Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // Implementation of G4PolyconeSide, the face << 27 // one conical side of a polycone << 28 // 23 // 29 // Author: David C. Williams (davidw@scipp.ucs << 24 // $Id: G4PolyconeSide.cc,v 1.10 2004/12/10 16:22:38 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-patch-01 $ >> 26 // >> 27 // >> 28 // -------------------------------------------------------------------- >> 29 // GEANT 4 class source file >> 30 // >> 31 // >> 32 // G4PolyconeSide.cc >> 33 // >> 34 // Implementation of the face representing one conical side of a polycone >> 35 // 30 // ------------------------------------------- 36 // -------------------------------------------------------------------- 31 37 32 #include "G4PolyconeSide.hh" 38 #include "G4PolyconeSide.hh" 33 #include "meshdefs.hh" << 34 #include "G4PhysicalConstants.hh" << 35 #include "G4IntersectingCone.hh" 39 #include "G4IntersectingCone.hh" 36 #include "G4ClippablePolygon.hh" 40 #include "G4ClippablePolygon.hh" 37 #include "G4AffineTransform.hh" 41 #include "G4AffineTransform.hh" >> 42 #include "meshdefs.hh" 38 #include "G4SolidExtentList.hh" 43 #include "G4SolidExtentList.hh" 39 #include "G4GeometryTolerance.hh" << 40 44 41 #include "Randomize.hh" << 42 << 43 // This new field helps to use the class G4PlS << 44 // 45 // 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 46 << 47 // This macro changes the references to fields << 48 // in the class G4PlSideData. << 49 // << 50 #define G4MT_pcphix ((subInstanceManager.offse << 51 #define G4MT_pcphiy ((subInstanceManager.offse << 52 #define G4MT_pcphiz ((subInstanceManager.offse << 53 #define G4MT_pcphik ((subInstanceManager.offse << 54 << 55 // Returns the private data instance manager. << 56 // << 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 58 { << 59 return subInstanceManager; << 60 } << 61 << 62 // Constructor 46 // Constructor 63 // 47 // 64 // Values for r1,z1 and r2,z2 should be specif 48 // Values for r1,z1 and r2,z2 should be specified in clockwise 65 // order in (r,z). 49 // order in (r,z). 66 // 50 // 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 51 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ, 68 const G4Polyco << 52 const G4PolyconeSideRZ *tail, 69 const G4Polyco << 53 const G4PolyconeSideRZ *head, 70 const G4Polyco << 54 const G4PolyconeSideRZ *nextRZ, 71 G4double 55 G4double thePhiStart, 72 G4double 56 G4double theDeltaPhi, 73 G4bool t 57 G4bool thePhiIsOpen, 74 G4bool i 58 G4bool isAllBehind ) >> 59 : corners(0) 75 { 60 { 76 instanceID = subInstanceManager.CreateSubIns << 77 << 78 kCarTolerance = G4GeometryTolerance::GetInst << 79 G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p << 80 << 81 // 61 // 82 // Record values 62 // Record values 83 // 63 // 84 r[0] = tail->r; z[0] = tail->z; 64 r[0] = tail->r; z[0] = tail->z; 85 r[1] = head->r; z[1] = head->z; 65 r[1] = head->r; z[1] = head->z; 86 66 87 phiIsOpen = thePhiIsOpen; 67 phiIsOpen = thePhiIsOpen; 88 if (phiIsOpen) 68 if (phiIsOpen) 89 { 69 { 90 deltaPhi = theDeltaPhi; 70 deltaPhi = theDeltaPhi; 91 startPhi = thePhiStart; 71 startPhi = thePhiStart; 92 72 93 // 73 // 94 // Set phi values to our conventions 74 // Set phi values to our conventions 95 // 75 // 96 while (deltaPhi < 0.0) // Loop checking << 76 while (deltaPhi < 0.0) deltaPhi += twopi; 97 deltaPhi += twopi; << 77 while (startPhi < 0.0) startPhi += twopi; 98 while (startPhi < 0.0) // Loop checking << 99 startPhi += twopi; << 100 78 101 // 79 // 102 // Calculate corner coordinates 80 // Calculate corner coordinates 103 // 81 // 104 ncorners = 4; << 82 corners = new G4ThreeVector[4]; 105 corners = new G4ThreeVector[ncorners]; << 106 83 107 corners[0] = G4ThreeVector( tail->r*std::c 84 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi), 108 tail->r*std::s 85 tail->r*std::sin(startPhi), tail->z ); 109 corners[1] = G4ThreeVector( head->r*std::c 86 corners[1] = G4ThreeVector( head->r*std::cos(startPhi), 110 head->r*std::s 87 head->r*std::sin(startPhi), head->z ); 111 corners[2] = G4ThreeVector( tail->r*std::c 88 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi), 112 tail->r*std::s 89 tail->r*std::sin(startPhi+deltaPhi), tail->z ); 113 corners[3] = G4ThreeVector( head->r*std::c 90 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi), 114 head->r*std::s 91 head->r*std::sin(startPhi+deltaPhi), head->z ); 115 } 92 } 116 else 93 else 117 { 94 { 118 deltaPhi = twopi; 95 deltaPhi = twopi; 119 startPhi = 0.0; 96 startPhi = 0.0; 120 } 97 } 121 98 122 allBehind = isAllBehind; 99 allBehind = isAllBehind; 123 100 124 // 101 // 125 // Make our intersecting cone 102 // Make our intersecting cone 126 // 103 // 127 cone = new G4IntersectingCone( r, z ); 104 cone = new G4IntersectingCone( r, z ); 128 105 129 // 106 // 130 // Calculate vectors in r,z space 107 // Calculate vectors in r,z space 131 // 108 // 132 rS = r[1]-r[0]; zS = z[1]-z[0]; 109 rS = r[1]-r[0]; zS = z[1]-z[0]; 133 length = std::sqrt( rS*rS + zS*zS); 110 length = std::sqrt( rS*rS + zS*zS); 134 rS /= length; zS /= length; 111 rS /= length; zS /= length; 135 112 136 rNorm = +zS; 