Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4PolyconeSide, the face << 27 // one conical side of a polycone << 28 // 26 // 29 // Author: David C. Williams (davidw@scipp.ucs << 27 // $Id: G4PolyconeSide.cc,v 1.19.2.2 2010/01/26 11:33:53 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02-patch-03 $ >> 29 // >> 30 // >> 31 // -------------------------------------------------------------------- >> 32 // GEANT 4 class source file >> 33 // >> 34 // >> 35 // G4PolyconeSide.cc >> 36 // >> 37 // Implementation of the face representing one conical side of a polycone >> 38 // 30 // ------------------------------------------- 39 // -------------------------------------------------------------------- 31 40 32 #include "G4PolyconeSide.hh" 41 #include "G4PolyconeSide.hh" 33 #include "meshdefs.hh" << 34 #include "G4PhysicalConstants.hh" << 35 #include "G4IntersectingCone.hh" 42 #include "G4IntersectingCone.hh" 36 #include "G4ClippablePolygon.hh" 43 #include "G4ClippablePolygon.hh" 37 #include "G4AffineTransform.hh" 44 #include "G4AffineTransform.hh" >> 45 #include "meshdefs.hh" 38 #include "G4SolidExtentList.hh" 46 #include "G4SolidExtentList.hh" 39 #include "G4GeometryTolerance.hh" 47 #include "G4GeometryTolerance.hh" 40 48 41 #include "Randomize.hh" 49 #include "Randomize.hh" 42 50 43 // This new field helps to use the class G4PlS << 44 // 51 // 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 46 << 47 // This macro changes the references to fields << 48 // in the class G4PlSideData. << 49 // << 50 #define G4MT_pcphix ((subInstanceManager.offse << 51 #define G4MT_pcphiy ((subInstanceManager.offse << 52 #define G4MT_pcphiz ((subInstanceManager.offse << 53 #define G4MT_pcphik ((subInstanceManager.offse << 54 << 55 // Returns the private data instance manager. << 56 // << 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 58 { << 59 return subInstanceManager; << 60 } << 61 << 62 // Constructor 52 // Constructor 63 // 53 // 64 // Values for r1,z1 and r2,z2 should be specif 54 // Values for r1,z1 and r2,z2 should be specified in clockwise 65 // order in (r,z). 55 // order in (r,z). 66 // 56 // 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 57 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ, 68 const G4Polyco << 58 const G4PolyconeSideRZ *tail, 69 const G4Polyco << 59 const G4PolyconeSideRZ *head, 70 const G4Polyco << 60 const G4PolyconeSideRZ *nextRZ, 71 G4double 61 G4double thePhiStart, 72 G4double 62 G4double theDeltaPhi, 73 G4bool t 63 G4bool thePhiIsOpen, 74 G4bool i 64 G4bool isAllBehind ) >> 65 : ncorners(0), corners(0) 75 { 66 { 76 instanceID = subInstanceManager.CreateSubIns << 77 << 78 kCarTolerance = G4GeometryTolerance::GetInst 67 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 79 G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p << 68 fSurfaceArea = 0.0; 80 69 81 // 70 // 82 // Record values 71 // Record values 83 // 72 // 84 r[0] = tail->r; z[0] = tail->z; 73 r[0] = tail->r; z[0] = tail->z; 85 r[1] = head->r; z[1] = head->z; 74 r[1] = head->r; z[1] = head->z; 86 75 87 phiIsOpen = thePhiIsOpen; 76 phiIsOpen = thePhiIsOpen; 88 if (phiIsOpen) 77 if (phiIsOpen) 89 { 78 { 90 deltaPhi = theDeltaPhi; 79 deltaPhi = theDeltaPhi; 91 startPhi = thePhiStart; 80 startPhi = thePhiStart; 92 81 93 // 82 // 94 // Set phi values to our conventions 83 // Set phi values to our conventions 95 // 84 // 96 while (deltaPhi < 0.0) // Loop checking << 85 while (deltaPhi < 0.0) deltaPhi += twopi; 97 deltaPhi += twopi; << 86 while (startPhi < 0.0) startPhi += twopi; 98 while (startPhi < 0.0) // Loop checking << 99 startPhi += twopi; << 100 87 101 // 88 // 102 // Calculate corner coordinates 89 // Calculate corner coordinates 103 // 90 // 104 ncorners = 4; 91 ncorners = 4; 105 corners = new G4ThreeVector[ncorners]; 92 corners = new G4ThreeVector[ncorners]; 106 93 107 corners[0] = G4ThreeVector( tail->r*std::c 94 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi), 108 tail->r*std::s 95 tail->r*std::sin(startPhi), tail->z ); 109 corners[1] = G4ThreeVector( head->r*std::c 96 corners[1] = G4ThreeVector( head->r*std::cos(startPhi), 110 head->r*std::s 97 head->r*std::sin(startPhi), head->z ); 111 corners[2] = G4ThreeVector( tail->r*std::c 98 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi), 112 tail->r*std::s 99 tail->r*std::sin(startPhi+deltaPhi), tail->z ); 113 corners[3] = G4ThreeVector( head->r*std::c 100 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi), 114 head->r*std::s 101 head->r*std::sin(startPhi+deltaPhi), head->z ); 115 } 102 } 116 else 103 else 117 { 104 { 118 deltaPhi = twopi; 105 deltaPhi = twopi; 119 startPhi = 0.0; 106 startPhi = 0.0; 120 } 107 } 121 108 122 allBehind = isAllBehind; 109 allBehind = isAllBehind; 123 110 124 // 111 // 125 // Make our intersecting cone 112 // Make our intersecting cone 126 // 113 // 127 cone = new G4IntersectingCone( r, z ); 114 cone = new G4IntersectingCone( r, z ); 128 115 129 // 116 // 130 // Calculate vectors in r,z space 117 // Calculate vectors in r,z space 131 // 118 // 132 rS = r[1]-r[0]; zS = z[1]-z[0]; 119 rS = r[1]-r[0]; zS = z[1]-z[0]; 133 length = std::sqrt( rS*rS + zS*zS); 120 length = std::sqrt( rS*rS + zS*zS); 134 rS /= length; zS /= length; 121 rS /= length; zS /= length; 135 122 136 rNorm = +zS; 123 rNorm = +zS; 137 zNorm = -rS; 124 zNorm = -rS; 138 125 139 G4double lAdj; 126 G4double lAdj; 140 127 141 prevRS = r[0]-prevRZ->r; 128 prevRS = r[0]-prevRZ->r; 142 prevZS = z[0]-prevRZ->z; 129 prevZS = z[0]-prevRZ->z; 143 lAdj = std::sqrt( prevRS*prevRS + prevZS*pre 130 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS ); 144 prevRS /= lAdj; 131 prevRS /= lAdj; 145 prevZS /= lAdj; 132 prevZS /= lAdj; 146 133 147 rNormEdge[0] = rNorm + prevZS; 134 rNormEdge[0] = rNorm + prevZS; 148 zNormEdge[0] = zNorm - prevRS; 135 zNormEdge[0] = zNorm - prevRS; 149 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] 136 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] ); 150 rNormEdge[0] /= lAdj; 137 rNormEdge[0] /= lAdj; 151 zNormEdge[0] /= lAdj; 138 zNormEdge[0] /= lAdj; 152 139 153 nextRS = nextRZ->r-r[1]; 140 nextRS = nextRZ->r-r[1]; 154 nextZS = nextRZ->z-z[1]; 141 nextZS = nextRZ->z-z[1]; 155 lAdj = std::sqrt( nextRS*nextRS + nextZS*nex 142 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS ); 156 nextRS /= lAdj; 143 nextRS /= lAdj; 157 nextZS /= lAdj; 144 nextZS /= lAdj; 158 145 159 rNormEdge[1] = rNorm + nextZS; 146 rNormEdge[1] = rNorm + nextZS; 160 zNormEdge[1] = zNorm - nextRS; 147 zNormEdge[1] = zNorm - nextRS; 161 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] 148 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] ); 162 rNormEdge[1] /= lAdj; 149 rNormEdge[1] /= lAdj; 163 zNormEdge[1] /= lAdj; 150 zNormEdge[1] /= lAdj; 164 } 151 } 165 152 >> 153 >> 154 // 166 // Fake default constructor - sets only member 155 // Fake default constructor - sets only member data and allocates memory 167 // for usage restri 156 // for usage restricted to object persistency. 