Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyconeSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyconeSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyconeSide.cc (Version 9.3.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4PolyconeSide, the face  << 
 27 // one conical side of a polycone              << 
 28 //                                                 26 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  27 // $Id: G4PolyconeSide.cc,v 1.22.2.1 2010/03/18 11:04:57 gcosmo Exp $
                                                   >>  28 // GEANT4 tag $Name: geant4-09-03-patch-01 $
                                                   >>  29 //
                                                   >>  30 // 
                                                   >>  31 // --------------------------------------------------------------------
                                                   >>  32 // GEANT 4 class source file
                                                   >>  33 //
                                                   >>  34 //
                                                   >>  35 // G4PolyconeSide.cc
                                                   >>  36 //
                                                   >>  37 // Implementation of the face representing one conical side of a polycone
                                                   >>  38 //
 30 // -------------------------------------------     39 // --------------------------------------------------------------------
 31                                                    40 
 32 #include "G4PolyconeSide.hh"                       41 #include "G4PolyconeSide.hh"
 33 #include "meshdefs.hh"                         << 
 34 #include "G4PhysicalConstants.hh"              << 
 35 #include "G4IntersectingCone.hh"                   42 #include "G4IntersectingCone.hh"
 36 #include "G4ClippablePolygon.hh"                   43 #include "G4ClippablePolygon.hh"
 37 #include "G4AffineTransform.hh"                    44 #include "G4AffineTransform.hh"
                                                   >>  45 #include "meshdefs.hh"
 38 #include "G4SolidExtentList.hh"                    46 #include "G4SolidExtentList.hh"
 39 #include "G4GeometryTolerance.hh"                  47 #include "G4GeometryTolerance.hh"
 40                                                    48 
 41 #include "Randomize.hh"                            49 #include "Randomize.hh"
 42                                                    50 
 43 // This new field helps to use the class G4PlS << 
 44 //                                                 51 //
 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 
 46                                                << 
 47 // This macro changes the references to fields << 
 48 // in the class G4PlSideData.                  << 
 49 //                                             << 
 50 #define G4MT_pcphix ((subInstanceManager.offse << 
 51 #define G4MT_pcphiy ((subInstanceManager.offse << 
 52 #define G4MT_pcphiz ((subInstanceManager.offse << 
 53 #define G4MT_pcphik ((subInstanceManager.offse << 
 54                                                << 
 55 // Returns the private data instance manager.  << 
 56 //                                             << 
 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 
 58 {                                              << 
 59   return subInstanceManager;                   << 
 60 }                                              << 
 61                                                << 
 62 // Constructor                                     52 // Constructor
 63 //                                                 53 //
 64 // Values for r1,z1 and r2,z2 should be specif     54 // Values for r1,z1 and r2,z2 should be specified in clockwise
 65 // order in (r,z).                                 55 // order in (r,z).
 66 //                                                 56 //
 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco <<  57 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ,
 68                                 const G4Polyco <<  58                                 const G4PolyconeSideRZ *tail,
 69                                 const G4Polyco <<  59                                 const G4PolyconeSideRZ *head,
 70                                 const G4Polyco <<  60                                 const G4PolyconeSideRZ *nextRZ,
 71                                       G4double     61                                       G4double thePhiStart, 
 72                                       G4double     62                                       G4double theDeltaPhi, 
 73                                       G4bool t     63                                       G4bool thePhiIsOpen, 
 74                                       G4bool i     64                                       G4bool isAllBehind )
                                                   >>  65   : ncorners(0), corners(0)
 75 {                                                  66 {
 76   instanceID = subInstanceManager.CreateSubIns << 
 77                                                << 
 78   kCarTolerance = G4GeometryTolerance::GetInst     67   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p <<  68   fSurfaceArea = 0.0;
                                                   >>  69   fPhi.first = G4ThreeVector(0,0,0);
                                                   >>  70   fPhi.second= 0.0;
 80                                                    71 
 81   //                                               72   //
 82   // Record values                                 73   // Record values
 83   //                                               74   //
 84   r[0] = tail->r; z[0] = tail->z;                  75   r[0] = tail->r; z[0] = tail->z;
 85   r[1] = head->r; z[1] = head->z;                  76   r[1] = head->r; z[1] = head->z;
 86                                                    77   
 87   phiIsOpen = thePhiIsOpen;                        78   phiIsOpen = thePhiIsOpen;
 88   if (phiIsOpen)                                   79   if (phiIsOpen)
 89   {                                                80   {
 90     deltaPhi = theDeltaPhi;                        81     deltaPhi = theDeltaPhi;
 91     startPhi = thePhiStart;                        82     startPhi = thePhiStart;
 92                                                    83 
 93     //                                             84     //
 94     // Set phi values to our conventions           85     // Set phi values to our conventions
 95     //                                             86     //
 96     while (deltaPhi < 0.0)    // Loop checking <<  87     while (deltaPhi < 0.0) deltaPhi += twopi;
 97      deltaPhi += twopi;                        <<  88     while (startPhi < 0.0) startPhi += twopi;
 98     while (startPhi < 0.0)    // Loop checking << 
 99      startPhi += twopi;                        << 
100                                                    89     
101     //                                             90     //
102     // Calculate corner coordinates                91     // Calculate corner coordinates
103     //                                             92     //
104     ncorners = 4;                                  93     ncorners = 4;
105     corners = new G4ThreeVector[ncorners];         94     corners = new G4ThreeVector[ncorners];
106                                                    95     
107     corners[0] = G4ThreeVector( tail->r*std::c     96     corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108                                 tail->r*std::s     97                                 tail->r*std::sin(startPhi), tail->z );
109     corners[1] = G4ThreeVector( head->r*std::c     98     corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110                                 head->r*std::s     99                                 head->r*std::sin(startPhi), head->z );
111     corners[2] = G4ThreeVector( tail->r*std::c    100     corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112                                 tail->r*std::s    101                                 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113     corners[3] = G4ThreeVector( head->r*std::c    102     corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114                                 head->r*std::s    103                                 head->r*std::sin(startPhi+deltaPhi), head->z );
115   }                                               104   }
116   else                                            105   else
117   {                                               106   {
118     deltaPhi = twopi;                             107     deltaPhi = twopi;
119     startPhi = 0.0;                               108     startPhi = 0.0;
120   }                                               109   }
121                                                   110   
122   allBehind = isAllBehind;                        111   allBehind = isAllBehind;
123                                                   112     
124   //                                              113   //
125   // Make our intersecting cone                   114   // Make our intersecting cone
126   //                                              115   //
127   cone = new G4IntersectingCone( r, z );          116   cone = new G4IntersectingCone( r, z );
128                                                   117   
129   //                                              118   //
130   // Calculate vectors in r,z space               119   // Calculate vectors in r,z space
131   //                                              120   //
132   rS = r[1]-r[0]; zS = z[1]-z[0];                 121   rS = r[1]-r[0]; zS = z[1]-z[0];
133   length = std::sqrt( rS*rS + zS*zS);             122   length = std::sqrt( rS*rS + zS*zS);
134   rS /= length; zS /= length;                     123   rS /= length; zS /= length;
135                                                   124   
136   rNorm = +zS;                                    125   rNorm = +zS;
137   zNorm = -rS;                                    126   zNorm = -rS;
138                                                   127   
139   G4double lAdj;                                  128   G4double lAdj;
140                                                   129   
141   prevRS = r[0]-prevRZ->r;                        130   prevRS = r[0]-prevRZ->r;
142   prevZS = z[0]-prevRZ->z;                        131   prevZS = z[0]-prevRZ->z;
143   lAdj = std::sqrt( prevRS*prevRS + prevZS*pre    132   lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144   prevRS /= lAdj;                                 133   prevRS /= lAdj;
145   prevZS /= lAdj;                                 134   prevZS /= lAdj;
146                                                   135 
147   rNormEdge[0] = rNorm + prevZS;                  136   rNormEdge[0] = rNorm + prevZS;
148   zNormEdge[0] = zNorm - prevRS;                  137   zNormEdge[0] = zNorm - prevRS;
149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0]     138   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150   rNormEdge[0] /= lAdj;                           139   rNormEdge[0] /= lAdj;
151   zNormEdge[0] /= lAdj;                           140   zNormEdge[0] /= lAdj;
152                                                   141 
153   nextRS = nextRZ->r-r[1];                        142   nextRS = nextRZ->r-r[1];
154   nextZS = nextRZ->z-z[1];                        143   nextZS = nextRZ->z-z[1];
155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nex    144   lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156   nextRS /= lAdj;                                 145   nextRS /= lAdj;
157   nextZS /= lAdj;                                 146   nextZS /= lAdj;
158                                                   147 
159   rNormEdge[1] = rNorm + nextZS;                  148   rNormEdge[1] = rNorm + nextZS;
160   zNormEdge[1] = zNorm - nextRS;                  149   zNormEdge[1] = zNorm - nextRS;
161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1]     150   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162   rNormEdge[1] /= lAdj;                           151   rNormEdge[1] /= lAdj;
163   zNormEdge[1] /= lAdj;                           152   zNormEdge[1] /= lAdj;
164 }                                                 153 }
165                                                   154 
                                                   >> 155 
                                                   >> 156 //
166 // Fake default constructor - sets only member    157 // Fake default constructor - sets only member data and allocates memory
167 //                            for usage restri    158 //                            for usage restricted to object persistency.