113 rNorm = +zS; 137 zNorm = -rS; 114 zNorm = -rS; 138 115 139 G4double lAdj; 116 G4double lAdj; 140 117 141 prevRS = r[0]-prevRZ->r; 118 prevRS = r[0]-prevRZ->r; 142 prevZS = z[0]-prevRZ->z; 119 prevZS = z[0]-prevRZ->z; 143 lAdj = std::sqrt( prevRS*prevRS + prevZS*pre 120 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS ); 144 prevRS /= lAdj; 121 prevRS /= lAdj; 145 prevZS /= lAdj; 122 prevZS /= lAdj; 146 123 147 rNormEdge[0] = rNorm + prevZS; 124 rNormEdge[0] = rNorm + prevZS; 148 zNormEdge[0] = zNorm - prevRS; 125 zNormEdge[0] = zNorm - prevRS; 149 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] 126 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] ); 150 rNormEdge[0] /= lAdj; 127 rNormEdge[0] /= lAdj; 151 zNormEdge[0] /= lAdj; 128 zNormEdge[0] /= lAdj; 152 129 153 nextRS = nextRZ->r-r[1]; 130 nextRS = nextRZ->r-r[1]; 154 nextZS = nextRZ->z-z[1]; 131 nextZS = nextRZ->z-z[1]; 155 lAdj = std::sqrt( nextRS*nextRS + nextZS*nex 132 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS ); 156 nextRS /= lAdj; 133 nextRS /= lAdj; 157 nextZS /= lAdj; 134 nextZS /= lAdj; 158 135 159 rNormEdge[1] = rNorm + nextZS; 136 rNormEdge[1] = rNorm + nextZS; 160 zNormEdge[1] = zNorm - nextRS; 137 zNormEdge[1] = zNorm - nextRS; 161 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] 138 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] ); 162 rNormEdge[1] /= lAdj; 139 rNormEdge[1] /= lAdj; 163 zNormEdge[1] /= lAdj; 140 zNormEdge[1] /= lAdj; 164 } 141 } 165 142 166 // Fake default constructor - sets only member << 167 // for usage restri << 168 // << 169 G4PolyconeSide::G4PolyconeSide( __void__& ) << 170 : startPhi(0.), deltaPhi(0.), << 171 rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 172 prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 173 kCarTolerance(0.), instanceID(0) << 174 { << 175 r[0] = r[1] = 0.; << 176 z[0] = z[1] = 0.; << 177 rNormEdge[0]= rNormEdge[1] = 0.; << 178 zNormEdge[0]= zNormEdge[1] = 0.; << 179 } << 180 143 >> 144 // 181 // Destructor 145 // Destructor 182 // 146 // 183 G4PolyconeSide::~G4PolyconeSide() 147 G4PolyconeSide::~G4PolyconeSide() 184 { 148 { 185 delete cone; 149 delete cone; 186 if (phiIsOpen) { delete [] corners; } << 150 if (phiIsOpen) delete [] corners; 187 } 151 } 188 152 >> 153 >> 154 // 189 // Copy constructor 155 // Copy constructor 190 // 156 // 191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 157 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source ) >> 158 : G4VCSGface() 192 { 159 { 193 instanceID = subInstanceManager.CreateSubIns << 194 << 195 CopyStuff( source ); 160 CopyStuff( source ); 196 } 161 } 197 162 >> 163 >> 164 // 198 // Assignment operator 165 // Assignment operator 199 // 166 // 200 G4PolyconeSide& G4PolyconeSide::operator=( con << 167 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source ) 201 { 168 { 202 if (this == &source) { return *this; } << 169 if (this == &source) return *this; 203 170 204 delete cone; 171 delete cone; 205 if (phiIsOpen) { delete [] corners; } << 172 if (phiIsOpen) delete [] corners; 206 173 207 CopyStuff( source ); 174 CopyStuff( source ); 208 175 209 return *this; 176 return *this; 210 } 177 } 211 178 >> 179 >> 180 // 212 // CopyStuff 181 // CopyStuff 213 // 182 // 214 void G4PolyconeSide::CopyStuff( const G4Polyco << 183 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source ) 215 { 184 { 216 r[0] = source.r[0]; 185 r[0] = source.r[0]; 217 r[1] = source.r[1]; 186 r[1] = source.r[1]; 218 z[0] = source.z[0]; 187 z[0] = source.z[0]; 219 z[1] = source.z[1]; 188 z[1] = source.z[1]; 220 189 221 startPhi = source.startPhi; 190 startPhi = source.startPhi; 222 deltaPhi = source.deltaPhi; 191 deltaPhi = source.deltaPhi; 223 phiIsOpen = source.phiIsOpen; 192 phiIsOpen = source.phiIsOpen; 224 allBehind = source.allBehind; 193 allBehind = source.allBehind; 225 << 226 kCarTolerance = source.kCarTolerance; << 227 fSurfaceArea = source.fSurfaceArea; << 228 194 229 cone = new G4IntersectingCone( *source.co 195 cone = new G4IntersectingCone( *source.cone ); 230 196 231 rNorm = source.rNorm; 197 rNorm = source.rNorm; 232 zNorm = source.zNorm; 198 zNorm = source.zNorm; 233 rS = source.rS; 199 rS = source.rS; 234 zS = source.zS; 200 zS = source.zS; 235 length = source.length; 201 length = source.length; 236 prevRS = source.prevRS; 202 prevRS = source.prevRS; 237 prevZS = source.prevZS; 203 prevZS = source.prevZS; 238 nextRS = source.nextRS; 204 nextRS = source.nextRS; 239 nextZS = source.nextZS; 205 nextZS = source.nextZS; 240 206 241 rNormEdge[0] = source.rNormEdge[0]; 207 rNormEdge[0] = source.rNormEdge[0]; 242 rNormEdge[1] = source.rNormEdge[1]; 208 rNormEdge[1] = source.rNormEdge[1]; 243 zNormEdge[0] = source.zNormEdge[0]; 209 zNormEdge[0] = source.zNormEdge[0]; 244 zNormEdge[1] = source.zNormEdge[1]; 210 zNormEdge[1] = source.zNormEdge[1]; 245 211 246 if (phiIsOpen) 212 if (phiIsOpen) 247 { 213 { 248 ncorners = 4; << 214 corners = new G4ThreeVector[4]; 249 corners = new G4ThreeVector[ncorners]; << 250 215 251 corners[0] = source.corners[0]; 216 corners[0] = source.corners[0]; 252 corners[1] = source.corners[1]; 