168 // 157 // 169 G4PolyconeSide::G4PolyconeSide( __void__& ) 158 G4PolyconeSide::G4PolyconeSide( __void__& ) 170 : startPhi(0.), deltaPhi(0.), << 159 : phiIsOpen(false), cone(0), ncorners(0), corners(0) 171 rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 172 prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 173 kCarTolerance(0.), instanceID(0) << 174 { 160 { 175 r[0] = r[1] = 0.; << 176 z[0] = z[1] = 0.; << 177 rNormEdge[0]= rNormEdge[1] = 0.; << 178 zNormEdge[0]= zNormEdge[1] = 0.; << 179 } 161 } 180 162 >> 163 >> 164 // 181 // Destructor 165 // Destructor 182 // 166 // 183 G4PolyconeSide::~G4PolyconeSide() 167 G4PolyconeSide::~G4PolyconeSide() 184 { 168 { 185 delete cone; 169 delete cone; 186 if (phiIsOpen) { delete [] corners; } << 170 if (phiIsOpen) delete [] corners; 187 } 171 } 188 172 >> 173 >> 174 // 189 // Copy constructor 175 // Copy constructor 190 // 176 // 191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 177 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source ) >> 178 : G4VCSGface() 192 { 179 { 193 instanceID = subInstanceManager.CreateSubIns << 194 << 195 CopyStuff( source ); 180 CopyStuff( source ); 196 } 181 } 197 182 >> 183 >> 184 // 198 // Assignment operator 185 // Assignment operator 199 // 186 // 200 G4PolyconeSide& G4PolyconeSide::operator=( con << 187 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source ) 201 { 188 { 202 if (this == &source) { return *this; } << 189 if (this == &source) return *this; 203 190 204 delete cone; 191 delete cone; 205 if (phiIsOpen) { delete [] corners; } << 192 if (phiIsOpen) delete [] corners; 206 193 207 CopyStuff( source ); 194 CopyStuff( source ); 208 195 209 return *this; 196 return *this; 210 } 197 } 211 198 >> 199 >> 200 // 212 // CopyStuff 201 // CopyStuff 213 // 202 // 214 void G4PolyconeSide::CopyStuff( const G4Polyco << 203 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source ) 215 { 204 { 216 r[0] = source.r[0]; 205 r[0] = source.r[0]; 217 r[1] = source.r[1]; 206 r[1] = source.r[1]; 218 z[0] = source.z[0]; 207 z[0] = source.z[0]; 219 z[1] = source.z[1]; 208 z[1] = source.z[1]; 220 209 221 startPhi = source.startPhi; 210 startPhi = source.startPhi; 222 deltaPhi = source.deltaPhi; 211 deltaPhi = source.deltaPhi; 223 phiIsOpen = source.phiIsOpen; 212 phiIsOpen = source.phiIsOpen; 224 allBehind = source.allBehind; 213 allBehind = source.allBehind; 225 214 226 kCarTolerance = source.kCarTolerance; 215 kCarTolerance = source.kCarTolerance; 227 fSurfaceArea = source.fSurfaceArea; 216 fSurfaceArea = source.fSurfaceArea; 228 217 229 cone = new G4IntersectingCone( *source.co 218 cone = new G4IntersectingCone( *source.cone ); 230 219 231 rNorm = source.rNorm; 220 rNorm = source.rNorm; 232 zNorm = source.zNorm; 221 zNorm = source.zNorm; 233 rS = source.rS; 222 rS = source.rS; 234 zS = source.zS; 223 zS = source.zS; 235 length = source.length; 224 length = source.length; 236 prevRS = source.prevRS; 225 prevRS = source.prevRS; 237 prevZS = source.prevZS; 226 prevZS = source.prevZS; 238 nextRS = source.nextRS; 227 nextRS = source.nextRS; 239 nextZS = source.nextZS; 228 nextZS = source.nextZS; 240 229 241 rNormEdge[0] = source.rNormEdge[0]; 230 rNormEdge[0] = source.rNormEdge[0]; 242 rNormEdge[1] = source.rNormEdge[1]; 231 rNormEdge[1] = source.rNormEdge[1]; 243 zNormEdge[0] = source.zNormEdge[0]; 232 zNormEdge[0] = source.zNormEdge[0]; 244 zNormEdge[1] = source.zNormEdge[1]; 233 zNormEdge[1] = source.zNormEdge[1]; 245 234 246 if (phiIsOpen) 235 if (phiIsOpen) 247 { 236 { 248 ncorners = 4; 237 ncorners = 4; 249 corners = new G4ThreeVector[ncorners]; 238 corners = new G4ThreeVector[ncorners]; 250 239 251 corners[0] = source.corners[0]; 240 corners[0] = source.corners[0]; 252 corners[1] = source.corners[1]; 241 corners[1] = source.corners[1]; 253 corners[2] = source.corners[2]; 242 corners[2] = source.corners[2]; 254 corners[3] = source.corners[3]; 243 corners[3] = source.corners[3]; 255 } 244 } 256 } 245 } 257 246 >> 247 >> 248 // 258 // Intersect 249 // Intersect 259 // 250 // 260 G4bool G4PolyconeSide::Intersect( const G4Thre << 251 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p, 261 const G4Thre << 252 const G4ThreeVector &v, 262 G4bool 253 G4bool outgoing, 263 G4doub 254 G4double surfTolerance, 264 G4doub << 255 G4double &distance, 265 G4doub << 256 G4double &distFromSurface, 266 G4Thre << 257 G4ThreeVector &normal, 267 G4bool << 258 G4bool &isAllBehind ) 268 { 259 { 269 G4double s1=0., s2=0.; << 260 G4double s1, s2; 270 G4double normSign = outgoing ? +1 : -1; 261 G4double normSign = outgoing ? +1 : -1; 271 262 272 isAllBehind = allBehind; 263 isAllBehind = allBehind; 273 264 274 // 265 // 275 // Check for two possible intersections 266 // Check for two possible intersections 276 // 267 // 277 G4int nside = cone->LineHitsCone( p, v, &s1, 268 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 ); 278 if (nside == 0) return false; 269 if (nside == 0) return false; 279 270 280 // 271 // 281 // Check the first side first, since it is ( 272 // Check the first side first, since it is (supposed to be) closest 282 // 273 // 283 G4ThreeVector hit = p + s1*v; 274 G4ThreeVector hit = p + s1*v; 284 275 285 if (PointOnCone( hit, normSign, p, v, normal 276 if (PointOnCone( hit, normSign, p, v, normal )) 286 { 277 { 287 // 278 // 288 // Good intersection! What about the norma 279 // Good intersection! What about the normal? 289 // 280 // 290 if (normSign*v.dot(normal) > 0) 281 if (normSign*v.dot(normal) > 0) 291 { 282 { 292 // 283 // 293 // We have a valid intersection, but it 284 // We have a valid intersection, but it could very easily 294 // be behind the point. To decide if we 285 // be behind the point. To decide if we tolerate this, 295 // we have to see if the point p is on t 286 // we have to see if the point p is on the surface near 296 // the intersecting point. 287 // the intersecting point. 