168 //                                                159 //
169 G4PolyconeSide::G4PolyconeSide( __void__& )       160 G4PolyconeSide::G4PolyconeSide( __void__& )
170   : startPhi(0.), deltaPhi(0.),                << 161   : phiIsOpen(false), cone(0), ncorners(0), corners(0)
171     rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 
172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 
173     kCarTolerance(0.), instanceID(0)           << 
174 {                                                 162 {
175   r[0] = r[1] = 0.;                            << 
176   z[0] = z[1] = 0.;                            << 
177   rNormEdge[0]= rNormEdge[1] = 0.;             << 
178   zNormEdge[0]= zNormEdge[1] = 0.;             << 
179 }                                                 163 }
180                                                   164 
                                                   >> 165 
                                                   >> 166 //
181 // Destructor                                     167 // Destructor
182 //                                                168 //  
183 G4PolyconeSide::~G4PolyconeSide()                 169 G4PolyconeSide::~G4PolyconeSide()
184 {                                                 170 {
185   delete cone;                                    171   delete cone;
186   if (phiIsOpen)  { delete [] corners; }       << 172   if (phiIsOpen) delete [] corners;
187 }                                                 173 }
188                                                   174 
                                                   >> 175 
                                                   >> 176 //
189 // Copy constructor                               177 // Copy constructor
190 //                                                178 //
191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 179 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source )
                                                   >> 180   : G4VCSGface()
192 {                                                 181 {
193   instanceID = subInstanceManager.CreateSubIns << 
194                                                << 
195   CopyStuff( source );                            182   CopyStuff( source );
196 }                                                 183 }
197                                                   184 
                                                   >> 185 
                                                   >> 186 //
198 // Assignment operator                            187 // Assignment operator
199 //                                                188 //
200 G4PolyconeSide& G4PolyconeSide::operator=( con << 189 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source )
201 {                                                 190 {
202   if (this == &source)  { return *this; }      << 191   if (this == &source) return *this;
203                                                   192 
204   delete cone;                                    193   delete cone;
205   if (phiIsOpen)  { delete [] corners; }       << 194   if (phiIsOpen) delete [] corners;
206                                                   195   
207   CopyStuff( source );                            196   CopyStuff( source );
208                                                   197   
209   return *this;                                   198   return *this;
210 }                                                 199 }
211                                                   200 
                                                   >> 201 
                                                   >> 202 //
212 // CopyStuff                                      203 // CopyStuff
213 //                                                204 //
214 void G4PolyconeSide::CopyStuff( const G4Polyco << 205 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source )
215 {                                                 206 {
216   r[0]    = source.r[0];                          207   r[0]    = source.r[0];
217   r[1]    = source.r[1];                          208   r[1]    = source.r[1];
218   z[0]    = source.z[0];                          209   z[0]    = source.z[0];
219   z[1]    = source.z[1];                          210   z[1]    = source.z[1];
220                                                   211   
221   startPhi  = source.startPhi;                    212   startPhi  = source.startPhi;
222   deltaPhi  = source.deltaPhi;                    213   deltaPhi  = source.deltaPhi;
223   phiIsOpen  = source.phiIsOpen;                  214   phiIsOpen  = source.phiIsOpen;
224   allBehind  = source.allBehind;                  215   allBehind  = source.allBehind;
225                                                   216 
226   kCarTolerance = source.kCarTolerance;           217   kCarTolerance = source.kCarTolerance;
227   fSurfaceArea = source.fSurfaceArea;             218   fSurfaceArea = source.fSurfaceArea;
228                                                   219   
229   cone    = new G4IntersectingCone( *source.co    220   cone    = new G4IntersectingCone( *source.cone );
230                                                   221   
231   rNorm    = source.rNorm;                        222   rNorm    = source.rNorm;
232   zNorm    = source.zNorm;                        223   zNorm    = source.zNorm;
233   rS    = source.rS;                              224   rS    = source.rS;
234   zS    = source.zS;                              225   zS    = source.zS;
235   length    = source.length;                      226   length    = source.length;
236   prevRS    = source.prevRS;                      227   prevRS    = source.prevRS;
237   prevZS    = source.prevZS;                      228   prevZS    = source.prevZS;
238   nextRS    = source.nextRS;                      229   nextRS    = source.nextRS;
239   nextZS    = source.nextZS;                      230   nextZS    = source.nextZS;
240                                                   231   
241   rNormEdge[0]   = source.rNormEdge[0];           232   rNormEdge[0]   = source.rNormEdge[0];
242   rNormEdge[1]  = source.rNormEdge[1];            233   rNormEdge[1]  = source.rNormEdge[1];
243   zNormEdge[0]  = source.zNormEdge[0];            234   zNormEdge[0]  = source.zNormEdge[0];
244   zNormEdge[1]  = source.zNormEdge[1];            235   zNormEdge[1]  = source.zNormEdge[1];
245                                                   236   
246   if (phiIsOpen)                                  237   if (phiIsOpen)
247   {                                               238   {
248     ncorners = 4;                                 239     ncorners = 4;
249     corners = new G4ThreeVector[ncorners];        240     corners = new G4ThreeVector[ncorners];
250                                                   241     
251     corners[0] = source.corners[0];               242     corners[0] = source.corners[0];
252     corners[1] = source.corners[1];               243     corners[1] = source.corners[1];
253     corners[2] = source.corners[2];               244     corners[2] = source.corners[2];
254     corners[3] = source.corners[3];               245     corners[3] = source.corners[3];
255   }                                               246   }
256 }                                                 247 }
257                                                   248 
                                                   >> 249 
                                                   >> 250 //
258 // Intersect                                      251 // Intersect
259 //                                                252 //
260 G4bool G4PolyconeSide::Intersect( const G4Thre << 253 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p,
261                                   const G4Thre << 254                                   const G4ThreeVector &v,  
262                                         G4bool    255                                         G4bool outgoing,
263                                         G4doub    256                                         G4double surfTolerance,
264                                         G4doub << 257                                         G4double &distance,
265                                         G4doub << 258                                         G4double &distFromSurface,
266                                         G4Thre << 259                                         G4ThreeVector &normal,
267                                         G4bool << 260                                         G4bool &isAllBehind )
268 {                                                 261 {
269   G4double s1=0., s2=0.;                       << 262   G4double s1, s2;
270   G4double normSign = outgoing ? +1 : -1;         263   G4double normSign = outgoing ? +1 : -1;
271                                                   264   
272   isAllBehind = allBehind;                        265   isAllBehind = allBehind;
273                                                   266 
274   //                                              267   //
275   // Check for two possible intersections         268   // Check for two possible intersections
276   //                                              269   //
277   G4int nside = cone->LineHitsCone( p, v, &s1,    270   G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278   if (nside == 0) return false;                   271   if (nside == 0) return false;
279                                                   272     
280   //                                              273   //
281   // Check the first side first, since it is (    274   // Check the first side first, since it is (supposed to be) closest
282   //                                              275   //
283   G4ThreeVector hit = p + s1*v;                   276   G4ThreeVector hit = p + s1*v;
284                                                   277   
285   if (PointOnCone( hit, normSign, p, v, normal    278   if (PointOnCone( hit, normSign, p, v, normal ))
286   {                                               279   {
287     //                                            280     //
288     // Good intersection! What about the norma    281     // Good intersection! What about the normal? 
289     //                                            282     //
290     if (normSign*v.dot(normal) > 0)               283     if (normSign*v.dot(normal) > 0)
291     {                                             284     {
292       //                                          285       //
293       // We have a valid intersection, but it     286       // We have a valid intersection, but it could very easily
294       // be behind the point. To decide if we     287       // be behind the point. To decide if we tolerate this,
295       // we have to see if the point p is on t    288       // we have to see if the point p is on the surface near
296       // the intersecting point.                  289       // the intersecting point.