217 corners[1] = source.corners[1]; 253 corners[2] = source.corners[2]; 218 corners[2] = source.corners[2]; 254 corners[3] = source.corners[3]; 219 corners[3] = source.corners[3]; 255 } 220 } 256 } 221 } 257 222 >> 223 >> 224 // 258 // Intersect 225 // Intersect 259 // 226 // 260 G4bool G4PolyconeSide::Intersect( const G4Thre << 227 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p, 261 const G4Thre << 228 const G4ThreeVector &v, 262 G4bool 229 G4bool outgoing, 263 G4doub 230 G4double surfTolerance, 264 G4doub << 231 G4double &distance, 265 G4doub << 232 G4double &distFromSurface, 266 G4Thre << 233 G4ThreeVector &normal, 267 G4bool << 234 G4bool &isAllBehind ) 268 { 235 { 269 G4double s1=0., s2=0.; << 236 G4double s1, s2; 270 G4double normSign = outgoing ? +1 : -1; 237 G4double normSign = outgoing ? +1 : -1; 271 238 272 isAllBehind = allBehind; 239 isAllBehind = allBehind; 273 240 274 // 241 // 275 // Check for two possible intersections 242 // Check for two possible intersections 276 // 243 // 277 G4int nside = cone->LineHitsCone( p, v, &s1, 244 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 ); 278 if (nside == 0) return false; 245 if (nside == 0) return false; 279 246 280 // 247 // 281 // Check the first side first, since it is ( 248 // Check the first side first, since it is (supposed to be) closest 282 // 249 // 283 G4ThreeVector hit = p + s1*v; 250 G4ThreeVector hit = p + s1*v; 284 251 285 if (PointOnCone( hit, normSign, p, v, normal 252 if (PointOnCone( hit, normSign, p, v, normal )) 286 { 253 { 287 // 254 // 288 // Good intersection! What about the norma 255 // Good intersection! What about the normal? 289 // 256 // 290 if (normSign*v.dot(normal) > 0) 257 if (normSign*v.dot(normal) > 0) 291 { 258 { 292 // 259 // 293 // We have a valid intersection, but it 260 // We have a valid intersection, but it could very easily 294 // be behind the point. To decide if we 261 // be behind the point. To decide if we tolerate this, 295 // we have to see if the point p is on t 262 // we have to see if the point p is on the surface near 296 // the intersecting point. 263 // the intersecting point. 297 // 264 // 298 // What does it mean exactly for the poi 265 // What does it mean exactly for the point p to be "near" 299 // the intersection? It means that if we 266 // the intersection? It means that if we draw a line from 300 // p to the hit, the line remains entire 267 // p to the hit, the line remains entirely within the 301 // tolerance bounds of the cone. To test 268 // tolerance bounds of the cone. To test this, we can 302 // ask if the normal is correct near p. 269 // ask if the normal is correct near p. 303 // 270 // 304 G4double pr = p.perp(); 271 G4double pr = p.perp(); 305 if (pr < DBL_MIN) pr = DBL_MIN; 272 if (pr < DBL_MIN) pr = DBL_MIN; 306 G4ThreeVector pNormal( rNorm*p.x()/pr, r 273 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 307 if (normSign*v.dot(pNormal) > 0) 274 if (normSign*v.dot(pNormal) > 0) 308 { 275 { 309 // 276 // 310 // p and intersection in same hemisphe 277 // p and intersection in same hemisphere 311 // 278 // 312 G4double distOutside2; 279 G4double distOutside2; 313 distFromSurface = -normSign*DistanceAw 280 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 314 if (distOutside2 < surfTolerance*surfT 281 if (distOutside2 < surfTolerance*surfTolerance) 315 { 282 { 316 if (distFromSurface > -surfTolerance 283 if (distFromSurface > -surfTolerance) 317 { 284 { 318 // 285 // 319 // We are just inside or away from 286 // We are just inside or away from the 320 // surface. Accept *any* value of 287 // surface. Accept *any* value of distance. 321 // 288 // 322 distance = s1; 289 distance = s1; 323 return true; 290 return true; 324 } 291 } 325 } 292 } 326 } 293 } 327 else 294 else 328 distFromSurface = s1; 295 distFromSurface = s1; 329 296 330 // 297 // 331 // Accept positive distances 298 // Accept positive distances 332 // 299 // 333 if (s1 > 0) 300 if (s1 > 0) 334 { 301 { 335 distance = s1; 302 distance = s1; 336 return true; 303 return true; 337 } 304 } 338 } 305 } 339 } 306 } 340 307 341 if (nside==1) return false; 308 if (nside==1) return false; 342 309 343 // 310 // 344 // Well, try the second hit 311 // Well, try the second hit 345 // 312 // 346 hit = p + s2*v; 313 hit = p + s2*v; 347 314 348 if (PointOnCone( hit, normSign, p, v, normal 315 if (PointOnCone( hit, normSign, p, v, normal )) 349 { 316 { 350 // 317 // 351 // Good intersection! What about the norma 318 // Good intersection! What about the normal? 