297 // 288 // 298 // What does it mean exactly for the poi 289 // What does it mean exactly for the point p to be "near" 299 // the intersection? It means that if we 290 // the intersection? It means that if we draw a line from 300 // p to the hit, the line remains entire 291 // p to the hit, the line remains entirely within the 301 // tolerance bounds of the cone. To test 292 // tolerance bounds of the cone. To test this, we can 302 // ask if the normal is correct near p. 293 // ask if the normal is correct near p. 303 // 294 // 304 G4double pr = p.perp(); 295 G4double pr = p.perp(); 305 if (pr < DBL_MIN) pr = DBL_MIN; 296 if (pr < DBL_MIN) pr = DBL_MIN; 306 G4ThreeVector pNormal( rNorm*p.x()/pr, r 297 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 307 if (normSign*v.dot(pNormal) > 0) 298 if (normSign*v.dot(pNormal) > 0) 308 { 299 { 309 // 300 // 310 // p and intersection in same hemisphe 301 // p and intersection in same hemisphere 311 // 302 // 312 G4double distOutside2; 303 G4double distOutside2; 313 distFromSurface = -normSign*DistanceAw 304 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 314 if (distOutside2 < surfTolerance*surfT 305 if (distOutside2 < surfTolerance*surfTolerance) 315 { 306 { 316 if (distFromSurface > -surfTolerance 307 if (distFromSurface > -surfTolerance) 317 { 308 { 318 // 309 // 319 // We are just inside or away from 310 // We are just inside or away from the 320 // surface. Accept *any* value of 311 // surface. Accept *any* value of distance. 321 // 312 // 322 distance = s1; 313 distance = s1; 323 return true; 314 return true; 324 } 315 } 325 } 316 } 326 } 317 } 327 else 318 else 328 distFromSurface = s1; 319 distFromSurface = s1; 329 320 330 // 321 // 331 // Accept positive distances 322 // Accept positive distances 332 // 323 // 333 if (s1 > 0) 324 if (s1 > 0) 334 { 325 { 335 distance = s1; 326 distance = s1; 336 return true; 327 return true; 337 } 328 } 338 } 329 } 339 } 330 } 340 331 341 if (nside==1) return false; 332 if (nside==1) return false; 342 333 343 // 334 // 344 // Well, try the second hit 335 // Well, try the second hit 345 // 336 // 346 hit = p + s2*v; 337 hit = p + s2*v; 347 338 348 if (PointOnCone( hit, normSign, p, v, normal 339 if (PointOnCone( hit, normSign, p, v, normal )) 349 { 340 { 350 // 341 // 351 // Good intersection! What about the norma 342 // Good intersection! What about the normal? 352 // 343 // 353 if (normSign*v.dot(normal) > 0) 344 if (normSign*v.dot(normal) > 0) 354 { 345 { 355 G4double pr = p.perp(); 346 G4double pr = p.perp(); 356 if (pr < DBL_MIN) pr = DBL_MIN; 347 if (pr < DBL_MIN) pr = DBL_MIN; 357 G4ThreeVector pNormal( rNorm*p.x()/pr, r 348 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 358 if (normSign*v.dot(pNormal) > 0) 349 if (normSign*v.dot(pNormal) > 0) 359 { 350 { 360 G4double distOutside2; 351 G4double distOutside2; 361 distFromSurface = -normSign*DistanceAw 352 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 362 if (distOutside2 < surfTolerance*surfT 353 if (distOutside2 < surfTolerance*surfTolerance) 363 { 354 { 364 if (distFromSurface > -surfTolerance 355 if (distFromSurface > -surfTolerance) 365 { 356 { 366 distance = s2; 357 distance = s2; 367 return true; 358 return true; 368 } 359 } 369 } 360 } 370 } 361 } 371 else 362 else 372 distFromSurface = s2; 363 distFromSurface = s2; 373 364 374 if (s2 > 0) 365 if (s2 > 0) 375 { 366 { 376 distance = s2; 367 distance = s2; 377 return true; 368 return true; 378 } 369 } 379 } 370 } 380 } 371 } 381 372 382 // 373 // 383 // Better luck next time 374 // Better luck next time 384 // 375 // 385 return false; 376 return false; 386 } 377 } 387 378 388 // Distance << 379 389 // << 380 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 390 G4double G4PolyconeSide::Distance( const G4Thr << 391 { 381 { 392 G4double normSign = outgoing ? -1 : +1; 382 G4double normSign = outgoing ? -1 : +1; 393 G4double distFrom, distOut2; 383 G4double distFrom, distOut2; 394 384 395 // 385 // 396 // We have two tries for each hemisphere. Tr 386 // We have two tries for each hemisphere. Try the closest first. 397 // 387 // 398 distFrom = normSign*DistanceAway( p, false, 388 distFrom = normSign*DistanceAway( p, false, distOut2 ); 399 if (distFrom > -0.5*kCarTolerance ) 389 if (distFrom > -0.5*kCarTolerance ) 400 { 390 { 401 // 391 // 402 // Good answer 392 // Good answer 403 // 393 // 404 if (distOut2 > 0) 394 if (distOut2 > 0) 405 return std::sqrt( distFrom*distFrom + di 395 return std::sqrt( distFrom*distFrom + distOut2 ); 406 else 396 else 407 return std::fabs(distFrom); 397 return std::fabs(distFrom); 408 } 398 } 409 399 410 // 400 // 411 // Try second side. 401 // Try second side. 412 // 402 // 413 distFrom = normSign*DistanceAway( p, true, 403 distFrom = normSign*DistanceAway( p, true, distOut2 ); 414 if (distFrom > -0.5*kCarTolerance) 404 if (distFrom > -0.5*kCarTolerance) 415 { 405 { 416 406 417 if (distOut2 > 0) 407 if (distOut2 > 0) 418 return std::sqrt( distFrom*distFrom + di 408 return std::sqrt( distFrom*distFrom + distOut2 ); 419 else 409 else 420 return std::fabs(distFrom); 410 return std::fabs(distFrom); 421 } 411 } 422 412 423 return kInfinity; 413 return kInfinity; 424 } 414 } 425 415 >> 416 >> 417 // 426 // Inside 418 // Inside 427 // 419 // 428 EInside G4PolyconeSide::Inside( const G4ThreeV << 420 EInside G4PolyconeSide::Inside( const G4ThreeVector &p, 429 G4double 421 G4double tolerance, 430 G4double << 422 G4double *bestDistance ) 431 { 423 { 432 G4double distFrom, distOut2, dist2; << 424 // 433 G4double edgeRZnorm; << 425 // Check both sides >> 426 // >> 427 G4double distFrom[2], distOut2[2], dist2[2]; >> 428 G4double edgeRZnorm[2]; 434 429 435 distFrom = DistanceAway( p, distOut2, &edge << 430 distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm ); 436 dist2 = distFrom*distFrom + distOut2; << 431 distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 ); 437 << 432 438 *bestDistance = std::sqrt( dist2); << 433 dist2[0] = distFrom[0]*distFrom[0] + distOut2[0]; >> 434 dist2[1] = distFrom[1]*distFrom[1] + distOut2[1]; >> 435 >> 436 // >> 437 // Who's closest? >> 438 // >> 439 G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1; 439 440 >> 441 *bestDistance = std::sqrt( dist2[i] ); >> 442 >> 443 // 440 // Okay then, inside or out? 444 // Okay then, inside or out? 441 // 445 // 442 if ( (std::fabs(edgeRZnorm) < tolerance) << 446 if ( (std::fabs(edgeRZnorm[i]) < tolerance) 443 && (distOut2< tolerance*tolerance) ) << 447 && (distOut2[i] < tolerance*tolerance) ) 444 return kSurface; 448 return kSurface; 445 else if (edgeRZnorm < 0) << 449 else if (edgeRZnorm[i] < 0) 446 return kInside; 450 return kInside; 447 else 451 else 448 return kOutside; 452 return kOutside; 449 } 453 } 450 454 >> 455 >> 456 // 451 // Normal 457 // Normal 452 // 458 // 453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 459 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p, 454 G4 << 460 G4double *bestDistance ) 455 { 461 { 456 if (p == G4ThreeVector(0.,0.,0.)) { return 462 if (p == G4ThreeVector(0.,0.,0.)) { return p; } 457 463 458 G4double dFrom, dOut2; 464 G4double dFrom, dOut2; 459 465 460 dFrom = DistanceAway( p, false, dOut2 ); 466 dFrom = DistanceAway( p, false, dOut2 ); 461 467 462 *bestDistance = std::sqrt( dFrom*dFrom + dOu 468 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 ); 463 469 464 G4double rds = p.perp(); << 470 G4double rad = p.perp(); 465 if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 471 if (rad!