297       //                                          290       //
298       // What does it mean exactly for the poi    291       // What does it mean exactly for the point p to be "near"
299       // the intersection? It means that if we    292       // the intersection? It means that if we draw a line from
300       // p to the hit, the line remains entire    293       // p to the hit, the line remains entirely within the
301       // tolerance bounds of the cone. To test    294       // tolerance bounds of the cone. To test this, we can
302       // ask if the normal is correct near p.     295       // ask if the normal is correct near p.
303       //                                          296       //
304       G4double pr = p.perp();                     297       G4double pr = p.perp();
305       if (pr < DBL_MIN) pr = DBL_MIN;             298       if (pr < DBL_MIN) pr = DBL_MIN;
306       G4ThreeVector pNormal( rNorm*p.x()/pr, r    299       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307       if (normSign*v.dot(pNormal) > 0)            300       if (normSign*v.dot(pNormal) > 0)
308       {                                           301       {
309         //                                        302         //
310         // p and intersection in same hemisphe    303         // p and intersection in same hemisphere
311         //                                        304         //
312         G4double distOutside2;                    305         G4double distOutside2;
313         distFromSurface = -normSign*DistanceAw    306         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314         if (distOutside2 < surfTolerance*surfT    307         if (distOutside2 < surfTolerance*surfTolerance)
315         {                                         308         {
316           if (distFromSurface > -surfTolerance    309           if (distFromSurface > -surfTolerance)
317           {                                       310           {
318             //                                    311             //
319             // We are just inside or away from    312             // We are just inside or away from the
320             // surface. Accept *any* value of     313             // surface. Accept *any* value of distance.
321             //                                    314             //
322             distance = s1;                        315             distance = s1;
323             return true;                          316             return true;
324           }                                       317           }
325         }                                         318         }
326       }                                           319       }
327       else                                        320       else 
328         distFromSurface = s1;                     321         distFromSurface = s1;
329                                                   322       
330       //                                          323       //
331       // Accept positive distances                324       // Accept positive distances
332       //                                          325       //
333       if (s1 > 0)                                 326       if (s1 > 0)
334       {                                           327       {
335         distance = s1;                            328         distance = s1;
336         return true;                              329         return true;
337       }                                           330       }
338     }                                             331     }
339   }                                               332   }  
340                                                   333   
341   if (nside==1) return false;                     334   if (nside==1) return false;
342                                                   335   
343   //                                              336   //
344   // Well, try the second hit                     337   // Well, try the second hit
345   //                                              338   //  
346   hit = p + s2*v;                                 339   hit = p + s2*v;
347                                                   340   
348   if (PointOnCone( hit, normSign, p, v, normal    341   if (PointOnCone( hit, normSign, p, v, normal ))
349   {                                               342   {
350     //                                            343     //
351     // Good intersection! What about the norma    344     // Good intersection! What about the normal? 
352     //                                            345     //
353     if (normSign*v.dot(normal) > 0)               346     if (normSign*v.dot(normal) > 0)
354     {                                             347     {
355       G4double pr = p.perp();                     348       G4double pr = p.perp();
356       if (pr < DBL_MIN) pr = DBL_MIN;             349       if (pr < DBL_MIN) pr = DBL_MIN;
357       G4ThreeVector pNormal( rNorm*p.x()/pr, r    350       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358       if (normSign*v.dot(pNormal) > 0)            351       if (normSign*v.dot(pNormal) > 0)
359       {                                           352       {
360         G4double distOutside2;                    353         G4double distOutside2;
361         distFromSurface = -normSign*DistanceAw    354         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362         if (distOutside2 < surfTolerance*surfT    355         if (distOutside2 < surfTolerance*surfTolerance)
363         {                                         356         {
364           if (distFromSurface > -surfTolerance    357           if (distFromSurface > -surfTolerance)
365           {                                       358           {
366             distance = s2;                        359             distance = s2;
367             return true;                          360             return true;
368           }                                       361           }
369         }                                         362         }
370       }                                           363       }
371       else                                        364       else 
372         distFromSurface = s2;                     365         distFromSurface = s2;
373                                                   366       
374       if (s2 > 0)                                 367       if (s2 > 0)
375       {                                           368       {
376         distance = s2;                            369         distance = s2;
377         return true;                              370         return true;
378       }                                           371       }
379     }                                             372     }
380   }                                               373   }  
381                                                   374 
382   //                                              375   //
383   // Better luck next time                        376   // Better luck next time
384   //                                              377   //
385   return false;                                   378   return false;
386 }                                                 379 }
387                                                   380 
388 // Distance                                    << 381 
389 //                                             << 382 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing )
390 G4double G4PolyconeSide::Distance( const G4Thr << 
391 {                                                 383 {
392   G4double normSign = outgoing ? -1 : +1;         384   G4double normSign = outgoing ? -1 : +1;
393   G4double distFrom, distOut2;                    385   G4double distFrom, distOut2;
394                                                   386   
395   //                                              387   //
396   // We have two tries for each hemisphere. Tr    388   // We have two tries for each hemisphere. Try the closest first.
397   //                                              389   //
398   distFrom = normSign*DistanceAway( p, false,     390   distFrom = normSign*DistanceAway( p, false, distOut2 );
399   if (distFrom > -0.5*kCarTolerance )             391   if (distFrom > -0.5*kCarTolerance )
400   {                                               392   {
401     //                                            393     //
402     // Good answer                                394     // Good answer
403     //                                            395     //
404     if (distOut2 > 0)                             396     if (distOut2 > 0) 
405       return std::sqrt( distFrom*distFrom + di    397       return std::sqrt( distFrom*distFrom + distOut2 );
406     else                                          398     else 
407       return std::fabs(distFrom);                 399       return std::fabs(distFrom);
408   }                                               400   }
409                                                   401   
410   //                                              402   //
411   // Try second side.                             403   // Try second side. 
412   //                                              404   //
413   distFrom = normSign*DistanceAway( p,  true,     405   distFrom = normSign*DistanceAway( p,  true, distOut2 );
414   if (distFrom > -0.5*kCarTolerance)              406   if (distFrom > -0.5*kCarTolerance)
415   {                                               407   {
416                                                   408 
417     if (distOut2 > 0)                             409     if (distOut2 > 0) 
418       return std::sqrt( distFrom*distFrom + di    410       return std::sqrt( distFrom*distFrom + distOut2 );
419     else                                          411     else
420       return std::fabs(distFrom);                 412       return std::fabs(distFrom);
421   }                                               413   }
422                                                   414   
423   return kInfinity;                               415   return kInfinity;
424 }                                                 416 }
425                                                   417 
                                                   >> 418 
                                                   >> 419 //
426 // Inside                                         420 // Inside
427 //                                                421 //
428 EInside G4PolyconeSide::Inside( const G4ThreeV << 422 EInside G4PolyconeSide::Inside( const G4ThreeVector &p,
429                                       G4double    423                                       G4double tolerance, 
430                                       G4double << 424                                       G4double *bestDistance )
431 {                                                 425 {
432   G4double distFrom, distOut2, dist2;          << 426   //
433   G4double edgeRZnorm;                         << 427   // Check both sides
                                                   >> 428   //
                                                   >> 429   G4double distFrom[2], distOut2[2], dist2[2];
                                                   >> 430   G4double edgeRZnorm[2];
434                                                   431      
435   distFrom =  DistanceAway( p, distOut2, &edge << 432   distFrom[0] =  DistanceAway( p, false, distOut2[0], edgeRZnorm   );
436   dist2 = distFrom*distFrom + distOut2;        << 433   distFrom[1] =  DistanceAway( p,  true, distOut2[1], edgeRZnorm+1 );
437                                                << 
438   *bestDistance = std::sqrt( dist2);           << 
439                                                   434   
                                                   >> 435   dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
                                                   >> 436   dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
                                                   >> 437   
                                                   >> 438   //
                                                   >> 439   // Who's closest?
                                                   >> 440   //
                                                   >> 441   G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
                                                   >> 442   
                                                   >> 443   *bestDistance = std::sqrt( dist2[i] );
                                                   >> 444   
                                                   >> 445   //
440   // Okay then, inside or out?                    446   // Okay then, inside or out?