352 // 319 // 353 if (normSign*v.dot(normal) > 0) 320 if (normSign*v.dot(normal) > 0) 354 { 321 { 355 G4double pr = p.perp(); 322 G4double pr = p.perp(); 356 if (pr < DBL_MIN) pr = DBL_MIN; 323 if (pr < DBL_MIN) pr = DBL_MIN; 357 G4ThreeVector pNormal( rNorm*p.x()/pr, r 324 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm ); 358 if (normSign*v.dot(pNormal) > 0) 325 if (normSign*v.dot(pNormal) > 0) 359 { 326 { 360 G4double distOutside2; 327 G4double distOutside2; 361 distFromSurface = -normSign*DistanceAw 328 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 ); 362 if (distOutside2 < surfTolerance*surfT 329 if (distOutside2 < surfTolerance*surfTolerance) 363 { 330 { 364 if (distFromSurface > -surfTolerance 331 if (distFromSurface > -surfTolerance) 365 { 332 { 366 distance = s2; 333 distance = s2; 367 return true; 334 return true; 368 } 335 } 369 } 336 } 370 } 337 } 371 else 338 else 372 distFromSurface = s2; 339 distFromSurface = s2; 373 340 374 if (s2 > 0) 341 if (s2 > 0) 375 { 342 { 376 distance = s2; 343 distance = s2; 377 return true; 344 return true; 378 } 345 } 379 } 346 } 380 } 347 } 381 348 382 // 349 // 383 // Better luck next time 350 // Better luck next time 384 // 351 // 385 return false; 352 return false; 386 } 353 } 387 354 388 // Distance << 355 389 // << 356 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing ) 390 G4double G4PolyconeSide::Distance( const G4Thr << 391 { 357 { 392 G4double normSign = outgoing ? -1 : +1; 358 G4double normSign = outgoing ? -1 : +1; 393 G4double distFrom, distOut2; 359 G4double distFrom, distOut2; 394 360 395 // 361 // 396 // We have two tries for each hemisphere. Tr 362 // We have two tries for each hemisphere. Try the closest first. 397 // 363 // 398 distFrom = normSign*DistanceAway( p, false, 364 distFrom = normSign*DistanceAway( p, false, distOut2 ); 399 if (distFrom > -0.5*kCarTolerance ) 365 if (distFrom > -0.5*kCarTolerance ) 400 { 366 { 401 // 367 // 402 // Good answer 368 // Good answer 403 // 369 // 404 if (distOut2 > 0) 370 if (distOut2 > 0) 405 return std::sqrt( distFrom*distFrom + di 371 return std::sqrt( distFrom*distFrom + distOut2 ); 406 else 372 else 407 return std::fabs(distFrom); 373 return std::fabs(distFrom); 408 } 374 } 409 375 410 // 376 // 411 // Try second side. 377 // Try second side. 412 // 378 // 413 distFrom = normSign*DistanceAway( p, true, 379 distFrom = normSign*DistanceAway( p, true, distOut2 ); 414 if (distFrom > -0.5*kCarTolerance) 380 if (distFrom > -0.5*kCarTolerance) 415 { 381 { 416 382 417 if (distOut2 > 0) 383 if (distOut2 > 0) 418 return std::sqrt( distFrom*distFrom + di 384 return std::sqrt( distFrom*distFrom + distOut2 ); 419 else 385 else 420 return std::fabs(distFrom); 386 return std::fabs(distFrom); 421 } 387 } 422 388 423 return kInfinity; 389 return kInfinity; 424 } 390 } 425 391 >> 392 >> 393 // 426 // Inside 394 // Inside 427 // 395 // 428 EInside G4PolyconeSide::Inside( const G4ThreeV << 396 EInside G4PolyconeSide::Inside( const G4ThreeVector &p, 429 G4double 397 G4double tolerance, 430 G4double << 398 G4double *bestDistance ) 431 { 399 { 432 G4double distFrom, distOut2, dist2; << 400 // 433 G4double edgeRZnorm; << 401 // Check both sides >> 402 // >> 403 G4double distFrom[2], distOut2[2], dist2[2]; >> 404 G4double edgeRZnorm[2]; 434 405 435 distFrom = DistanceAway( p, distOut2, &edge << 406 distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm ); 436 dist2 = distFrom*distFrom + distOut2; << 407 distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 ); 437 << 438 *bestDistance = std::sqrt( dist2); << 439 408 >> 409 dist2[0] = distFrom[0]*distFrom[0] + distOut2[0]; >> 410 dist2[1] = distFrom[1]*distFrom[1] + distOut2[1]; >> 411 >> 412 // >> 413 // Who's closest? >> 414 // >> 415 G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1; >> 416 >> 417 *bestDistance = std::sqrt( dist2[i] ); >> 418 >> 419 // 440 // Okay then, inside or out? 420 // Okay then, inside or out? 441 // 421 // 442 if ( (std::fabs(edgeRZnorm) < tolerance) << 422 if ( (std::fabs(edgeRZnorm[i]) < tolerance) 443 && (distOut2< tolerance*tolerance) ) << 423 && (distOut2[i] < tolerance*tolerance) ) 444 return kSurface; 424 return kSurface; 445 else if (edgeRZnorm < 0) << 425 else if (edgeRZnorm[i] < 0) 446 return kInside; 426 return kInside; 447 else 427 else 448 return kOutside; 428 return kOutside; 449 } 429 } 450 430 >> 431 >> 432 // 451 // Normal 433 // Normal 452 // 434 // 453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 435 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p, 454 G4 << 436 G4double *bestDistance ) 455 { 437 { 456 if (p == G4ThreeVector(0.,0.,0.)) { return << 438 G4ThreeVector dFrom; 457 << 439 G4double dOut2; 458 G4double dFrom, dOut2; << 459 440 460 dFrom = DistanceAway( p, false, dOut2 ); 441 dFrom = DistanceAway( p, false, dOut2 ); 461 442 462 *bestDistance = std::sqrt( dFrom*dFrom + dOu 443 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 ); 463 444 464 G4double rds = p.perp(); << 445 G4double rad = p.perp(); 465 if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 446 return G4ThreeVector( rNorm*p.x()/rad, rNorm*p.y()/rad, zNorm ); 466 return G4ThreeVector( 0.,0., zNorm ).unit(); << 467 } 447 } 468 448 >> 449 >> 450 // 469 // Extent 451 // Extent 470 // 452 // 471 G4double G4PolyconeSide::Extent( const G4Three 453 G4double G4PolyconeSide::Extent( const G4ThreeVector axis ) 472 { 454 { 473 if (axis.perp2() < DBL_MIN) 455 if (axis.perp2() < DBL_MIN) 474 { 456 { 475 // 457 // 476 // Special case 458 // Special case 477 // 459 // 478 return axis.z() < 0 ? -cone->ZLo() : cone- 460 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi(); 479 } 461 } 480 462 481 // 463 // 482 // Is the