVertices(); 800 812 801 polygon.AddVertexInOrder( a0 ); 813 polygon.AddVertexInOrder( a0 ); 802 polygon.AddVertexInOrder( a1 ); 814 polygon.AddVertexInOrder( a1 ); 803 polygon.AddVertexInOrder( b0 ); 815 polygon.AddVertexInOrder( b0 ); 804 polygon.AddVertexInOrder( b1 ); 816 polygon.AddVertexInOrder( b1 ); 805 817 806 if (polygon.PartialClip( voxelLimit , axis 818 if (polygon.PartialClip( voxelLimit , axis)) 807 { 819 { 808 G4ThreeVector normal( sinPhi, -cosPhi, 0 820 G4ThreeVector normal( sinPhi, -cosPhi, 0 ); 809 polygon.SetNormal( transform.TransformAx 821 polygon.SetNormal( transform.TransformAxis( normal ) ); 810 822 811 extentList.AddSurface( polygon ); 823 extentList.AddSurface( polygon ); 812 } 824 } 813 825 814 cosPhi = std::cos(startPhi+deltaPhi); 826 cosPhi = std::cos(startPhi+deltaPhi); 815 sinPhi = std::sin(startPhi+deltaPhi); 827 sinPhi = std::sin(startPhi+deltaPhi); 816 828 817 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP 829 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 818 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP 830 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 819 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 831 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ), 820 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 832 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] ); 821 transform.ApplyPointTransform( a0 ); 833 transform.ApplyPointTransform( a0 ); 822 transform.ApplyPointTransform( a1 ); 834 transform.ApplyPointTransform( a1 ); 823 transform.ApplyPointTransform( b0 ); 835 transform.ApplyPointTransform( b0 ); 824 transform.ApplyPointTransform( b1 ); 836 transform.ApplyPointTransform( b1 ); 825 837 826 polygon.ClearAllVertices(); 838 polygon.ClearAllVertices(); 827 839 828 polygon.AddVertexInOrder( a0 ); 840 polygon.AddVertexInOrder( a0 ); 829 polygon.AddVertexInOrder( a1 ); 841 polygon.AddVertexInOrder( a1 ); 830 polygon.AddVertexInOrder( b0 ); 842 polygon.AddVertexInOrder( b0 ); 831 polygon.AddVertexInOrder( b1 ); 843 polygon.AddVertexInOrder( b1 ); 832 844 833 if (polygon.PartialClip( voxelLimit, axis 845 if (polygon.PartialClip( voxelLimit, axis )) 834 { 846 { 835 G4ThreeVector normal( -sinPhi, cosPhi, 0 847 G4ThreeVector normal( -sinPhi, cosPhi, 0 ); 836 polygon.SetNormal( transform.TransformAx 848 polygon.SetNormal( transform.TransformAxis( normal ) ); 837 849 838 extentList.AddSurface( polygon ); 850 extentList.AddSurface( polygon ); 839 } 851 } 840 } 852 } 841 853 842 return; 854 return; 843 } 855 } 844 856 >> 857 // 845 // GetPhi 858 // GetPhi 846 // 859 // 847 // Calculate Phi for a given 3-vector (point), 860 // Calculate Phi for a given 3-vector (point), if not already cached for the 848 // same point, in the attempt to avoid consecu 861 // same point, in the attempt to avoid consecutive computation of the same 849 // quantity 862 // quantity 850 // 863 // 851 G4double G4PolyconeSide::GetPhi( const G4Three 864 G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p ) 852 { 865 { 853 G4double val=0.; 866 G4double val=0.; 854 G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 855 867 856 if (vphi != p) << 868 if (fPhi.first != p) 857 { 869 { 858 val = p.phi(); 870 val = p.phi(); 859 G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); << 871 fPhi.first = p; 860 G4MT_pcphik = val; << 872 fPhi.second = val; 