441   //                                              447   //
442   if ( (std::fabs(edgeRZnorm) < tolerance)     << 448   if ( (std::fabs(edgeRZnorm[i]) < tolerance)
443     && (distOut2< tolerance*tolerance) )       << 449     && (distOut2[i] < tolerance*tolerance) )
444     return kSurface;                              450     return kSurface;
445   else if (edgeRZnorm < 0)                     << 451   else if (edgeRZnorm[i] < 0)
446     return kInside;                               452     return kInside;
447   else                                            453   else
448     return kOutside;                              454     return kOutside;
449 }                                                 455 }
450                                                   456 
                                                   >> 457 
                                                   >> 458 //
451 // Normal                                         459 // Normal
452 //                                                460 //
453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 461 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p,
454                                             G4 << 462                                             G4double *bestDistance )
455 {                                                 463 {
456   if (p == G4ThreeVector(0.,0.,0.))  { return     464   if (p == G4ThreeVector(0.,0.,0.))  { return p; }
457                                                   465 
458   G4double dFrom, dOut2;                          466   G4double dFrom, dOut2;
459                                                   467   
460   dFrom = DistanceAway( p, false, dOut2 );        468   dFrom = DistanceAway( p, false, dOut2 );
461                                                   469   
462   *bestDistance = std::sqrt( dFrom*dFrom + dOu    470   *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
463                                                   471   
464   G4double rds = p.perp();                     << 472   G4double rad = p.perp();
465   if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 473   if (rad!=0.) { return G4ThreeVector(rNorm*p.x()/rad,rNorm*p.y()/rad,zNorm); }
466   return G4ThreeVector( 0.,0., zNorm ).unit();    474   return G4ThreeVector( 0.,0., zNorm ).unit();
467 }                                                 475 }
468                                                   476 
                                                   >> 477 
                                                   >> 478 //
469 // Extent                                         479 // Extent
470 //                                                480 //
471 G4double G4PolyconeSide::Extent( const G4Three    481 G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
472 {                                                 482 {
473   if (axis.perp2() < DBL_MIN)                     483   if (axis.perp2() < DBL_MIN)
474   {                                               484   {
475     //                                            485     //
476     // Special case                               486     // Special case
477     //                                            487     //
478     return axis.z() < 0 ? -cone->ZLo() : cone-    488     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
479   }                                               489   }
480                                                   490 
481   //                                              491   //
482   // Is the axis pointing inside our phi gap?     492   // Is the axis pointing inside our phi gap?
483   //                                              493   //
484   if (phiIsOpen)                                  494   if (phiIsOpen)
485   {                                               495   {
486     G4double phi = GetPhi(axis);                  496     G4double phi = GetPhi(axis);
487     while( phi < startPhi )    // Loop checkin << 497     while( phi < startPhi ) phi += twopi;
488       phi += twopi;                            << 
489                                                   498     
490     if (phi > deltaPhi+startPhi)                  499     if (phi > deltaPhi+startPhi)
491     {                                             500     {
492       //                                          501       //
493       // Yeah, looks so. Make four three vecto    502       // Yeah, looks so. Make four three vectors defining the phi
494       // opening                                  503       // opening
495       //                                          504       //
496       G4double cosP = std::cos(startPhi), sinP    505       G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
497       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z    506       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
498       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z    507       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
499       cosP = std::cos(startPhi+deltaPhi); sinP    508       cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
500       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z    509       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
501       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z    510       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
502                                                   511       
503       G4double ad = axis.dot(a),                  512       G4double ad = axis.dot(a),
504                bd = axis.dot(b),               << 513          bd = axis.dot(b),
505                cd = axis.dot(c),               << 514          cd = axis.dot(c),
506                dd = axis.dot(d);               << 515          dd = axis.dot(d);
507                                                   516       
508       if (bd > ad) ad = bd;                       517       if (bd > ad) ad = bd;
509       if (cd > ad) ad = cd;                       518       if (cd > ad) ad = cd;
510       if (dd > ad) ad = dd;                       519       if (dd > ad) ad = dd;
511                                                   520       
512       return ad;                                  521       return ad;
513     }                                             522     }
514   }                                               523   }
515                                                   524 
516   //                                              525   //
517   // Check either end                             526   // Check either end
518   //                                              527   //
519   G4double aPerp = axis.perp();                   528   G4double aPerp = axis.perp();
520                                                   529   
521   G4double a = aPerp*r[0] + axis.z()*z[0];        530   G4double a = aPerp*r[0] + axis.z()*z[0];
522   G4double b = aPerp*r[1] + axis.z()*z[1];        531   G4double b = aPerp*r[1] + axis.z()*z[1];
523                                                   532   
524   if (b > a) a = b;                               533   if (b > a) a = b;
525                                                   534   
526   return a;                                       535   return a;
527 }                                                 536 }
528                                                   537 
                                                   >> 538 
                                                   >> 539 
                                                   >> 540 //
529 // CalculateExtent                                541 // CalculateExtent
530 //                                                542 //
531 // See notes in G4VCSGface                        543 // See notes in G4VCSGface
532 //                                                544 //
533 void G4PolyconeSide::CalculateExtent( const EA    545 void G4PolyconeSide::CalculateExtent( const EAxis axis, 
534                                       const G4 << 546                                       const G4VoxelLimits &voxelLimit,
535                                       const G4 << 547                                       const G4AffineTransform &transform,
536                                             G4 << 548                                             G4SolidExtentList &extentList )
537 {                                                 549 {
538   G4ClippablePolygon polygon;                     550   G4ClippablePolygon polygon;
539                                                   551   
540   //                                              552   //
541   // Here we will approximate (ala G4Cons) and    553   // Here we will approximate (ala G4Cons) and divide our conical section
542   // into segments, like G4Polyhedra. When doi    554   // into segments, like G4Polyhedra. When doing so, the radius
543   // is extented far enough such that the segm    555   // is extented far enough such that the segments always lie
544   // just outside the surface of the conical s    556   // just outside the surface of the conical section we are
545   // approximating.                               557   // approximating.
546   //                                              558   //
547                                                   559   
548   //                                              560   //
549   // Choose phi size of our segment(s) based o    561   // Choose phi size of our segment(s) based on constants as
550   // defined in meshdefs.hh                       562   // defined in meshdefs.hh
551   //                                              563   //
552   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe    564   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
553   if (numPhi < kMinMeshSections)                  565   if (numPhi < kMinMeshSections) 
554     numPhi = kMinMeshSections;                    566     numPhi = kMinMeshSections;
555   else if (numPhi > kMaxMeshSections)             567   else if (numPhi > kMaxMeshSections)
556     numPhi = kMaxMeshSections;                    568     numPhi = kMaxMeshSections;
557                                                   569     
558   G4double sigPhi = deltaPhi/numPhi;              570   G4double sigPhi = deltaPhi/numPhi;
559                                                   571   
560   //                                              572   //
561   // Determine radius factor to keep segments     573   // Determine radius factor to keep segments outside
562   //                                              574   //
563   G4double rFudge = 1.0/std::cos(0.5*sigPhi);     575   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
564                                                   576   
565   //                                              577   //
566   // Decide which radius to use on each end of    578   // Decide which radius to use on each end of the side,
567   // and whether a transition mesh is required    579   // and whether a transition mesh is required
568   //                                              580   //
569   // {r0,z0}  - Beginning of this side            581   // {r0,z0}  - Beginning of this side
570   // {r1,z1}  - Ending of this side               582   // {r1,z1}  - Ending of this side
571   // {r2,z0}  - Beginning of transition piece     583   // {r2,z0}  - Beginning of transition piece connecting previous
572   //            side (and ends at beginning of    584   //            side (and ends at beginning of this side)
573   //                                              585   //
574   // So, order is 2 --> 0 --> 1.                  586   // So, order is 2 --> 0 --> 1.