axis pointing inside our phi gap? 464 // Is the axis pointing inside our phi gap? 483 // 465 // 484 if (phiIsOpen) 466 if (phiIsOpen) 485 { 467 { 486 G4double phi = GetPhi(axis); << 468 G4double phi = axis.phi(); 487 while( phi < startPhi ) // Loop checkin << 469 while( phi < startPhi ) phi += twopi; 488 phi += twopi; << 489 470 490 if (phi > deltaPhi+startPhi) 471 if (phi > deltaPhi+startPhi) 491 { 472 { 492 // 473 // 493 // Yeah, looks so. Make four three vecto 474 // Yeah, looks so. Make four three vectors defining the phi 494 // opening 475 // opening 495 // 476 // 496 G4double cosP = std::cos(startPhi), sinP 477 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi); 497 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z 478 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] ); 498 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z 479 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] ); 499 cosP = std::cos(startPhi+deltaPhi); sinP 480 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi); 500 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z 481 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] ); 501 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z 482 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] ); 502 483 503 G4double ad = axis.dot(a), 484 G4double ad = axis.dot(a), 504 bd = axis.dot(b), << 485 bd = axis.dot(b), 505 cd = axis.dot(c), << 486 cd = axis.dot(c), 506 dd = axis.dot(d); << 487 dd = axis.dot(d); 507 488 508 if (bd > ad) ad = bd; 489 if (bd > ad) ad = bd; 509 if (cd > ad) ad = cd; 490 if (cd > ad) ad = cd; 510 if (dd > ad) ad = dd; 491 if (dd > ad) ad = dd; 511 492 512 return ad; 493 return ad; 513 } 494 } 514 } 495 } 515 496 516 // 497 // 517 // Check either end 498 // Check either end 518 // 499 // 519 G4double aPerp = axis.perp(); 500 G4double aPerp = axis.perp(); 520 501 521 G4double a = aPerp*r[0] + axis.z()*z[0]; 502 G4double a = aPerp*r[0] + axis.z()*z[0]; 522 G4double b = aPerp*r[1] + axis.z()*z[1]; 503 G4double b = aPerp*r[1] + axis.z()*z[1]; 523 504 524 if (b > a) a = b; 505 if (b > a) a = b; 525 506 526 return a; 507 return a; 527 } 508 } 528 509 >> 510 >> 511 >> 512 // 529 // CalculateExtent 513 // CalculateExtent 530 // 514 // 531 // See notes in G4VCSGface 515 // See notes in G4VCSGface 532 // 516 // 533 void G4PolyconeSide::CalculateExtent( const EA 517 void G4PolyconeSide::CalculateExtent( const EAxis axis, 534 const G4 << 518 const G4VoxelLimits &voxelLimit, 535 const G4 << 519 const G4AffineTransform &transform, 536 G4 << 520 G4SolidExtentList &extentList ) 537 { 521 { 538 G4ClippablePolygon polygon; 522 G4ClippablePolygon polygon; 539 523 540 // 524 // 541 // Here we will approximate (ala G4Cons) and 525 // Here we will approximate (ala G4Cons) and divide our conical section 542 // into segments, like G4Polyhedra. When doi 526 // into segments, like G4Polyhedra. When doing so, the radius 543 // is extented far enough such that the segm 527 // is extented far enough such that the segments always lie 544 // just outside the surface of the conical s 528 // just outside the surface of the conical section we are 545 // approximating. 529 // approximating. 546 // 530 // 547 531 548 // 532 // 549 // Choose phi size of our segment(s) based o 533 // Choose phi size of our segment(s) based on constants as 550 // defined in meshdefs.hh 534 // defined in meshdefs.hh 551 // 535 // 552 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe 536 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1; 553 if (numPhi < kMinMeshSections) 537 if (numPhi < kMinMeshSections) 554 numPhi = kMinMeshSections; 538 numPhi = kMinMeshSections; 555 else if (numPhi > kMaxMeshSections) 539 else if (numPhi > kMaxMeshSections) 556 numPhi = kMaxMeshSections; 540 numPhi = kMaxMeshSections; 557 541 558 G4double sigPhi = deltaPhi/numPhi; 542 G4double sigPhi = deltaPhi/numPhi; 559 543 560 // 544 // 561 // Determine radius factor to keep segments 545 // Determine radius factor to keep segments outside 562 // 546 // 563 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 547 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 564 548 565 // 549 // 566 // Decide which radius to use on each end of 550 // Decide which radius to use on each end of the side, 567 // and whether a transition mesh is required 551 // and whether a transition mesh is required 568 // 552 // 569 // {r0,z0} - Beginning of this side 553 // {r0,z0} - Beginning of this side 570 // {r1,z1} - Ending of this side 554 // {r1,z1} - Ending of this side 571 // {r2,z0} - Beginning of transition piece 555 // {r2,z0} - Beginning of transition piece connecting previous 572 // side (and ends at beginning of 556 // side (and ends at beginning of this side) 573 // 557 // 574 // So, order is 2 --> 0 --> 1. 558 // So, order is 2 --> 0 --> 1. 