=0.) { return G4ThreeVector(rNorm*p.x()/rad,rNorm*p.y()/rad,zNorm); } 466 return G4ThreeVector( 0.,0., zNorm ).unit(); 472 return G4ThreeVector( 0.,0., zNorm ).unit(); 467 } 473 } 468 474 >> 475 >> 476 // 469 // Extent 477 // Extent 470 // 478 // 471 G4double G4PolyconeSide::Extent( const G4Three 479 G4double G4PolyconeSide::Extent( const G4ThreeVector axis ) 472 { 480 { 473 if (axis.perp2() < DBL_MIN) 481 if (axis.perp2() < DBL_MIN) 474 { 482 { 475 // 483 // 476 // Special case 484 // Special case 477 // 485 // 478 return axis.z() < 0 ? -cone->ZLo() : cone- 486 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 479 } 487 } 480 488 481 // 489 // 482 // Is the axis pointing inside our phi gap? 490 // Is the axis pointing inside our phi gap? 483 // 491 // 484 if (phiIsOpen) 492 if (phiIsOpen) 485 { 493 { 486 G4double phi = GetPhi(axis); << 494 G4double phi = axis.phi(); 487 while( phi < startPhi ) // Loop checkin << 495 while( phi < startPhi ) phi += twopi; 488 phi += twopi; << 489 496 490 if (phi > deltaPhi+startPhi) 497 if (phi > deltaPhi+startPhi) 491 { 498 { 492 // 499 // 493 // Yeah, looks so. Make four three vecto 500 // Yeah, looks so. Make four three vectors defining the phi 494 // opening 501 // opening 495 // 502 // 496 G4double cosP = std::cos(startPhi), sinP 503 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi); 497 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z 504 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] ); 498 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z 505 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] ); 499 cosP = std::cos(startPhi+deltaPhi); sinP 506 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi); 500 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z 507 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] ); 501 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z 508 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] ); 502 509 503 G4double ad = axis.dot(a), 510 G4double ad = axis.dot(a), 504 bd = axis.dot(b), << 511 bd = axis.dot(b), 505 cd = axis.dot(c), << 512 cd = axis.dot(c), 506 dd = axis.dot(d); << 513 dd = axis.dot(d); 507 514 508 if (bd > ad) ad = bd; 515 if (bd > ad) ad = bd; 509 if (cd > ad) ad = cd; 516 if (cd > ad) ad = cd; 510 if (dd > ad) ad = dd; 517 if (dd > ad) ad = dd; 511 518 512 return ad; 519 return ad; 513 } 520 } 514 } 521 } 515 522 516 // 523 // 517 // Check either end 524 // Check either end 518 // 525 // 519 G4double aPerp = axis.perp(); 526 G4double aPerp = axis.perp(); 520 527 521 G4double a = aPerp*r[0] + axis.z()*z[0]; 528 G4double a = aPerp*r[0] + axis.z()*z[0]; 522 G4double b = aPerp*r[1] + axis.z()*z[1]; 529 G4double b = aPerp*r[1] + axis.z()*z[1]; 523 530 524 if (b > a) a = b; 531 if (b > a) a = b; 525 532 526 return a; 533 return a; 527 } 534 } 528 535 >> 536 >> 537 >> 538 // 529 // CalculateExtent 539 // CalculateExtent 530 // 540 // 531 // See notes in G4VCSGface 541 // See notes in G4VCSGface 532 // 542 // 533 void G4PolyconeSide::CalculateExtent( const EA 543 void G4PolyconeSide::CalculateExtent( const EAxis axis, 534 const G4 << 544 const G4VoxelLimits &voxelLimit, 535 const G4 << 545 const G4AffineTransform &transform, 536 G4 << 546 G4SolidExtentList &extentList ) 537 { 547 { 538 G4ClippablePolygon polygon; 548 G4ClippablePolygon polygon; 539 549 540 // 550 // 541 // Here we will approximate (ala G4Cons) and 551 // Here we will approximate (ala G4Cons) and divide our conical section 542 // into segments, like G4Polyhedra. When doi 552 // into segments, like G4Polyhedra. When doing so, the radius 543 // is extented far enough such that the segm 553 // is extented far enough such that the segments always lie 544 // just outside the surface of the conical s 554 // just outside the surface of the conical section we are 545 // approximating. 555 // approximating. 546 // 556 // 547 557 548 // 558 // 549 // Choose phi size of our segment(s) based o 559 // Choose phi size of our segment(s) based on constants as 550 // defined in meshdefs.hh 560 // defined in meshdefs.hh 551 // 561 // 552 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe 562 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1; 553 if (numPhi < kMinMeshSections) 563 if (numPhi < kMinMeshSections) 554 numPhi = kMinMeshSections; 564 numPhi = kMinMeshSections; 555 else if (numPhi > kMaxMeshSections) 565 else if (numPhi > kMaxMeshSections) 556 numPhi = kMaxMeshSections; 566 numPhi = kMaxMeshSections; 557 567 558 G4double sigPhi = deltaPhi/numPhi; 568 G4double sigPhi = deltaPhi/numPhi; 559 569 560 // 570 // 561 // Determine radius factor to keep segments 571 // Determine radius factor to keep segments outside 562 // 572 // 563 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 573 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 564 574 565 // 575 // 566 // Decide which radius to use on each end of 576 // Decide which radius to use on each end of the side, 567 // and whether a transition mesh is required 577 // and whether a transition mesh is required 568 // 578 // 569 // {r0,z0} - Beginning of this side 579 // {r0,z0} - Beginning of this side 570 // {r1,z1} - Ending of this side 580 // {r1,z1} - Ending of this side 571 // {r2,z0} - Beginning of transition piece 581 // {r2,z0} - Beginning of transition piece connecting previous 572 // side (and ends at beginning of 582 // side (and ends at beginning of this side) 573 // 583 // 574 // So, order is 2 --> 0 --> 1. 584 // So, order is 2 --> 0 --> 1. 