575   //                    -------                   587   //                    -------
576   //                                              588   //
577   // r2 < 0 indicates that no transition piece    589   // r2 < 0 indicates that no transition piece is required
578   //                                              590   //
579   G4double r0, r1, r2, z0, z1;                    591   G4double r0, r1, r2, z0, z1;
580                                                   592   
581   r2 = -1;  // By default: no transition piece    593   r2 = -1;  // By default: no transition piece
582                                                   594   
583   if (rNorm < -DBL_MIN)                           595   if (rNorm < -DBL_MIN)
584   {                                               596   {
585     //                                            597     //
586     // This side faces *inward*, and so our me    598     // This side faces *inward*, and so our mesh has
587     // the same radius                            599     // the same radius
588     //                                            600     //
589     r1 = r[1];                                    601     r1 = r[1];
590     z1 = z[1];                                    602     z1 = z[1];
591     z0 = z[0];                                    603     z0 = z[0];
592     r0 = r[0];                                    604     r0 = r[0];
593                                                   605     
594     r2 = -1;                                      606     r2 = -1;
595                                                   607     
596     if (prevZS > DBL_MIN)                         608     if (prevZS > DBL_MIN)
597     {                                             609     {
598       //                                          610       //
599       // The previous side is facing outwards     611       // The previous side is facing outwards
600       //                                          612       //
601       if ( prevRS*zS - prevZS*rS > 0 )            613       if ( prevRS*zS - prevZS*rS > 0 )
602       {                                           614       {
603         //                                        615         //
604         // Transition was convex: build transi    616         // Transition was convex: build transition piece
605         //                                        617         //
606         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;     618         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
607       }                                           619       }
608       else                                        620       else
609       {                                           621       {
610         //                                        622         //
611         // Transition was concave: short this     623         // Transition was concave: short this side
612         //                                        624         //
613         FindLineIntersect( z0, r0, zS, rS,        625         FindLineIntersect( z0, r0, zS, rS,
614                            z0, r0*rFudge, prev    626                            z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
615       }                                           627       }
616     }                                             628     }
617                                                   629     
618     if ( nextZS > DBL_MIN && (rS*nextZS - zS*n    630     if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
619     {                                             631     {
620       //                                          632       //
621       // The next side is facing outwards, for    633       // The next side is facing outwards, forming a 
622       // concave transition: short this side      634       // concave transition: short this side
623       //                                          635       //
624       FindLineIntersect( z1, r1, zS, rS,          636       FindLineIntersect( z1, r1, zS, rS,
625                          z1, r1*rFudge, nextZS    637                          z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
626     }                                             638     }
627   }                                               639   }
628   else if (rNorm > DBL_MIN)                       640   else if (rNorm > DBL_MIN)
629   {                                               641   {
630     //                                            642     //
631     // This side faces *outward* and is given     643     // This side faces *outward* and is given a boost to
632     // it radius                                  644     // it radius
633     //                                            645     //
634     r0 = r[0]*rFudge;                             646     r0 = r[0]*rFudge;
635     z0 = z[0];                                    647     z0 = z[0];
636     r1 = r[1]*rFudge;                             648     r1 = r[1]*rFudge;
637     z1 = z[1];                                    649     z1 = z[1];
638                                                   650     
639     if (prevZS < -DBL_MIN)                        651     if (prevZS < -DBL_MIN)
640     {                                             652     {
641       //                                          653       //
642       // The previous side is facing inwards      654       // The previous side is facing inwards
643       //                                          655       //
644       if ( prevRS*zS - prevZS*rS > 0 )            656       if ( prevRS*zS - prevZS*rS > 0 )
645       {                                           657       {
646         //                                        658         //
647         // Transition was convex: build transi    659         // Transition was convex: build transition piece
648         //                                        660         //
649         if (r[0] > DBL_MIN) r2 = r[0];            661         if (r[0] > DBL_MIN) r2 = r[0];
650       }                                           662       }
651       else                                        663       else
652       {                                           664       {
653         //                                        665         //
654         // Transition was concave: short this     666         // Transition was concave: short this side
655         //                                        667         //
656         FindLineIntersect( z0, r0, zS, rS*rFud    668         FindLineIntersect( z0, r0, zS, rS*rFudge,
657                            z0, r[0], prevZS, p    669                            z0, r[0], prevZS, prevRS, z0, r0 );
658       }                                           670       }
659     }                                             671     }
660                                                   672     
661     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*    673     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
662     {                                             674     {
663       //                                          675       //
664       // The next side is facing inwards, form    676       // The next side is facing inwards, forming a 
665       // concave transition: short this side      677       // concave transition: short this side
666       //                                          678       //
667       FindLineIntersect( z1, r1, zS, rS*rFudge    679       FindLineIntersect( z1, r1, zS, rS*rFudge,
668                          z1, r[1], nextZS, nex    680                          z1, r[1], nextZS, nextRS, z1, r1 );
669     }                                             681     }
670   }                                               682   }
671   else                                            683   else
672   {                                               684   {
673     //                                            685     //
674     // This side is perpendicular to the z axi    686     // This side is perpendicular to the z axis (is a disk)
675     //                                            687     //
676     // Whether or not r0 needs a rFudge factor    688     // Whether or not r0 needs a rFudge factor depends
677     // on the normal of the previous edge. Sim    689     // on the normal of the previous edge. Similar with r1
678     // and the next edge. No transition piece     690     // and the next edge. No transition piece is required.
679     //                                            691     //
680     r0 = r[0];                                    692     r0 = r[0];
681     r1 = r[1];                                    693     r1 = r[1];
682     z0 = z[0];                                    694     z0 = z[0];
683     z1 = z[1];                                    695     z1 = z[1];
684                                                   696     
685     if (prevZS > DBL_MIN) r0 *= rFudge;           697     if (prevZS > DBL_MIN) r0 *= rFudge;
686     if (nextZS > DBL_MIN) r1 *= rFudge;           698     if (nextZS > DBL_MIN) r1 *= rFudge;
687   }                                               699   }
688                                                   700   
689   //                                              701   //
690   // Loop                                         702   // Loop
691   //                                              703   //
692   G4double phi = startPhi,                        704   G4double phi = startPhi, 
693            cosPhi = std::cos(phi),                705            cosPhi = std::cos(phi), 
694            sinPhi = std::sin(phi);                706            sinPhi = std::sin(phi);
695                                                   707   
696   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 )    708   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
697                     v1( r1*cosPhi, r1*sinPhi,     709                     v1( r1*cosPhi, r1*sinPhi, z1 ),
698   v2, w0, w1, w2;                                 710   v2, w0, w1, w2;
699   transform.ApplyPointTransform( v0 );            711   transform.ApplyPointTransform( v0 );
700   transform.ApplyPointTransform( v1 );            712   transform.ApplyPointTransform( v1 );
701                                                   713   
702   if (r2 >= 0)                                    714   if (r2 >= 0)
703   {                                               715   {
704     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi,     716     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
705     transform.ApplyPointTransform( v2 );          717     transform.ApplyPointTransform( v2 );
706   }                                               718   }
707                                                   719 
708   do    // Loop checking, 13.08.2015, G.Cosmo  << 720   do
709   {                                               721   {
710     phi += sigPhi;                                722     phi += sigPhi;
711     if (numPhi == 1) phi = startPhi+deltaPhi;     723     if (numPhi == 1) phi = startPhi+deltaPhi;  // Try to avoid roundoff
712     cosPhi = std::cos(phi),                       724     cosPhi = std::cos(phi), 
713     sinPhi = std::sin(phi);                       725     sinPhi = std::sin(phi);
714                                                   726     
715     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     727     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
716     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     728     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
717     transform.ApplyPointTransform( w0 );          729     transform.ApplyPointTransform( w0 );
718     transform.ApplyPointTransform( w1 );          730     transform.ApplyPointTransform( w1 );
719                                                   731     
720     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w    732     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
721                                                   733     
722     //                                            734     //
723     // Build polygon, taking special care to k    735     // Build polygon, taking special care to keep the vertices
724     // in order                                   736     // in order
725     //                                            737     //
726     polygon.ClearAllVertices();                   738     polygon.ClearAllVertices();
727                                                   739 
728     polygon.AddVertexInOrder( v0 );               740     polygon.AddVertexInOrder( v0 );
729     polygon.AddVertexInOrder( v1 );               741     polygon.AddVertexInOrder( v1 );
730     polygon.AddVertexInOrder( w1 );               742     polygon.AddVertexInOrder( w1 );
731     polygon.AddVertexInOrder( w0 );               743     polygon.AddVertexInOrder( w0 );
732                                                   744 
733     //                                            745     //
734     // Get extent                                 746     // Get extent
735     //                                            747     //
736     if (polygon.PartialClip( voxelLimit, axis     748     if (polygon.PartialClip( voxelLimit, axis ))
737     {                                             749     {
738       //                                          750       //
739       // Get dot product of normal with target    751       // Get dot product of normal with target axis
740       //                                          752       //
741       polygon.SetNormal( deltaV.cross(v1-v0).u    753       polygon.SetNormal( deltaV.cross(v1-v0).unit() );
742                                                   754       
743       extentList.AddSurface( polygon );           755       extentList.AddSurface( polygon );
744     }                                             756     }
745                                                   757     
746     if (r2 >= 0)                                  758     if (r2 >= 0)
747     {                                             759     {
748       //                                          760       //
749       // Repeat, for transition piece             761       // Repeat, for transition piece
750       //                                          762       //
751       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi    763       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
752       transform.ApplyPointTransform( w2 );        764       transform.ApplyPointTransform( w2 );
753                                                   765 
754       polygon.ClearAllVertices();                 766       polygon.ClearAllVertices();
755                                                   767 
756       polygon.AddVertexInOrder( v2 );             768       polygon.AddVertexInOrder( v2 );
757       polygon.AddVertexInOrder( v0 );             769       polygon.AddVertexInOrder( v0 );
758       polygon.AddVertexInOrder( w0 );             770       polygon.AddVertexInOrder( w0 );
759       polygon.AddVertexInOrder( w2 );             771       polygon.AddVertexInOrder( w2 );
760                                                   772 
761       if (polygon.PartialClip( voxelLimit, axi    773       if (polygon.PartialClip( voxelLimit, axis ))
762       {                                           774       {
763         polygon.SetNormal( deltaV.cross(v0-v2)    775         polygon.SetNormal( deltaV.cross(v0-v2).unit() );
764                                                   776         
765         extentList.AddSurface( polygon );         777         extentList.AddSurface( polygon );
766       }                                           778       }
767                                                   779       
768       v2 = w2;                                    780       v2 = w2;
769     }                                             781     }
770                                                   782     
771     //                                            783     //
772     // Next vertex                                784     // Next vertex
773     //                                            785     //    
774     v0 = w0;                                      786     v0 = w0;
775     v1 = w1;                                      787     v1 = w1;
776   } while( --numPhi > 0 );                        788   } while( --numPhi > 0 );
777                                                   789   
778   //                                              790   //
779   // We are almost done. But, it is important     791   // We are almost done. But, it is important that we leave no
780   // gaps in the surface of our solid. By usin    792   // gaps in the surface of our solid. By using rFudge, however,
781   // we've done exactly that, if we have a phi    793   // we've done exactly that, if we have a phi segment. 