575 // ------- 559 // ------- 576 // 560 // 577 // r2 < 0 indicates that no transition piece 561 // r2 < 0 indicates that no transition piece is required 578 // 562 // 579 G4double r0, r1, r2, z0, z1; 563 G4double r0, r1, r2, z0, z1; 580 564 581 r2 = -1; // By default: no transition piece 565 r2 = -1; // By default: no transition piece 582 566 583 if (rNorm < -DBL_MIN) 567 if (rNorm < -DBL_MIN) 584 { 568 { 585 // 569 // 586 // This side faces *inward*, and so our me 570 // This side faces *inward*, and so our mesh has 587 // the same radius 571 // the same radius 588 // 572 // 589 r1 = r[1]; 573 r1 = r[1]; 590 z1 = z[1]; 574 z1 = z[1]; 591 z0 = z[0]; 575 z0 = z[0]; 592 r0 = r[0]; 576 r0 = r[0]; 593 577 594 r2 = -1; 578 r2 = -1; 595 579 596 if (prevZS > DBL_MIN) 580 if (prevZS > DBL_MIN) 597 { 581 { 598 // 582 // 599 // The previous side is facing outwards 583 // The previous side is facing outwards 600 // 584 // 601 if ( prevRS*zS - prevZS*rS > 0 ) 585 if ( prevRS*zS - prevZS*rS > 0 ) 602 { 586 { 603 // 587 // 604 // Transition was convex: build transi 588 // Transition was convex: build transition piece 605 // 589 // 606 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 590 if (r[0] > DBL_MIN) r2 = r[0]*rFudge; 607 } 591 } 608 else 592 else 609 { 593 { 610 // 594 // 611 // Transition was concave: short this 595 // Transition was concave: short this side 612 // 596 // 613 FindLineIntersect( z0, r0, zS, rS, 597 FindLineIntersect( z0, r0, zS, rS, 614 z0, r0*rFudge, prev 598 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 ); 615 } 599 } 616 } 600 } 617 601 618 if ( nextZS > DBL_MIN && (rS*nextZS - zS*n 602 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 619 { 603 { 620 // 604 // 621 // The next side is facing outwards, for 605 // The next side is facing outwards, forming a 622 // concave transition: short this side 606 // concave transition: short this side 623 // 607 // 624 FindLineIntersect( z1, r1, zS, rS, 608 FindLineIntersect( z1, r1, zS, rS, 625 z1, r1*rFudge, nextZS 609 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 ); 626 } 610 } 627 } 611 } 628 else if (rNorm > DBL_MIN) 612 else if (rNorm > DBL_MIN) 629 { 613 { 630 // 614 // 631 // This side faces *outward* and is given 615 // This side faces *outward* and is given a boost to 632 // it radius 616 // it radius 633 // 617 // 634 r0 = r[0]*rFudge; 618 r0 = r[0]*rFudge; 635 z0 = z[0]; 619 z0 = z[0]; 636 r1 = r[1]*rFudge; 620 r1 = r[1]*rFudge; 637 z1 = z[1]; 621 z1 = z[1]; 638 622 639 if (prevZS < -DBL_MIN) 623 if (prevZS < -DBL_MIN) 640 { 624 { 641 // 625 // 642 // The previous side is facing inwards 626 // The previous side is facing inwards 643 // 627 // 644 if ( prevRS*zS - prevZS*rS > 0 ) 628 if ( prevRS*zS - prevZS*rS > 0 ) 645 { 629 { 646 // 630 // 647 // Transition was convex: build transi 631 // Transition was convex: build transition piece 648 // 632 // 649 if (r[0] > DBL_MIN) r2 = r[0]; 633 if (r[0] > DBL_MIN) r2 = r[0]; 650 } 634 } 651 else 635 else 652 { 636 { 653 // 637 // 654 // Transition was concave: short this 638 // Transition was concave: short this side 655 // 639 // 656 FindLineIntersect( z0, r0, zS, rS*rFud 640 FindLineIntersect( z0, r0, zS, rS*rFudge, 657 z0, r[0], prevZS, p 641 z0, r[0], prevZS, prevRS, z0, r0 ); 658 } 642 } 659 } 643 } 660 644 661 if ( nextZS < -DBL_MIN && (rS*nextZS - zS* 645 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) ) 662 { 646 { 663 // 647 // 664 // The next side is facing inwards, form 648 // The next side is facing inwards, forming a 665 // concave transition: short this side 649 // concave transition: short this side 666 // 650 // 667 FindLineIntersect( z1, r1, zS, rS*rFudge 651 FindLineIntersect( z1, r1, zS, rS*rFudge, 668 z1, r[1], nextZS, nex 652 z1, r[1], nextZS, nextRS, z1, r1 ); 669 } 653 } 670 } 654 } 671 else 655 else 672 { 656 { 673 // 657 // 674 // This side is perpendicular to the z axi 658 // This side is perpendicular to the z axis (is a disk) 675 // 659 // 676 // Whether or not r0 needs a rFudge factor 660 // Whether or not r0 needs a rFudge factor depends 677 // on the normal of the previous edge. Sim 661 // on the normal of the previous edge. Similar with r1 678 // and the next edge. No transition piece 662 // and the next edge. No transition piece is required. 679 // 663 // 680 r0 = r[0]; 664 r0 = r[0]; 681 r1 = r[1]; 665 r1 = r[1]; 682 z0 = z[0]; 666 z0 = z[0]; 683 z1 = z[1]; 667 z1 = z[1]; 684 668 685 if (prevZS > DBL_MIN) r0 *= rFudge; 669 if (prevZS > DBL_MIN) r0 *= rFudge; 686 if (nextZS > DBL_MIN) r1 *= rFudge; 670 if (nextZS > DBL_MIN) r1 *= rFudge; 687 } 671 } 688 672 689 // 673 // 690 // Loop 674 // Loop 691 // 675 // 692 G4double phi = startPhi, 676 G4double phi = startPhi, 693 cosPhi = std::cos(phi), 677 cosPhi = std::cos(phi), 694 sinPhi = std::sin(phi); 678 sinPhi = std::sin(phi); 695 679 696 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ) 680 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ), 697 v1( r1*cosPhi, r1*sinPhi, 681 v1( r1*cosPhi, r1*sinPhi, z1 ), 698 v2, w0, w1, w2; 682 v2, w0, w1, w2; 699 transform.ApplyPointTransform( v0 ); 683 transform.ApplyPointTransform( v0 ); 700 transform.ApplyPointTransform( v1 ); 684 transform.ApplyPointTransform( v1 ); 701 685 702 if (r2 >= 0) 686 if (r2 >= 0) 703 { 687 { 704 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, 688 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 705 