861 } 873 } 862 else 874 else 863 { 875 { 864 val = G4MT_pcphik; << 876 val = fPhi.second; 865 } 877 } 866 return val; 878 return val; 867 } 879 } 868 880 >> 881 // 869 // DistanceAway 882 // DistanceAway 870 // 883 // 871 // Calculate distance of a point from our coni 884 // Calculate distance of a point from our conical surface, including the effect 872 // of any phi segmentation 885 // of any phi segmentation 873 // 886 // 874 // Arguments: 887 // Arguments: 875 // p - (in) Point to check 888 // p - (in) Point to check 876 // opposite - (in) If true, check opposi 889 // opposite - (in) If true, check opposite hemisphere (see below) 877 // distOutside - (out) Additional distance 890 // distOutside - (out) Additional distance outside the edges of the surface 878 // edgeRZnorm - (out) if negative, point i 891 // edgeRZnorm - (out) if negative, point is inside 879 // 892 // 880 // return value = distance from the conical p 893 // return value = distance from the conical plane, if extrapolated beyond edges, 881 // signed by whether the point 894 // signed by whether the point is in inside or outside the shape 882 // 895 // 883 // Notes: 896 // Notes: 884 // * There are two answers, depending on whic 897 // * There are two answers, depending on which hemisphere is considered. 885 // 898 // 886 G4double G4PolyconeSide::DistanceAway( const G << 899 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p, 887 G 900 G4bool opposite, 888 G << 901 G4double &distOutside2, 889 G << 902 G4double *edgeRZnorm ) 890 { 903 { 891 // 904 // 892 // Convert our point to r and z 905 // Convert our point to r and z 893 // 906 // 894 G4double rx = p.perp(), zx = p.z(); 907 G4double rx = p.perp(), zx = p.z(); 895 908 896 // 909 // 897 // Change sign of r if opposite says we shou 910 // Change sign of r if opposite says we should 898 // 911 // 899 if (opposite) rx = -rx; 912 if (opposite) rx = -rx; 900 913 901 // 914 // 902 // Calculate return value 915 // Calculate return value 903 // 916 // 904 G4double deltaR = rx - r[0], deltaZ = zx - 917 G4double deltaR = rx - r[0], deltaZ = zx - z[0]; 905 G4double answer = deltaR*rNorm + deltaZ*zNor 918 G4double answer = deltaR*rNorm + deltaZ*zNorm; 906 919 907 // 920 // 908 // Are we off the surface in r,z space? 921 // Are we off the surface in r,z space? 909 // 922 // 910 G4double q = deltaR*rS + deltaZ*zS; << 923 G4double s = deltaR*rS + deltaZ*zS; 911 if (q < 0) << 924 if (s < 0) 912 { 925 { 913 distOutside2 = q*q; << 926 distOutside2 = s*s; 914 if (edgeRZnorm != nullptr) << 927 if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0]; 915 *edgeRZnorm = deltaR*rNormEdge[0] + delt << 916 } 928 } 917 else if (q > length) << 929 else if (s > length) 918 { 930 { 919 distOutside2 = sqr( q-length ); << 931 distOutside2 = sqr( s-length ); 920 if (edgeRZnorm != nullptr) << 932 if (edgeRZnorm) 921 { 933 { 922 deltaR = rx - r[1]; << 934 G4double deltaR = rx - r[1], deltaZ = zx - z[1]; 923 deltaZ = zx - z[1]; << 924 *edgeRZnorm = deltaR*rNormEdge[1] + delt 935 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1]; 925 } 936 } 926 } 937 } 927 else 938 else 928 { 939 { 929 distOutside2 = 0.; << 940 distOutside2 = 0; 930 if (edgeRZnorm != nullptr) *edgeRZnorm = a << 941 if (edgeRZnorm) *edgeRZnorm = answer; 931 } 942 } 932 943 933 if (phiIsOpen) 944 if (phiIsOpen) 934 { 945 { 935 // 946 // 936 // Finally, check phi 947 // Finally, check phi 937 // 948 // 938 G4double phi = GetPhi(p); 949 G4double phi = GetPhi(p); 939 while( phi < startPhi ) // Loop checkin << 950 while( phi < startPhi ) phi += twopi; 940 phi += twopi; << 941 951 942 if (phi > startPhi+deltaPhi) 952 if (phi > startPhi+deltaPhi) 943 { 953 { 944 // 954 // 945 // Oops. Are we closer to the start phi 955 // Oops. Are we closer to the start phi or end phi? 946 // 956 // 947 G4double d1 = phi-startPhi-deltaPhi; 957 G4double d1 = phi-startPhi-deltaPhi; 948 while( phi > startPhi ) // Loop check << 958 while( phi > startPhi ) phi -= twopi; 949 phi -= twopi; << 950 G4double d2 = startPhi-phi; 959 G4double d2 = startPhi-phi; 951 960 952 if (d2 < d1) d1 = d2; 961 if (d2 < d1) d1 = d2; 953 962 954 // 963 // 955 // Add result to our distance 964 // Add result to our distance 956 // 965 // 957 G4double dist = d1*rx; 966 G4double dist = d1*rx; 958 967 959 distOutside2 += dist*dist; 968 distOutside2 += dist*dist; 960 if (edgeRZnorm != nullptr) << 969 if (edgeRZnorm) 961 { 970 { 962 *edgeRZnorm = std::max(std::fabs(*edge 971 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist)); 963 } 972 } 964 } 973 } 965 } 974 } 966 975 967 return answer; 976 return answer; 968 } 977 } 969 978 970 // DistanceAway << 971 // << 972 // Special version of DistanceAway for Inside. << 973 // Opposite parameter is not used, instead use << 974 // << 975 G4double G4PolyconeSide::DistanceAway( const G << 976 G << 977 G << 978 { << 979 // << 980 // Convert our point to r and z << 981 // << 982 G4double rx = p.perp(), zx = p.z(); << 983 << 984 // << 985 // Change sign of r if we should << 986 // << 987 G4int part = 1; << 988 if (rx < 0) part = -1; << 989 << 990 // << 991 // Calculate return value << 992 // << 993 G4double deltaR = rx - r[0]*part, deltaZ = z << 994 G4double answer = deltaR*rNorm*part + deltaZ << 995 << 996 // << 997 // Are we off the surface in r,z space? << 998 // << 999 G4double q = deltaR*rS*part + deltaZ*zS; << 1000 if (q < 0) << 1001 { << 1002 distOutside2 = q*q; << 1003 if (edgeRZnorm != nullptr) << 1004 { << 1005 *edgeRZnorm = deltaR*rNormEdge[0]*part << 1006 } << 1007 } << 1008 else if (q > length) << 1009 { << 1010 distOutside2 = sqr( q-length ); << 1011 if (edgeRZnorm != nullptr) << 1012 { << 1013 deltaR = rx - r[1]*part; << 1014 deltaZ = zx - z[1]; << 1015 *edgeRZnorm = deltaR*rNormEdge[1]*part << 1016 } << 1017 } << 1018 else << 1019 { << 1020 distOutside2 = 0.; << 1021 if (edgeRZnorm != nullptr) *edgeRZnorm = << 1022 } << 1023 << 1024 if (phiIsOpen) << 1025 { << 1026 // << 1027 // Finally, check phi << 1028 // << 1029 G4double phi = GetPhi(p); << 1030 while( phi < startPhi ) // Loop checki << 1031 phi += twopi; << 1032 << 1033 if (phi > startPhi+deltaPhi) << 1034 { << 1035 // << 1036 // Oops. Are we closer to the start phi << 1037 // << 1038 G4double d1 = phi-startPhi-deltaPhi; << 1039 while( phi > startPhi ) // Loop chec << 1040 phi -= twopi; << 1041 G4double d2 = startPhi-phi; << 1042 << 1043 if (d2 < d1) d1 = d2; << 1044 << 1045 // << 1046 // Add result to our distance << 1047 // << 1048 G4double dist = d1*rx*part; << 1049 << 1050 distOutside2 += dist*dist; << 1051 if (edgeRZnorm != nullptr) << 1052 { << 1053 *edgeRZnorm = std::max(std::fabs(*edg << 1054 } << 1055 } << 1056 } << 1057 << 1058 return answer; << 1059 } << 1060 979 >> 980 // 1061 // PointOnCone 981 // PointOnCone 1062 // 982 // 1063 // Decide if a point is on a cone and return 983 // Decide if a point is on a cone and return normal if it is 1064 // 984 // 1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 985 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit, 1066 G4d 986 G4double normSign, 1067 const G4T << 987 const G4ThreeVector &p, 1068 const G4T << 988 const G4ThreeVector &v, 1069 G4T << 989 G4ThreeVector &normal ) 1070 { 990 { 1071 G4double rx = hit.perp(); 991 G4double rx = hit.perp(); 1072 // 992 // 1073 // Check radial/z extent, as appropriate 993 // Check radial/z extent, as appropriate 1074 // 994 // 1075 if (!cone->HitOn( rx, hit.z() )) return fal 995 if (!cone->HitOn( rx, hit.z() )) return false; 1076 996 1077 if (phiIsOpen) 997 if (phiIsOpen) 1078 { 998 { 1079 G4double phiTolerant = 2.0*kCarTolerance/ 999 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance); 1080 // 1000 // 1081 // Check phi segment. Here we have to be 1001 // Check phi segment. Here we have to be careful 1082 // to use the standard method consistent 1002 // to use the standard method consistent with 1083 // PolyPhiFace. See PolyPhiFace::InsideEd 1003 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact 1084 // 1004 // 1085 G4double phi = GetPhi(hit); 1005 G4double phi = GetPhi(hit); 1086 while( phi < startPhi-phiTolerant ) // << 1006 while( phi < startPhi-phiTolerant ) phi += twopi; 1087 phi += twopi; << 1088 1007 1089 if (phi > startPhi+deltaPhi+phiTolerant) 1008 if (phi > startPhi+deltaPhi+phiTolerant) return false; 1090 1009 1091 if (phi > startPhi+deltaPhi-phiTolerant) 1010 if (phi > startPhi+deltaPhi-phiTolerant) 1092 { 1011 { 1093 // 1012 // 1094 // Exact treatment 1013 // Exact treatment 1095 // 1014 // 1096 G4ThreeVector qx = p + v; 1015 G4ThreeVector qx = p + v; 1097 G4ThreeVector qa = qx - corners[2], 1016 G4ThreeVector qa = qx - corners[2], 1098 qb = qx - corners[3]; 1017 qb = qx - corners[3]; 1099 G4ThreeVector qacb = qa.cross(qb); 1018 G4ThreeVector qacb = qa.cross(qb); 1100 1019 1101 if (normSign*qacb.dot(v) < 0) return fa 1020 if (normSign*qacb.dot(v) < 0) return false; 1102 } 1021 } 1103 else if (phi < phiTolerant) 1022 else if (phi < phiTolerant) 1104 { 1023 { 1105 G4ThreeVector qx = p + v; 1024 G4ThreeVector qx = p + v; 1106 G4ThreeVector qa = qx - corners[1], 1025 G4ThreeVector qa = qx - corners[1], 1107 qb = qx - corners[0]; 1026 qb = qx - corners[0]; 1108 G4ThreeVector qacb = qa.cross(qb); 1027 G4ThreeVector qacb = qa.cross(qb); 1109 1028 1110 if (normSign*qacb.dot(v) < 0) return fa 1029 if (normSign*qacb.dot(v) < 0) return false; 1111 } 1030 } 1112 } 1031 } 1113 1032 1114 // 1033 // 1115 // We have a good hit! Calculate normal 1034 // We have a good hit! Calculate normal 1116 // 1035 // 1117 if (rx < DBL_MIN) 1036 if (rx < DBL_MIN) 1118 normal = G4ThreeVector( 0, 0, zNorm < 0 ? 