782   // Add two additional faces if necessary        794   // Add two additional faces if necessary
783   //                                              795   //
784   if (phiIsOpen && rNorm > DBL_MIN)               796   if (phiIsOpen && rNorm > DBL_MIN)
785   {                                               797   {    
786     cosPhi = std::cos(startPhi);               << 798     G4double cosPhi = std::cos(startPhi),
787     sinPhi = std::sin(startPhi);               << 799        sinPhi = std::sin(startPhi);
788                                                   800 
789     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi    801     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
790                   a1( r[1]*cosPhi, r[1]*sinPhi    802                   a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
791                   b0( r0*cosPhi, r0*sinPhi, z[    803                   b0( r0*cosPhi, r0*sinPhi, z[0] ),
792                   b1( r1*cosPhi, r1*sinPhi, z[    804                   b1( r1*cosPhi, r1*sinPhi, z[1] );
793                                                   805   
794     transform.ApplyPointTransform( a0 );          806     transform.ApplyPointTransform( a0 );
795     transform.ApplyPointTransform( a1 );          807     transform.ApplyPointTransform( a1 );
796     transform.ApplyPointTransform( b0 );          808     transform.ApplyPointTransform( b0 );
797     transform.ApplyPointTransform( b1 );          809     transform.ApplyPointTransform( b1 );
798                                                   810 
799     polygon.ClearAllVertices();                   811     polygon.ClearAllVertices();
800                                                   812 
801     polygon.AddVertexInOrder( a0 );               813     polygon.AddVertexInOrder( a0 );
802     polygon.AddVertexInOrder( a1 );               814     polygon.AddVertexInOrder( a1 );
803     polygon.AddVertexInOrder( b0 );               815     polygon.AddVertexInOrder( b0 );
804     polygon.AddVertexInOrder( b1 );               816     polygon.AddVertexInOrder( b1 );
805                                                   817     
806     if (polygon.PartialClip( voxelLimit , axis    818     if (polygon.PartialClip( voxelLimit , axis))
807     {                                             819     {
808       G4ThreeVector normal( sinPhi, -cosPhi, 0    820       G4ThreeVector normal( sinPhi, -cosPhi, 0 );
809       polygon.SetNormal( transform.TransformAx    821       polygon.SetNormal( transform.TransformAxis( normal ) );
810                                                   822         
811       extentList.AddSurface( polygon );           823       extentList.AddSurface( polygon );
812     }                                             824     }
813                                                   825     
814     cosPhi = std::cos(startPhi+deltaPhi);         826     cosPhi = std::cos(startPhi+deltaPhi);
815     sinPhi = std::sin(startPhi+deltaPhi);         827     sinPhi = std::sin(startPhi+deltaPhi);
816                                                   828     
817     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP    829     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
818     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP    830     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
819     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     831     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
820     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     832     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
821     transform.ApplyPointTransform( a0 );          833     transform.ApplyPointTransform( a0 );
822     transform.ApplyPointTransform( a1 );          834     transform.ApplyPointTransform( a1 );
823     transform.ApplyPointTransform( b0 );          835     transform.ApplyPointTransform( b0 );
824     transform.ApplyPointTransform( b1 );          836     transform.ApplyPointTransform( b1 );
825                                                   837 
826     polygon.ClearAllVertices();                   838     polygon.ClearAllVertices();
827                                                   839 
828     polygon.AddVertexInOrder( a0 );               840     polygon.AddVertexInOrder( a0 );
829     polygon.AddVertexInOrder( a1 );               841     polygon.AddVertexInOrder( a1 );
830     polygon.AddVertexInOrder( b0 );               842     polygon.AddVertexInOrder( b0 );
831     polygon.AddVertexInOrder( b1 );               843     polygon.AddVertexInOrder( b1 );
832                                                   844     
833     if (polygon.PartialClip( voxelLimit, axis     845     if (polygon.PartialClip( voxelLimit, axis ))
834     {                                             846     {
835       G4ThreeVector normal( -sinPhi, cosPhi, 0    847       G4ThreeVector normal( -sinPhi, cosPhi, 0 );
836       polygon.SetNormal( transform.TransformAx    848       polygon.SetNormal( transform.TransformAxis( normal ) );
837                                                   849         
838       extentList.AddSurface( polygon );           850       extentList.AddSurface( polygon );
839     }                                             851     }
840   }                                               852   }
841                                                   853     
842   return;                                         854   return;
843 }                                                 855 }
844                                                   856 
                                                   >> 857 //
845 // GetPhi                                         858 // GetPhi
846 //                                                859 //
847 // Calculate Phi for a given 3-vector (point),    860 // Calculate Phi for a given 3-vector (point), if not already cached for the
848 // same point, in the attempt to avoid consecu    861 // same point, in the attempt to avoid consecutive computation of the same
849 // quantity                                       862 // quantity
850 //                                                863 //
851 G4double G4PolyconeSide::GetPhi( const G4Three    864 G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p )
852 {                                                 865 {
853   G4double val=0.;                                866   G4double val=0.;
854   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 
855                                                   867 
856   if (vphi != p)                               << 868   if (fPhi.first != p)
857   {                                               869   {
858     val = p.phi();                                870     val = p.phi();
859     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y();  << 871     fPhi.first = p;
860     G4MT_pcphik = val;                         << 872     fPhi.second = val;
861   }                                               873   }
862   else                                            874   else
863   {                                               875   {
864     val = G4MT_pcphik;                         << 876     val = fPhi.second;
865   }                                               877   }
866   return val;                                     878   return val;
867 }                                                 879 }
868                                                   880 
                                                   >> 881 //
869 // DistanceAway                                   882 // DistanceAway
870 //                                                883 //
871 // Calculate distance of a point from our coni    884 // Calculate distance of a point from our conical surface, including the effect
872 // of any phi segmentation                        885 // of any phi segmentation
873 //                                                886 //
874 // Arguments:                                     887 // Arguments:
875 //  p             - (in) Point to check           888 //  p             - (in) Point to check
876 //  opposite      - (in) If true, check opposi    889 //  opposite      - (in) If true, check opposite hemisphere (see below)
877 //  distOutside   - (out) Additional distance     890 //  distOutside   - (out) Additional distance outside the edges of the surface
878 //  edgeRZnorm    - (out) if negative, point i    891 //  edgeRZnorm    - (out) if negative, point is inside
879 //                                                892 //
880 //  return value = distance from the conical p    893 //  return value = distance from the conical plane, if extrapolated beyond edges,
881 //                 signed by whether the point    894 //                 signed by whether the point is in inside or outside the shape
882 //                                                895 //
883 // Notes:                                         896 // Notes:
884 //  * There are two answers, depending on whic    897 //  * There are two answers, depending on which hemisphere is considered.