transform.ApplyPointTransform( v2 ); 689 transform.ApplyPointTransform( v2 ); 706 } 690 } 707 691 708 do // Loop checking, 13.08.2015, G.Cosmo << 692 do 709 { 693 { 710 phi += sigPhi; 694 phi += sigPhi; 711 if (numPhi == 1) phi = startPhi+deltaPhi; 695 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff 712 cosPhi = std::cos(phi), 696 cosPhi = std::cos(phi), 713 sinPhi = std::sin(phi); 697 sinPhi = std::sin(phi); 714 698 715 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 699 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 ); 716 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 700 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 ); 717 transform.ApplyPointTransform( w0 ); 701 transform.ApplyPointTransform( w0 ); 718 transform.ApplyPointTransform( w1 ); 702 transform.ApplyPointTransform( w1 ); 719 703 720 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w 704 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1; 721 705 722 // 706 // 723 // Build polygon, taking special care to k 707 // Build polygon, taking special care to keep the vertices 724 // in order 708 // in order 725 // 709 // 726 polygon.ClearAllVertices(); 710 polygon.ClearAllVertices(); 727 711 728 polygon.AddVertexInOrder( v0 ); 712 polygon.AddVertexInOrder( v0 ); 729 polygon.AddVertexInOrder( v1 ); 713 polygon.AddVertexInOrder( v1 ); 730 polygon.AddVertexInOrder( w1 ); 714 polygon.AddVertexInOrder( w1 ); 731 polygon.AddVertexInOrder( w0 ); 715 polygon.AddVertexInOrder( w0 ); 732 716 733 // 717 // 734 // Get extent 718 // Get extent 735 // 719 // 736 if (polygon.PartialClip( voxelLimit, axis 720 if (polygon.PartialClip( voxelLimit, axis )) 737 { 721 { 738 // 722 // 739 // Get dot product of normal with target 723 // Get dot product of normal with target axis 740 // 724 // 741 polygon.SetNormal( deltaV.cross(v1-v0).u 725 polygon.SetNormal( deltaV.cross(v1-v0).unit() ); 742 726 743 extentList.AddSurface( polygon ); 727 extentList.AddSurface( polygon ); 744 } 728 } 745 729 746 if (r2 >= 0) 730 if (r2 >= 0) 747 { 731 { 748 // 732 // 749 // Repeat, for transition piece 733 // Repeat, for transition piece 750 // 734 // 751 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi 735 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 ); 752 transform.ApplyPointTransform( w2 ); 736 transform.ApplyPointTransform( w2 ); 753 737 754 polygon.ClearAllVertices(); 738 polygon.ClearAllVertices(); 755 739 756 polygon.AddVertexInOrder( v2 ); 740 polygon.AddVertexInOrder( v2 ); 757 polygon.AddVertexInOrder( v0 ); 741 polygon.AddVertexInOrder( v0 ); 758 polygon.AddVertexInOrder( w0 ); 742 polygon.AddVertexInOrder( w0 ); 759 polygon.AddVertexInOrder( w2 ); 743 polygon.AddVertexInOrder( w2 ); 760 744 761 if (polygon.PartialClip( voxelLimit, axi 745 if (polygon.PartialClip( voxelLimit, axis )) 762 { 746 { 763 polygon.SetNormal( deltaV.cross(v0-v2) 747 polygon.SetNormal( deltaV.cross(v0-v2).unit() ); 764 748 765 extentList.AddSurface( polygon ); 749 extentList.AddSurface( polygon ); 766 } 750 } 767 751 768 v2 = w2; 752 v2 = w2; 769 } 753 } 770 754 771 // 755 // 772 // Next vertex 756 // Next vertex 773 // 757 // 774 v0 = w0; 758 v0 = w0; 775 v1 = w1; 759 v1 = w1; 776 } while( --numPhi > 0 ); 760 } while( --numPhi > 0 ); 777 761 778 // 762 // 779 // We are almost done. But, it is important 763 // We are almost done. But, it is important that we leave no 780 // gaps in the surface of our solid. By usin 764 // gaps in the surface of our solid. By using rFudge, however, 781 // we've done exactly that, if we have a phi 765 // we've done exactly that, if we have a phi segment. 782 // Add two additional faces if necessary 766 // Add two additional faces if necessary 783 // 767 // 784 if (phiIsOpen && rNorm > DBL_MIN) 768 if (phiIsOpen && rNorm > DBL_MIN) 785 { 769 { 786 cosPhi = std::cos(startPhi); << 770 G4double cosPhi = std::cos(startPhi), 787 sinPhi = std::sin(startPhi); << 771 sinPhi = std::sin(startPhi); 788 772 789 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi 773 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 790 a1( r[1]*cosPhi, r[1]*sinPhi 774 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 791 b0( r0*cosPhi, r0*sinPhi, z[ 775 b0( r0*cosPhi, r0*sinPhi, z[0] ), 792 b1( r1*cosPhi, r1*sinPhi, z[ 776 b1( r1*cosPhi, r1*sinPhi, z[1] ); 793 777 794 transform.ApplyPointTransform( a0 ); 778 transform.ApplyPointTransform( a0 ); 795 transform.ApplyPointTransform( a1 ); 779 transform.ApplyPointTransform( a1 ); 796 transform.ApplyPointTransform( b0 ); 780 transform.ApplyPointTransform( b0 ); 797 transform.ApplyPointTransform( b1 ); 781 transform.ApplyPointTransform( b1 ); 798 782 799 polygon.ClearAllVertices(); 783 polygon.ClearAllVertices(); 800 784 801 polygon.AddVertexInOrder( a0 ); 785 polygon.AddVertexInOrder( a0 ); 802 polygon.AddVertexInOrder( a1 ); 786 polygon.AddVertexInOrder( a1 ); 803 polygon.AddVertexInOrder( b0 ); 787 polygon.AddVertexInOrder( b0 ); 804 polygon.AddVertexInOrder( b1 ); 788 polygon.AddVertexInOrder( b1 ); 805 789 806 if (polygon.PartialClip( voxelLimit , axis 790 if (polygon.PartialClip( voxelLimit , axis)) 807 { 791 { 808 