575 // ------- 585 // ------- 576 // 586 // 577 // r2 < 0 indicates that no transition piece 587 // r2 < 0 indicates that no transition piece is required 578 // 588 // 579 G4double r0, r1, r2, z0, z1; 589 G4double r0, r1, r2, z0, z1; 580 590 581 r2 = -1; // By default: no transition piece 591 r2 = -1; // By default: no transition piece 582 592 583 if (rNorm < -DBL_MIN) 593 if (rNorm < -DBL_MIN) 584 { 594 { 585 // 595 // 586 // This side faces *inward*, and so our me 596 // This side faces *inward*, and so our mesh has 587 // the same radius 597 // the same radius 588 // 598 // 589 r1 = r[1]; 599 r1 = r[1]; 590 z1 = z[1]; 600 z1 = z[1]; 591 z0 = z[0]; 601 z0 = z[0]; 592 r0 = r[0]; 602 r0 = r[0]; 593 603 594 r2 = -1; 604 r2 = -1; 595 605 596 if (prevZS > DBL_MIN) 606 if (prevZS > DBL_MIN) 597 { 607 { 598 // 608 // 599 // The previous side is facing outwards 609 // The previous side is facing outwards 600 // 610 // 601 if ( prevRS*zS - prevZS*rS > 0 ) 611 if ( prevRS*zS - prevZS*rS > 0 ) 602 { 612 { 603 // 613 // 604 // Transition was convex: build transi 614 // Transition was convex: build transition piece 605 // 615 // 606 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 616 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 607 } 617 } 608 else 618 else 609 { 619 { 610 // 620 // 611 // Transition was concave: short this 621 // Transition was concave: short this side 612 // 622 // 613 FindLineIntersect( z0, r0, zS, rS, 623 FindLineIntersect( z0, r0, zS, rS, 614 z0, r0*rFudge, prev 624 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 ); 615 } 625 } 616 } 626 } 617 627 618 if ( nextZS > DBL_MIN && (rS*nextZS - zS*n 628 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 619 { 629 { 620 // 630 // 621 // The next side is facing outwards, for 631 // The next side is facing outwards, forming a 622 // concave transition: short this side 632 // concave transition: short this side 623 // 633 // 624 FindLineIntersect( z1, r1, zS, rS, 634 FindLineIntersect( z1, r1, zS, rS, 625 z1, r1*rFudge, nextZS 635 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 ); 626 } 636 } 627 } 637 } 628 else if (rNorm > DBL_MIN) 638 else if (rNorm > DBL_MIN) 629 { 639 { 630 // 640 // 631 // This side faces *outward* and is given 641 // This side faces *outward* and is given a boost to 632 // it radius 642 // it radius 633 // 643 // 634 r0 = r[0]*rFudge; 644 r0 = r[0]*rFudge; 635 z0 = z[0]; 645 z0 = z[0]; 636 r1 = r[1]*rFudge; 646 r1 = r[1]*rFudge; 637 z1 = z[1]; 647 z1 = z[1]; 638 648 639 if (prevZS < -DBL_MIN) 649 if (prevZS < -DBL_MIN) 640 { 650 { 641 // 651 // 642 // The previous side is facing inwards 652 // The previous side is facing inwards 643 // 653 // 644 if ( prevRS*zS - prevZS*rS > 0 ) 654 if ( prevRS*zS - prevZS*rS > 0 ) 645 { 655 { 646 // 656 // 647 // Transition was convex: build transi 657 // Transition was convex: build transition piece 648 // 658 // 649 if (r[0] > DBL_MIN) r2 = r[0]; 659 if (r[0] > DBL_MIN) r2 = r[0]; 650 } 660 } 651 else 661 else 652 { 662 { 653 // 663 // 654 // Transition was concave: short this 664 // Transition was concave: short this side 655 // 665 // 656 FindLineIntersect( z0, r0, zS, rS*rFud 666 FindLineIntersect( z0, r0, zS, rS*rFudge, 657 z0, r[0], prevZS, p 667 z0, r[0], prevZS, prevRS, z0, r0 ); 658 } 668 } 659 } 669 } 660 670 661 if ( nextZS < -DBL_MIN && (rS*nextZS - zS* 671 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 662 { 672 { 663 // 673 // 664 // The next side is facing inwards, form 674 // The next side is facing inwards, forming a 665 // concave transition: short this side 675 // concave transition: short this side 666 // 676 // 667 FindLineIntersect( z1, r1, zS, rS*rFudge 677 FindLineIntersect( z1, r1, zS, rS*rFudge, 668 z1, r[1], nextZS, nex 678 z1, r[1], nextZS, nextRS, z1, r1 ); 669 } 679 } 670 } 680 } 671 else 681 else 672 { 682 { 673 // 683 // 674 // This side is perpendicular to the z axi 684 // This side is perpendicular to the z axis (is a disk) 675 // 685 // 676 // Whether or not r0 needs a rFudge factor 686 // Whether or not r0 needs a rFudge factor depends 677 // on the normal of the previous edge. Sim 687 // on the normal of the previous edge. Similar with r1 678 // and the next edge. No transition piece 688 // and the next edge. No transition piece is required. 679 // 689 // 680 r0 = r[0]; 690 r0 = r[0]; 681 r1 = r[1]; 691 r1 = r[1]; 682 z0 = z[0]; 692 z0 = z[0]; 683 z1 = z[1]; 693 z1 = z[1]; 684 694 685 if (prevZS > DBL_MIN) r0 *= rFudge; 695 if (prevZS > DBL_MIN) r0 *= rFudge; 686 if (nextZS > DBL_MIN) r1 *= rFudge; 696 if (nextZS > DBL_MIN) r1 *= rFudge; 687 } 697 } 688 698 689 // 699 // 690 // Loop 700 // Loop 691 // 701 // 692 G4double phi = startPhi, 702 G4double phi = startPhi, 693 cosPhi = std::cos(phi), 703 cosPhi = std::cos(phi), 694 sinPhi = std::sin(phi); 704 sinPhi = std::sin(phi); 695 705 696 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ) 706 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ), 697 v1( r1*cosPhi, r1*sinPhi, 707 v1( r1*cosPhi, r1*sinPhi, z1 ), 698 v2, w0, w1, w2; 708 v2, w0, w1, w2; 699 transform.ApplyPointTransform( v0 ); 709 transform.ApplyPointTransform( v0 ); 700 transform.ApplyPointTransform( v1 ); 710 transform.ApplyPointTransform( v1 ); 701 711 702 if (r2 >= 0) 712 if (r2 >= 0) 703 { 713 { 704 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, 714 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 705 transform.ApplyPointTransform( v2 ); 715 transform.ApplyPointTransform( v2 ); 706 } 716 } 707 717 708 do // Loop checking, 13.08.2015, G.Cosmo << 718 do 709 { 719 { 710 phi += sigPhi; 720 phi += sigPhi; 711 if (numPhi == 1) phi = startPhi+deltaPhi; 721 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff 712 cosPhi = std::cos(phi), 722 cosPhi = std::cos(phi), 713 sinPhi = std::sin(phi); 723 sinPhi = std::sin(phi); 714 724 715 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 725 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 ); 716 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 726 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 ); 717 transform.ApplyPointTransform( w0 ); 727 transform.ApplyPointTransform( w0 ); 718 transform.ApplyPointTransform( w1 ); 728 transform.ApplyPointTransform( w1 ); 719 729 720 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w 730 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1; 721 731 722 // 732 // 723 // Build polygon, taking special care to k 733 // Build polygon, taking special care to keep the vertices 724 // in order 734 // in order 725 // 735 // 726 polygon.ClearAllVertices(); 736 polygon.ClearAllVertices(); 727 737 728 polygon.AddVertexInOrder( v0 ); 738 polygon.AddVertexInOrder( v0 ); 729 polygon.AddVertexInOrder( v1 ); 739 polygon.AddVertexInOrder( v1 ); 730 polygon.AddVertexInOrder( w1 ); 740 polygon.AddVertexInOrder( w1 ); 731 