885 //                                                898 //
886 G4double G4PolyconeSide::DistanceAway( const G << 899 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p,
887                                              G    900                                              G4bool opposite,
888                                              G << 901                                              G4double &distOutside2,
889                                              G << 902                                              G4double *edgeRZnorm  )
890 {                                                 903 {
891   //                                              904   //
892   // Convert our point to r and z                 905   // Convert our point to r and z
893   //                                              906   //
894   G4double rx = p.perp(), zx = p.z();             907   G4double rx = p.perp(), zx = p.z();
895                                                   908   
896   //                                              909   //
897   // Change sign of r if opposite says we shou    910   // Change sign of r if opposite says we should
898   //                                              911   //
899   if (opposite) rx = -rx;                         912   if (opposite) rx = -rx;
900                                                   913   
901   //                                              914   //
902   // Calculate return value                       915   // Calculate return value
903   //                                              916   //
904   G4double deltaR  = rx - r[0], deltaZ = zx -     917   G4double deltaR  = rx - r[0], deltaZ = zx - z[0];
905   G4double answer = deltaR*rNorm + deltaZ*zNor    918   G4double answer = deltaR*rNorm + deltaZ*zNorm;
906                                                   919   
907   //                                              920   //
908   // Are we off the surface in r,z space?         921   // Are we off the surface in r,z space?
909   //                                              922   //
910   G4double q = deltaR*rS + deltaZ*zS;          << 923   G4double s = deltaR*rS + deltaZ*zS;
911   if (q < 0)                                   << 924   if (s < 0)
912   {                                               925   {
913     distOutside2 = q*q;                        << 926     distOutside2 = s*s;
914     if (edgeRZnorm != nullptr)                 << 927     if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
915       *edgeRZnorm = deltaR*rNormEdge[0] + delt << 
916   }                                               928   }
917   else if (q > length)                         << 929   else if (s > length)
918   {                                               930   {
919     distOutside2 = sqr( q-length );            << 931     distOutside2 = sqr( s-length );
920     if (edgeRZnorm != nullptr)                 << 932     if (edgeRZnorm)
921     {                                             933     {
922       deltaR = rx - r[1];                      << 934       G4double deltaR  = rx - r[1], deltaZ = zx - z[1];
923       deltaZ = zx - z[1];                      << 
924       *edgeRZnorm = deltaR*rNormEdge[1] + delt    935       *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
925     }                                             936     }
926   }                                               937   }
927   else                                            938   else
928   {                                               939   {
929     distOutside2 = 0.;                         << 940     distOutside2 = 0;
930     if (edgeRZnorm != nullptr) *edgeRZnorm = a << 941     if (edgeRZnorm) *edgeRZnorm = answer;
931   }                                               942   }
932                                                   943 
933   if (phiIsOpen)                                  944   if (phiIsOpen)
934   {                                               945   {
935     //                                            946     //
936     // Finally, check phi                         947     // Finally, check phi
937     //                                            948     //
938     G4double phi = GetPhi(p);                     949     G4double phi = GetPhi(p);
939     while( phi < startPhi )    // Loop checkin << 950     while( phi < startPhi ) phi += twopi;
940       phi += twopi;                            << 
941                                                   951     
942     if (phi > startPhi+deltaPhi)                  952     if (phi > startPhi+deltaPhi)
943     {                                             953     {
944       //                                          954       //
945       // Oops. Are we closer to the start phi     955       // Oops. Are we closer to the start phi or end phi?
946       //                                          956       //
947       G4double d1 = phi-startPhi-deltaPhi;        957       G4double d1 = phi-startPhi-deltaPhi;
948       while( phi > startPhi )    // Loop check << 958       while( phi > startPhi ) phi -= twopi;
949         phi -= twopi;                          << 
950       G4double d2 = startPhi-phi;                 959       G4double d2 = startPhi-phi;
951                                                   960       
952       if (d2 < d1) d1 = d2;                       961       if (d2 < d1) d1 = d2;
953                                                   962       
954       //                                          963       //
955       // Add result to our distance               964       // Add result to our distance
956       //                                          965       //
957       G4double dist = d1*rx;                      966       G4double dist = d1*rx;
958                                                   967       
959       distOutside2 += dist*dist;                  968       distOutside2 += dist*dist;
960       if (edgeRZnorm != nullptr)               << 969       if (edgeRZnorm)
961       {                                           970       {
962         *edgeRZnorm = std::max(std::fabs(*edge    971         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
963       }                                           972       }
964     }                                             973     }
965   }                                               974   }
966                                                   975 
967   return answer;                                  976   return answer;
968 }                                                 977 }
969                                                   978 
970 // DistanceAway                                << 
971 //                                             << 
972 // Special version of DistanceAway for Inside. << 
973 // Opposite parameter is not used, instead use << 
974 //                                             << 
975 G4double G4PolyconeSide::DistanceAway( const G << 
976                                              G << 
977                                              G << 
978 {                                              << 
979   //                                           << 
980   // Convert our point to r and z              << 
981   //                                           << 
982   G4double rx = p.perp(), zx = p.z();          << 
983                                                << 
984   //                                           << 
985   // Change sign of r if we should             << 
986   //                                           << 
987   G4int part = 1;                              << 
988   if (rx < 0) part = -1;                       << 
989                                                << 
990   //                                           << 
991   // Calculate return value                    << 
992   //                                           << 
993   G4double deltaR = rx - r[0]*part, deltaZ = z << 
994   G4double answer = deltaR*rNorm*part + deltaZ << 
995                                                << 
996   //                                           << 
997   // Are we off the surface in r,z space?      << 
998   //                                           << 
999   G4double q = deltaR*rS*part + deltaZ*zS;     << 
1000   if (q < 0)                                  << 
1001   {                                           << 
1002     distOutside2 = q*q;                       << 
1003     if (edgeRZnorm != nullptr)                << 
1004     {                                         << 
1005       *edgeRZnorm = deltaR*rNormEdge[0]*part  << 
1006     }                                         << 
1007   }                                           << 
1008   else if (q > length)                        << 
1009   {                                           << 
1010     distOutside2 = sqr( q-length );           << 
1011     if (edgeRZnorm != nullptr)                << 
1012     {                                         << 
1013       deltaR = rx - r[1]*part;                << 
1014       deltaZ = zx - z[1];                     << 
1015       *edgeRZnorm = deltaR*rNormEdge[1]*part  << 
1016     }                                         << 
1017   }                                           << 
1018   else                                        << 
1019   {                                           << 
1020     distOutside2 = 0.;                        << 
1021     if (edgeRZnorm != nullptr) *edgeRZnorm =  << 
1022   }                                           << 
1023                                               << 
1024   if (phiIsOpen)                              << 
1025   {                                           << 
1026     //                                        << 
1027     // Finally, check phi                     << 
1028     //                                        << 
1029     G4double phi = GetPhi(p);                 << 
1030     while( phi < startPhi )    // Loop checki << 
1031       phi += twopi;                           << 
1032                                               << 
1033     if (phi > startPhi+deltaPhi)              << 
1034     {                                         << 
1035       //                                      << 
1036       // Oops. Are we closer to the start phi << 
1037       //                                      << 
1038       G4double d1 = phi-startPhi-deltaPhi;    << 
1039       while( phi > startPhi )    // Loop chec << 
1040         phi -= twopi;                         << 
1041       G4double d2 = startPhi-phi;             << 
1042                                               << 
1043       if (d2 < d1) d1 = d2;                   << 
1044                                               << 
1045       //                                      << 
1046       // Add result to our distance           << 
1047       //                                      << 
1048       G4double dist = d1*rx*part;             << 
1049                                               << 
1050       distOutside2 += dist*dist;              << 
1051       if (edgeRZnorm != nullptr)              << 
1052       {                                       << 
1053         *edgeRZnorm = std::max(std::fabs(*edg << 
1054       }                                       << 
1055     }                                         << 
1056   }                                           << 
1057                                               << 
1058   return answer;                              << 
1059 }                                             << 
1060                                                  979 
                                                   >> 980 //
1061 // PointOnCone                                   981 // PointOnCone
1062 //                                               982 //