1037 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 ); 1119 else 1038 else 1120 normal = G4ThreeVector( rNorm*hit.x()/rx, 1039 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm ); 1121 return true; 1040 return true; 1122 } 1041 } 1123 1042 >> 1043 >> 1044 // 1124 // FindLineIntersect 1045 // FindLineIntersect 1125 // 1046 // 1126 // Decide the point at which two 2-dimensiona 1047 // Decide the point at which two 2-dimensional lines intersect 1127 // 1048 // 1128 // Equation of line: x = x1 + s*tx1 1049 // Equation of line: x = x1 + s*tx1 1129 // y = y1 + s*ty1 1050 // y = y1 + s*ty1 1130 // 1051 // 1131 // It is assumed that the lines are *not* par 1052 // It is assumed that the lines are *not* parallel 1132 // 1053 // 1133 void G4PolyconeSide::FindLineIntersect( G4dou 1054 void G4PolyconeSide::FindLineIntersect( G4double x1, G4double y1, 1134 G4dou 1055 G4double tx1, G4double ty1, 1135 G4dou 1056 G4double x2, G4double y2, 1136 G4dou 1057 G4double tx2, G4double ty2, 1137 G4dou << 1058 G4double &x, G4double &y ) 1138 { 1059 { 1139 // 1060 // 1140 // The solution is a simple linear equation 1061 // The solution is a simple linear equation 1141 // 1062 // 1142 G4double deter = tx1*ty2 - tx2*ty1; 1063 G4double deter = tx1*ty2 - tx2*ty1; 1143 1064 1144 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d 1065 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter; 1145 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d 1066 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter; 1146 1067 1147 // 1068 // 1148 // We want the answer to not depend on whic 1069 // We want the answer to not depend on which order the 1149 // lines were specified. Take average. 1070 // lines were specified. Take average. 1150 // 1071 // 1151 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1072 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1152 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1073 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1153 } 1074 } 1154 1075 >> 1076 // 1155 // Calculate surface area for GetPointOnSurfa 1077 // Calculate surface area for GetPointOnSurface() 1156 // 1078 // 1157 G4double G4PolyconeSide::SurfaceArea() 1079 G4double G4PolyconeSide::SurfaceArea() 1158 { 1080 { 1159 if(fSurfaceArea==0.) << 1081 if(fSurfaceArea==0) 1160 { 1082 { 1161 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr 1083 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1])); 1162 fSurfaceArea *= 0.5*(deltaPhi); 1084 fSurfaceArea *= 0.5*(deltaPhi); 1163 } 1085 } 1164 return fSurfaceArea; 1086 return fSurfaceArea; 1165 } 1087 } 1166 1088 >> 1089 // 1167 // GetPointOnFace 1090 // GetPointOnFace 1168 // 1091 // 1169 G4ThreeVector G4PolyconeSide::GetPointOnFace( 1092 G4ThreeVector G4PolyconeSide::GetPointOnFace() 1170 { 1093 { 1171 G4double x,y,zz; 1094 G4double x,y,zz; 1172 G4double rr,phi,dz,dr; 1095 G4double rr,phi,dz,dr; 1173 dr=r[1]-r[0];dz=z[1]-z[0]; 1096 dr=r[1]-r[0];dz=z[1]-z[0]; 1174 phi=startPhi+deltaPhi*G4UniformRand(); 1097 phi=startPhi+deltaPhi*G4UniformRand(); 1175 rr=r[0]+dr*G4UniformRand(); 1098 rr=r[0]+dr*G4UniformRand(); 1176 1099 1177 x=rr*std::cos(phi); 1100 x=rr*std::cos(phi); 1178 y=rr*std::sin(phi); 1101 y=rr*std::sin(phi); 1179 1102 1180 // PolyconeSide has a Ring Form 1103 // PolyconeSide has a Ring Form 1181 // 1104 // 1182 if (dz==0.) 1105 if (dz==0.) 1183 { 1106 { 1184 zz=z[0]; 1107 zz=z[0]; 1185 } 1108 } 1186 else 1109 else 1187 { 1110 { 1188 if(dr==0.) // PolyconeSide has a Tube Fo 1111 if(dr==0.) // PolyconeSide has a Tube Form 1189 { 1112 { 1190 zz = z[0]+dz*G4UniformRand(); 1113 zz = z[0]+dz*G4UniformRand(); 1191 } 1114 } 1192 else 1115 else 1193 { 1116 { 1194 zz = z[0]+(rr-r[0])*dz/dr; 1117 zz = z[0]+(rr-r[0])*dz/dr; 1195 } 1118 } 1196 } 1119 } 1197 1120 1198 return {x,y,zz}; << 1121 return G4ThreeVector(x,y,zz); 1199 } 1122 } 1200 1123