polygon.AddVertexInOrder( w0 ); 741 polygon.AddVertexInOrder( w0 ); 732 742 733 // 743 // 734 // Get extent 744 // Get extent 735 // 745 // 736 if (polygon.PartialClip( voxelLimit, axis 746 if (polygon.PartialClip( voxelLimit, axis )) 737 { 747 { 738 // 748 // 739 // Get dot product of normal with target 749 // Get dot product of normal with target axis 740 // 750 // 741 polygon.SetNormal( deltaV.cross(v1-v0).u 751 polygon.SetNormal( deltaV.cross(v1-v0).unit() ); 742 752 743 extentList.AddSurface( polygon ); 753 extentList.AddSurface( polygon ); 744 } 754 } 745 755 746 if (r2 >= 0) 756 if (r2 >= 0) 747 { 757 { 748 // 758 // 749 // Repeat, for transition piece 759 // Repeat, for transition piece 750 // 760 // 751 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi 761 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 752 transform.ApplyPointTransform( w2 ); 762 transform.ApplyPointTransform( w2 ); 753 763 754 polygon.ClearAllVertices(); 764 polygon.ClearAllVertices(); 755 765 756 polygon.AddVertexInOrder( v2 ); 766 polygon.AddVertexInOrder( v2 ); 757 polygon.AddVertexInOrder( v0 ); 767 polygon.AddVertexInOrder( v0 ); 758 polygon.AddVertexInOrder( w0 ); 768 polygon.AddVertexInOrder( w0 ); 759 polygon.AddVertexInOrder( w2 ); 769 polygon.AddVertexInOrder( w2 ); 760 770 761 if (polygon.PartialClip( voxelLimit, axi 771 if (polygon.PartialClip( voxelLimit, axis )) 762 { 772 { 763 polygon.SetNormal( deltaV.cross(v0-v2) 773 polygon.SetNormal( deltaV.cross(v0-v2).unit() ); 764 774 765 extentList.AddSurface( polygon ); 775 extentList.AddSurface( polygon ); 766 } 776 } 767 777 768 v2 = w2; 778 v2 = w2; 769 } 779 } 770 780 771 // 781 // 772 // Next vertex 782 // Next vertex 773 // 783 // 774 v0 = w0; 784 v0 = w0; 775 v1 = w1; 785 v1 = w1; 776 } while( --numPhi > 0 ); 786 } while( --numPhi > 0 ); 777 787 778 // 788 // 779 // We are almost done. But, it is important 789 // We are almost done. But, it is important that we leave no 780 // gaps in the surface of our solid. By usin 790 // gaps in the surface of our solid. By using rFudge, however, 781 // we've done exactly that, if we have a phi 791 // we've done exactly that, if we have a phi segment. 782 // Add two additional faces if necessary 792 // Add two additional faces if necessary 783 // 793 // 784 if (phiIsOpen && rNorm > DBL_MIN) 794 if (phiIsOpen && rNorm > DBL_MIN) 785 { 795 { 786 cosPhi = std::cos(startPhi); << 796 G4double cosPhi = std::cos(startPhi), 787 sinPhi = std::sin(startPhi); << 797 sinPhi = std::sin(startPhi); 788 798 789 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi 799 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 790 a1( r[1]*cosPhi, r[1]*sinPhi 800 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 791 b0( r0*cosPhi, r0*sinPhi, z[ 801 b0( r0*cosPhi, r0*sinPhi, z[0] ), 792 b1( r1*cosPhi, r1*sinPhi, z[ 802 b1( r1*cosPhi, r1*sinPhi, z[1] ); 793 803 794 transform.ApplyPointTransform( a0 ); 804 transform.ApplyPointTransform( a0 ); 795 transform.ApplyPointTransform( a1 ); 805 transform.ApplyPointTransform( a1 ); 796 transform.ApplyPointTransform( b0 ); 806 transform.ApplyPointTransform( b0 ); 797 transform.ApplyPointTransform( b1 ); 807 transform.ApplyPointTransform( b1 ); 798 808 799 polygon.ClearAllVertices(); 809 polygon.ClearAllVertices(); 800 810 801 polygon.AddVertexInOrder( a0 ); 811 polygon.AddVertexInOrder( a0 ); 802 polygon.AddVertexInOrder( a1 ); 812 polygon.AddVertexInOrder( a1 ); 803 polygon.AddVertexInOrder( b0 ); 813 polygon.AddVertexInOrder( b0 ); 804 polygon.AddVertexInOrder( b1 ); 814 polygon.AddVertexInOrder( b1 ); 805 815 806 if (polygon.PartialClip( voxelLimit , axis 816 if (polygon.PartialClip( voxelLimit , axis)) 807 { 817 { 808 G4ThreeVector normal( sinPhi, -cosPhi, 0 818 G4ThreeVector normal( sinPhi, -cosPhi, 0 ); 809 polygon.SetNormal( transform.TransformAx 819 polygon.SetNormal( transform.TransformAxis( normal ) ); 810 820 811 extentList.AddSurface( polygon ); 821 extentList.AddSurface( polygon ); 812 } 822 } 813 823 814 cosPhi = std::cos(startPhi+deltaPhi); 824 cosPhi = std::cos(startPhi+deltaPhi); 815 sinPhi = std::sin(startPhi+deltaPhi); 825 sinPhi = std::sin(startPhi+deltaPhi); 816 826 817 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP 827 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 818 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP 828 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 819 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 829 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ), 820 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 830 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] ); 821 transform.ApplyPointTransform( a0 ); 831 transform.ApplyPointTransform( a0 ); 822 transform.ApplyPointTransform( a1 ); 832 transform.ApplyPointTransform( a1 ); 823 transform.ApplyPointTransform( b0 ); 833 transform.ApplyPointTransform( b0 ); 824 transform.ApplyPointTransform( b1 ); 834 transform.ApplyPointTransform( b1 ); 825 835 826 polygon.ClearAllVertices(); 836 polygon.ClearAllVertices(); 827 837 828 polygon.AddVertexInOrder( a0 ); 838 polygon.AddVertexInOrder( a0 ); 829 polygon.AddVertexInOrder( a1 ); 839 polygon.AddVertexInOrder( a1 ); 830 polygon.AddVertexInOrder( b0 ); 840 polygon.AddVertexInOrder( b0 ); 831 polygon.AddVertexInOrder( b1 ); 841 polygon.AddVertexInOrder( b1 ); 832 842 833 if (polygon.PartialClip( voxelLimit, axis 843 if (polygon.PartialClip( voxelLimit, axis )) 834 { 844 { 835 G4ThreeVector normal( -sinPhi, cosPhi, 0 845 G4ThreeVector normal( -sinPhi, cosPhi, 0 ); 836 polygon.SetNormal( transform.TransformAx 846 polygon.SetNormal( transform.TransformAxis( normal ) ); 837 847 838 extentList.AddSurface( polygon ); 848 extentList.AddSurface( polygon ); 839 } 849 } 840 } 850 } 841 851 842 return; 852 return; 843 } 853 } 844 854 845 // GetPhi << 846 // << 847 // Calculate Phi for a given 3-vector (point), << 848 // same point, in the attempt to avoid consecu << 849 // quantity << 850 // << 851 G4double G4PolyconeSide::GetPhi( const G4Three << 852 { << 853 G4double val=0.; << 854 G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 855 << 856 if (vphi != p) << 857 { << 858 val = p.phi(); << 859 G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); << 860 G4MT_pcphik = val; << 861 } << 862 else << 863 { << 864 val = G4MT_pcphik; << 865 } << 866 return val; << 867 } << 868 855 >> 856 // 869 // DistanceAway 857 // DistanceAway 870 // 858 // 871 // Calculate distance of a point from our coni 859 // Calculate distance of a point from our conical surface, including the effect 872 // of any phi segmentation 860 // of any phi segmentation 873 // 861 // 874 // Arguments: 862 // Arguments: 875 // p - (in) Point to check 863 // p - (in) Point to check 876 // opposite - (in) If true, check opposi 864 // opposite - (in) If true, check opposite hemisphere (see below) 877 // distOutside - (out) Additional distance 865 // distOutside - (out) Additional distance outside the edges of the surface 878 // edgeRZnorm - (out) if negative, point i 866 // edgeRZnorm - (out) if negative, point is inside 879 // 867 // 880 // return value = distance from the conical p 868 // return value = distance from the conical plane, if extrapolated beyond edges, 881 // signed by whether the point 869 // signed by whether the point is in inside or outside the shape 882 // 870 // 883 // Notes: 871 // Notes: 884 // * There are two answers, depending on whic 872 // * There are two answers, depending on which hemisphere is considered. 