1063 // Decide if a point is on a cone and return     983 // Decide if a point is on a cone and return normal if it is
1064 //                                               984 //
1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 985 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit,
1066                                           G4d    986                                           G4double normSign,
1067                                     const G4T << 987                                     const G4ThreeVector &p,
1068                                     const G4T << 988                                     const G4ThreeVector &v,
1069                                           G4T << 989                                           G4ThreeVector &normal )
1070 {                                                990 {
1071   G4double rx = hit.perp();                      991   G4double rx = hit.perp();
1072   //                                             992   //
1073   // Check radial/z extent, as appropriate       993   // Check radial/z extent, as appropriate
1074   //                                             994   //
1075   if (!cone->HitOn( rx, hit.z() )) return fal    995   if (!cone->HitOn( rx, hit.z() )) return false;
1076                                                  996   
1077   if (phiIsOpen)                                 997   if (phiIsOpen)
1078   {                                              998   {
1079     G4double phiTolerant = 2.0*kCarTolerance/    999     G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1080     //                                           1000     //
1081     // Check phi segment. Here we have to be     1001     // Check phi segment. Here we have to be careful
1082     // to use the standard method consistent     1002     // to use the standard method consistent with
1083     // PolyPhiFace. See PolyPhiFace::InsideEd    1003     // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1084     //                                           1004     //
1085     G4double phi = GetPhi(hit);                  1005     G4double phi = GetPhi(hit);
1086     while( phi < startPhi-phiTolerant )   //  << 1006     while( phi < startPhi-phiTolerant ) phi += twopi;
1087       phi += twopi;                           << 
1088                                                  1007     
1089     if (phi > startPhi+deltaPhi+phiTolerant)     1008     if (phi > startPhi+deltaPhi+phiTolerant) return false;
1090                                                  1009     
1091     if (phi > startPhi+deltaPhi-phiTolerant)     1010     if (phi > startPhi+deltaPhi-phiTolerant)
1092     {                                            1011     {
1093       //                                         1012       //
1094       // Exact treatment                         1013       // Exact treatment
1095       //                                         1014       //
1096       G4ThreeVector qx = p + v;                  1015       G4ThreeVector qx = p + v;
1097       G4ThreeVector qa = qx - corners[2],        1016       G4ThreeVector qa = qx - corners[2],
1098               qb = qx - corners[3];              1017               qb = qx - corners[3];
1099       G4ThreeVector qacb = qa.cross(qb);         1018       G4ThreeVector qacb = qa.cross(qb);
1100                                                  1019       
1101       if (normSign*qacb.dot(v) < 0) return fa    1020       if (normSign*qacb.dot(v) < 0) return false;
1102     }                                            1021     }
1103     else if (phi < phiTolerant)                  1022     else if (phi < phiTolerant)
1104     {                                            1023     {
1105       G4ThreeVector qx = p + v;                  1024       G4ThreeVector qx = p + v;
1106       G4ThreeVector qa = qx - corners[1],        1025       G4ThreeVector qa = qx - corners[1],
1107               qb = qx - corners[0];              1026               qb = qx - corners[0];
1108       G4ThreeVector qacb = qa.cross(qb);         1027       G4ThreeVector qacb = qa.cross(qb);
1109                                                  1028       
1110       if (normSign*qacb.dot(v) < 0) return fa    1029       if (normSign*qacb.dot(v) < 0) return false;
1111     }                                            1030     }
1112   }                                              1031   }
1113                                                  1032   
1114   //                                             1033   //
1115   // We have a good hit! Calculate normal        1034   // We have a good hit! Calculate normal
1116   //                                             1035   //
1117   if (rx < DBL_MIN)                              1036   if (rx < DBL_MIN) 
1118     normal = G4ThreeVector( 0, 0, zNorm < 0 ?    1037     normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1119   else                                           1038   else
1120     normal = G4ThreeVector( rNorm*hit.x()/rx,    1039     normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1121   return true;                                   1040   return true;
1122 }                                                1041 }
1123                                                  1042 
                                                   >> 1043 
                                                   >> 1044 //
1124 // FindLineIntersect                             1045 // FindLineIntersect
1125 //                                               1046 //
1126 // Decide the point at which two 2-dimensiona    1047 // Decide the point at which two 2-dimensional lines intersect
1127 //                                               1048 //
1128 // Equation of line: x = x1 + s*tx1              1049 // Equation of line: x = x1 + s*tx1
1129 //                   y = y1 + s*ty1              1050 //                   y = y1 + s*ty1
1130 //                                               1051 //
1131 // It is assumed that the lines are *not* par    1052 // It is assumed that the lines are *not* parallel
1132 //                                               1053 //
1133 void G4PolyconeSide::FindLineIntersect( G4dou    1054 void G4PolyconeSide::FindLineIntersect( G4double x1,  G4double y1,
1134                                         G4dou    1055                                         G4double tx1, G4double ty1,
1135                                         G4dou    1056                                         G4double x2,  G4double y2,
1136                                         G4dou    1057                                         G4double tx2, G4double ty2,
1137                                         G4dou << 1058                                         G4double &x,  G4double &y )
1138 {                                                1059 {
1139   //                                             1060   //
1140   // The solution is a simple linear equation    1061   // The solution is a simple linear equation
1141   //                                             1062   //
1142   G4double deter = tx1*ty2 - tx2*ty1;            1063   G4double deter = tx1*ty2 - tx2*ty1;
1143                                                  1064   
1144   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d    1065   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1145   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d    1066   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1146                                                  1067 
1147   //                                             1068   //
1148   // We want the answer to not depend on whic    1069   // We want the answer to not depend on which order the
1149   // lines were specified. Take average.         1070   // lines were specified. Take average.
1150   //                                             1071   //
1151   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );             1072   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1152   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );             1073   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1153 }                                                1074 }
1154                                                  1075 
                                                   >> 1076 //
1155 // Calculate surface area for GetPointOnSurfa    1077 // Calculate surface area for GetPointOnSurface()
1156 //                                               1078 //
1157 G4double G4PolyconeSide::SurfaceArea()           1079 G4double G4PolyconeSide::SurfaceArea() 
1158 {                                                1080 { 
1159   if(fSurfaceArea==0.)                        << 1081   if(fSurfaceArea==0)
1160   {                                              1082   {
1161     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr    1083     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1162     fSurfaceArea *= 0.5*(deltaPhi);              1084     fSurfaceArea *= 0.5*(deltaPhi);
1163   }                                              1085   }  
1164   return fSurfaceArea;                           1086   return fSurfaceArea;
1165 }                                                1087 }
1166                                                  1088 
                                                   >> 1089 //
1167 // GetPointOnFace                                1090 // GetPointOnFace
1168 //                                               1091 //
1169 G4ThreeVector G4PolyconeSide::GetPointOnFace(    1092 G4ThreeVector G4PolyconeSide::GetPointOnFace()
1170 {                                                1093 {
1171   G4double x,y,zz;                               1094   G4double x,y,zz;
1172   G4double rr,phi,dz,dr;                         1095   G4double rr,phi,dz,dr;
1173   dr=r[1]-r[0];dz=z[1]-z[0];                     1096   dr=r[1]-r[0];dz=z[1]-z[0];
1174   phi=startPhi+deltaPhi*G4UniformRand();         1097   phi=startPhi+deltaPhi*G4UniformRand();
1175   rr=r[0]+dr*G4UniformRand();                    1098   rr=r[0]+dr*G4UniformRand();
1176                                                  1099  
1177   x=rr*std::cos(phi);                            1100   x=rr*std::cos(phi);
1178   y=rr*std::sin(phi);                            1101   y=rr*std::sin(phi);
1179                                                  1102 
1180   // PolyconeSide has a Ring Form                1103   // PolyconeSide has a Ring Form
1181   //                                             1104   //
1182   if (dz==0.)                                    1105   if (dz==0.)
1183   {                                              1106   {
1184     zz=z[0];                                     1107     zz=z[0];
1185   }                                              1108   }
1186   else                                           1109   else
1187   {                                              1110   {
1188     if(dr==0.)  // PolyconeSide has a Tube Fo    1111     if(dr==0.)  // PolyconeSide has a Tube Form
1189     {                                            1112     {
1190       zz = z[0]+dz*G4UniformRand();              1113       zz = z[0]+dz*G4UniformRand();
1191     }                                            1114     }
1192     else                                         1115     else
1193     {                                            1116     {
1194       zz = z[0]+(rr-r[0])*dz/dr;                 1117       zz = z[0]+(rr-r[0])*dz/dr;
1195     }                                            1118     }
1196   }                                              1119   }
1197                                                  1120 
1198   return {x,y,zz};                            << 1121   return G4ThreeVector(x,y,zz);
1199 }                                                1122 }
1200                                                  1123