885 // 873 // 886 G4double G4PolyconeSide::DistanceAway( const G << 874 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p, 887 G 875 G4bool opposite, 888 G << 876 G4double &distOutside2, 889 G << 877 G4double *edgeRZnorm ) 890 { 878 { 891 // 879 // 892 // Convert our point to r and z 880 // Convert our point to r and z 893 // 881 // 894 G4double rx = p.perp(), zx = p.z(); 882 G4double rx = p.perp(), zx = p.z(); 895 883 896 // 884 // 897 // Change sign of r if opposite says we shou 885 // Change sign of r if opposite says we should 898 // 886 // 899 if (opposite) rx = -rx; 887 if (opposite) rx = -rx; 900 888 901 // 889 // 902 // Calculate return value 890 // Calculate return value 903 // 891 // 904 G4double deltaR = rx - r[0], deltaZ = zx - 892 G4double deltaR = rx - r[0], deltaZ = zx - z[0]; 905 G4double answer = deltaR*rNorm + deltaZ*zNor 893 G4double answer = deltaR*rNorm + deltaZ*zNorm; 906 894 907 // 895 // 908 // Are we off the surface in r,z space? 896 // Are we off the surface in r,z space? 909 // 897 // 910 G4double q = deltaR*rS + deltaZ*zS; << 898 G4double s = deltaR*rS + deltaZ*zS; 911 if (q < 0) << 899 if (s < 0) 912 { 900 { 913 distOutside2 = q*q; << 901 distOutside2 = s*s; 914 if (edgeRZnorm != nullptr) << 902 if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0]; 915 *edgeRZnorm = deltaR*rNormEdge[0] + delt << 916 } 903 } 917 else if (q > length) << 904 else if (s > length) 918 { 905 { 919 distOutside2 = sqr( q-length ); << 906 distOutside2 = sqr( s-length ); 920 if (edgeRZnorm != nullptr) << 907 if (edgeRZnorm) 921 { 908 { 922 deltaR = rx - r[1]; << 909 G4double deltaR = rx - r[1], deltaZ = zx - z[1]; 923 deltaZ = zx - z[1]; << 924 *edgeRZnorm = deltaR*rNormEdge[1] + delt 910 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1]; 925 } 911 } 926 } 912 } 927 else 913 else 928 { 914 { 929 distOutside2 = 0.; << 915 distOutside2 = 0; 930 if (edgeRZnorm != nullptr) *edgeRZnorm = a << 916 if (edgeRZnorm) *edgeRZnorm = answer; 931 } 917 } 932 918 933 if (phiIsOpen) 919 if (phiIsOpen) 934 { 920 { 935 // 921 // 936 // Finally, check phi 922 // Finally, check phi 937 // 923 // 938 G4double phi = GetPhi(p); << 924 G4double phi = p.phi(); 939 while( phi < startPhi ) // Loop checkin << 925 while( phi < startPhi ) phi += twopi; 940 phi += twopi; << 941 926 942 if (phi > startPhi+deltaPhi) 927 if (phi > startPhi+deltaPhi) 943 { 928 { 944 // 929 // 945 // Oops. Are we closer to the start phi 930 // Oops. Are we closer to the start phi or end phi? 946 // 931 // 947 G4double d1 = phi-startPhi-deltaPhi; 932 G4double d1 = phi-startPhi-deltaPhi; 948 while( phi > startPhi ) // Loop check << 933 while( phi > startPhi ) phi -= twopi; 949 phi -= twopi; << 950 G4double d2 = startPhi-phi; 934 G4double d2 = startPhi-phi; 951 935 952 if (d2 < d1) d1 = d2; 936 if (d2 < d1) d1 = d2; 953 937 954 // 938 // 955 // Add result to our distance 939 // Add result to our distance 956 // 940 // 957 G4double dist = d1*rx; 941 G4double dist = d1*rx; 958 942 959 distOutside2 += dist*dist; 943 distOutside2 += dist*dist; 960 if (edgeRZnorm != nullptr) << 944 if (edgeRZnorm) 961 { 945 { 962 *edgeRZnorm = std::max(std::fabs(*edge 946 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist)); 963 } 947 } 964 } 948 } 965 } 949 } 966 950 967 return answer; 951 return answer; 968 } 952 } 969 953 970 // DistanceAway << 971 // << 972 // Special version of DistanceAway for Inside. << 973 // Opposite parameter is not used, instead use << 974 // << 975 G4double G4PolyconeSide::DistanceAway( const G << 976 G << 977 G << 978 { << 979 // << 980 // Convert our point to r and z << 981 // << 982 G4double rx = p.perp(), zx = p.z(); << 983 << 984 // << 985 // Change sign of r if we should << 986 // << 987 G4int part = 1; << 988 if (rx < 0) part = -1; << 989 << 990 // << 991 // Calculate return value << 992 // << 993 G4double deltaR = rx - r[0]*part, deltaZ = z << 994 G4double answer = deltaR*rNorm*part + deltaZ << 995 << 996 // << 997 // Are we off the surface in r,z space? << 998 // << 999 G4double q = deltaR*rS*part + deltaZ*zS; << 1000 if (q < 0) << 1001 { << 1002 distOutside2 = q*q; << 1003 if (edgeRZnorm != nullptr) << 1004 { << 1005 *edgeRZnorm = deltaR*rNormEdge[0]*part << 1006 } << 1007 } << 1008 else if (q > length) << 1009 { << 1010 distOutside2 = sqr( q-length ); << 1011 if (edgeRZnorm != nullptr) << 1012 { << 1013 deltaR = rx - r[1]*part; << 1014 deltaZ = zx - z[1]; << 1015 *edgeRZnorm = deltaR*rNormEdge[1]*part << 1016 } << 1017 } << 1018 else << 1019 { << 1020 distOutside2 = 0.; << 1021 if (edgeRZnorm != nullptr) *edgeRZnorm = << 1022 } << 1023 << 1024 if (phiIsOpen) << 1025 { << 1026 // << 1027 // Finally, check phi << 1028 // << 1029 G4double phi = GetPhi(p); << 1030 while( phi < startPhi ) // Loop checki << 1031 phi += twopi; << 1032 << 1033 if (phi > startPhi+deltaPhi) << 1034 { << 1035 // << 1036 // Oops. Are we closer to the start phi << 1037 // << 1038 G4double d1 = phi-startPhi-deltaPhi; << 1039 while( phi > startPhi ) // Loop chec << 1040 phi -= twopi; << 1041 G4double d2 = startPhi-phi; << 1042 << 1043 if (d2 < d1) d1 = d2; << 1044 << 1045 // << 1046 // Add result to our distance << 1047 // << 1048 G4double dist = d1*rx*part; << 1049 << 1050 distOutside2 += dist*dist; << 1051 if (edgeRZnorm != nullptr) << 1052 { << 1053 *edgeRZnorm = std::max(std::fabs(*edg << 1054 } << 1055 } << 1056 } << 1057 << 1058 return answer; << 1059 } << 1060 954 >> 955 // 1061 // PointOnCone 956 // PointOnCone 1062 // 957 // 1063 // Decide if a point is on a cone and return 958 // Decide if a point is on a cone and return normal if it is 1064 // 959 // 1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 960 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit, 1066 G4d 961 G4double normSign, 1067 const G4T << 962 const G4ThreeVector &p, 1068 const G4T << 963 const G4ThreeVector &v, 1069 G4T << 964 G4ThreeVector &normal ) 1070 { 965 { 1071 G4double rx = hit.perp(); 966 G4double rx = hit.perp(); 1072 // 967 // 1073 // Check radial/z extent, as appropriate 968 // Check radial/z extent, as appropriate 1074 // 969 // 1075 if (!cone->HitOn( rx, hit.z() )) return fal 970 if (!cone->HitOn( rx, hit.z() )) return false; 1076 971 1077 if (phiIsOpen) 972 if (phiIsOpen) 1078 { 973 { 1079 G4double phiTolerant = 2.0*kCarTolerance/ 974 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance); 1080 // 975 // 1081 // Check phi segment. Here we have to be 976 // Check phi segment. Here we have to be careful 1082 // to use the standard method consistent 977 // to use the standard method consistent with 1083 // PolyPhiFace. See PolyPhiFace::InsideEd 978 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact 1084 // 979 // 1085 G4double phi = GetPhi(hit); << 980 G4double phi = hit.phi(); 1086 while( phi < startPhi-phiTolerant ) // << 981 while( phi < startPhi-phiTolerant ) phi += twopi; 1087 phi += twopi; << 1088 982 1089 if (phi > startPhi+deltaPhi+phiTolerant) 983 if (phi > startPhi+deltaPhi+phiTolerant) return false; 1090 984 1091 if (phi > startPhi+deltaPhi-phiTolerant) 985 if (phi > startPhi+deltaPhi-phiTolerant) 1092 { 986 { 1093 // 987 // 1094 // Exact treatment 988 // Exact treatment 1095 // 989 // 1096 G4ThreeVector qx = p + v; 990 G4ThreeVector qx = p + v; 1097 G4ThreeVector qa = qx - corners[2], 991 G4ThreeVector qa = qx - corners[2], 1098 qb = qx - corners[3]; 992 qb = qx - corners[3]; 1099 G4ThreeVector qacb = qa.cross(qb); 993 G4ThreeVector qacb = qa.cross(qb); 1100 994 1101 if (normSign*qacb.dot(v) < 0) return fa 995 if (normSign*qacb.dot(v) < 0) return false; 1102 } 996 } 1103 else if (phi < phiTolerant) 997 else if (phi < phiTolerant) 1104 { 998 { 1105 G4ThreeVector qx = p + v; 999 G4ThreeVector qx = p + v; 1106 G4ThreeVector qa = qx - corners[1], 1000 G4ThreeVector qa = qx - corners[1], 1107 qb = qx - corners[0]; 1001 qb = qx - corners[0]; 1108 G4ThreeVector qacb = qa.cross(qb); 1002 G4ThreeVector qacb = qa.cross(qb); 1109 1003 1110 if (normSign*qacb.dot(v) < 0) return fa 1004 if (normSign*qacb.dot(v) < 0) return false; 1111 } 1005 } 1112 } 1006 } 1113 1007 1114 // 1008 // 1115 // We have a good hit! Calculate normal 1009 // We have a good hit! Calculate normal 1116 // 1010 // 1117 if (rx < DBL_MIN) 1011 if (rx < DBL_MIN) 1118 normal = G4ThreeVector( 0, 0, zNorm < 0 ? 1012 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 ); 1119 else 1013 else 1120 normal = G4ThreeVector( rNorm*hit.x()/rx, 1014 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm ); 1121 return true; 1015 return true; 1122 } 1016 } 1123 1017 >> 1018 >> 1019 // 1124 // FindLineIntersect 1020 // FindLineIntersect 1125 // 1021 // 1126 // Decide the point at which two 2-dimensiona 1022 // Decide the point at which two 2-dimensional lines intersect 1127 // 1023 // 1128 // Equation of line: x = x1 + s*tx1 1024 // Equation of line: x = x1 + s*tx1 1129 // y = y1 + s*ty1 1025 // y = y1 + s*ty1 1130 // 1026 // 1131 // It is assumed that the lines are *not* par 1027 // It is assumed that the lines are *not* parallel 1132 // 1028 // 1133 void G4PolyconeSide::FindLineIntersect( G4dou 1029 void G4PolyconeSide::FindLineIntersect( G4double x1, G4double y1, 1134 G4dou 1030 G4double tx1, G4double ty1, 1135 G4dou 1031 G4double x2, G4double y2, 1136 G4dou 1032 G4double tx2, G4double ty2, 1137 G4dou << 1033 G4double &x, G4double &y ) 1138 { 1034 { 1139 // 1035 // 1140 // The solution is a simple linear equation 1036 // The solution is a simple linear equation 1141 // 1037 // 1142 G4double deter = tx1*ty2 - tx2*ty1; 1038 G4double deter = tx1*ty2 - tx2*ty1; 1143 1039 1144 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d 1040 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter; 1145 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d 1041 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter; 1146 1042 1147 // 1043 // 1148 // We want the answer to not depend on whic 1044 // We want the answer to not depend on which order the 1149 // lines were specified. Take average. 1045 // lines were specified. Take average. 1150 // 1046 // 1151 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1047 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1152 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1048 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1153 } 1049 } 1154 1050 >> 1051 // 1155 // Calculate surface area for GetPointOnSurfa 1052 // Calculate surface area for GetPointOnSurface() 1156 // 1053 // 1157 G4double G4PolyconeSide::SurfaceArea() 1054 G4double G4PolyconeSide::SurfaceArea() 1158 { 1055 { 1159 if(fSurfaceArea==0.) << 1056 if(fSurfaceArea==0) 1160 { 1057 { 1161 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr 1058 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1])); 1162 fSurfaceArea *= 0.5*(deltaPhi); 1059 fSurfaceArea *= 0.5*(deltaPhi); 1163 } 1060 } 1164 return fSurfaceArea; 1061 return fSurfaceArea; 1165 } 1062 } 1166 1063 >> 1064 // 1167 // GetPointOnFace 1065 // GetPointOnFace 1168 // 1066 // 1169 G4ThreeVector G4PolyconeSide::GetPointOnFace( 1067 G4ThreeVector G4PolyconeSide::GetPointOnFace() 1170 { 1068 { 1171 G4double x,y,zz; 1069 G4double x,y,zz; 1172 G4double rr,phi,dz,dr; 1070 G4double rr,phi,dz,dr; 1173 dr=r[1]-r[0];dz=z[1]-z[0]; 1071 dr=r[1]-r[0];dz=z[1]-z[0]; 1174 phi=startPhi+deltaPhi*G4UniformRand(); 1072 phi=startPhi+deltaPhi*G4UniformRand(); 1175 rr=r[0]+dr*G4UniformRand(); 1073 rr=r[0]+dr*G4UniformRand(); 1176 1074 1177 x=rr*std::cos(phi); 1075 x=rr*std::cos(phi); 1178 y=rr*std::sin(phi); 1076 y=rr*std::sin(phi); 1179 1077 1180 // PolyconeSide has a Ring Form 1078 // PolyconeSide has a Ring Form 1181 // 1079 // 1182 if (dz==0.) 1080 if (dz==0.) 1183 { 1081 { 1184 zz=z[0]; 1082 zz=z[0]; 1185 } 1083 } 1186 else 1084 else 1187 { 1085 { 1188 if(dr==0.) // PolyconeSide has a Tube Fo 1086 if(dr==0.) // PolyconeSide has a Tube Form 1189 { 1087 { 1190 zz = z[0]+dz*G4UniformRand(); 1088 zz = z[0]+dz*G4UniformRand(); 1191 } 1089 } 1192 else 1090 else 1193 { 1091 { 1194 zz = z[0]+(rr-r[0])*dz/dr; 1092 zz = z[0]+(rr-r[0])*dz/dr; 1195 } 1093 } 1196 } 1094 } 1197 1095 1198 return {x,y,zz}; << 1096 return G4ThreeVector(x,y,zz); 1199 } 1097 } 1200 1098