G4ThreeVector normal( sinPhi, -cosPhi, 0 792 G4ThreeVector normal( sinPhi, -cosPhi, 0 ); 809 polygon.SetNormal( transform.TransformAx 793 polygon.SetNormal( transform.TransformAxis( normal ) ); 810 794 811 extentList.AddSurface( polygon ); 795 extentList.AddSurface( polygon ); 812 } 796 } 813 797 814 cosPhi = std::cos(startPhi+deltaPhi); 798 cosPhi = std::cos(startPhi+deltaPhi); 815 sinPhi = std::sin(startPhi+deltaPhi); 799 sinPhi = std::sin(startPhi+deltaPhi); 816 800 817 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP 801 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ), 818 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP 802 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ), 819 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, 803 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ), 820 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, 804 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] ); 821 transform.ApplyPointTransform( a0 ); 805 transform.ApplyPointTransform( a0 ); 822 transform.ApplyPointTransform( a1 ); 806 transform.ApplyPointTransform( a1 ); 823 transform.ApplyPointTransform( b0 ); 807 transform.ApplyPointTransform( b0 ); 824 transform.ApplyPointTransform( b1 ); 808 transform.ApplyPointTransform( b1 ); 825 809 826 polygon.ClearAllVertices(); 810 polygon.ClearAllVertices(); 827 811 828 polygon.AddVertexInOrder( a0 ); 812 polygon.AddVertexInOrder( a0 ); 829 polygon.AddVertexInOrder( a1 ); 813 polygon.AddVertexInOrder( a1 ); 830 polygon.AddVertexInOrder( b0 ); 814 polygon.AddVertexInOrder( b0 ); 831 polygon.AddVertexInOrder( b1 ); 815 polygon.AddVertexInOrder( b1 ); 832 816 833 if (polygon.PartialClip( voxelLimit, axis 817 if (polygon.PartialClip( voxelLimit, axis )) 834 { 818 { 835 G4ThreeVector normal( -sinPhi, cosPhi, 0 819 G4ThreeVector normal( -sinPhi, cosPhi, 0 ); 836 polygon.SetNormal( transform.TransformAx 820 polygon.SetNormal( transform.TransformAxis( normal ) ); 837 821 838 extentList.AddSurface( polygon ); 822 extentList.AddSurface( polygon ); 839 } 823 } 840 } 824 } 841 825 842 return; 826 return; 843 } 827 } 844 828 845 // GetPhi << 846 // << 847 // Calculate Phi for a given 3-vector (point), << 848 // same point, in the attempt to avoid consecu << 849 // quantity << 850 // << 851 G4double G4PolyconeSide::GetPhi( const G4Three << 852 { << 853 G4double val=0.; << 854 G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 855 << 856 if (vphi != p) << 857 { << 858 val = p.phi(); << 859 G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); << 860 G4MT_pcphik = val; << 861 } << 862 else << 863 { << 864 val = G4MT_pcphik; << 865 } << 866 return val; << 867 } << 868 829 >> 830 // 869 // DistanceAway 831 // DistanceAway 870 // 832 // 871 // Calculate distance of a point from our coni 833 // Calculate distance of a point from our conical surface, including the effect 872 // of any phi segmentation 834 // of any phi segmentation 873 // 835 // 874 // Arguments: 836 // Arguments: 875 // p - (in) Point to check 837 // p - (in) Point to check 876 // opposite - (in) If true, check opposi 838 // opposite - (in) If true, check opposite hemisphere (see below) 877 // distOutside - (out) Additional distance 839 // distOutside - (out) Additional distance outside the edges of the surface 878 // edgeRZnorm - (out) if negative, point i 840 // edgeRZnorm - (out) if negative, point is inside 879 // 841 // 880 // return value = distance from the conical p 842 // return value = distance from the conical plane, if extrapolated beyond edges, 881 // signed by whether the point 843 // signed by whether the point is in inside or outside the shape 882 // 844 // 883 // Notes: 845 // Notes: 884 // * There are two answers, depending on whic 846 // * There are two answers, depending on which hemisphere is considered. 885 // 847 // 886 G4double G4PolyconeSide::DistanceAway( const G << 848 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p, 887 G 849 G4bool opposite, 888 G << 850 G4double &distOutside2, 889 G << 851 G4double *edgeRZnorm ) 890 { 852 { 891 // 853 // 892 // Convert our point to r and z 854 // Convert our point to r and z 893 // 855 // 894 G4double rx = p.perp(), zx = p.z(); 856 G4double rx = p.perp(), zx = p.z(); 895 857 896 // 858 // 897 // Change sign of r if opposite says we shou 859 // Change sign of r if opposite says we should 898 // 860 // 899 if (opposite) rx = -rx; 861 if (opposite) rx = -rx; 900 862 901 // 863 // 902 // Calculate return value 864 // Calculate return value 903 // 865 // 904 G4double deltaR = rx - r[0], deltaZ = zx - 866 G4double deltaR = rx - r[0], deltaZ = zx - z[0]; 905 G4double answer = deltaR*rNorm + deltaZ*zNor 867 G4double answer = deltaR*rNorm + deltaZ*zNorm; 906 868 907 // 869 // 908 // Are we off the surface in r,z space? 870 // Are we off the surface in r,z space? 909 // 871 // 910 G4double q = deltaR*rS + deltaZ*zS; << 872 G4double s = deltaR*rS + deltaZ*zS; 911 if (q < 0) << 873 if (s < 0) 912 { 874 { 913 distOutside2 = q*q; << 875 distOutside2 = s*s; 914 if (edgeRZnorm != nullptr) << 876 if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0]; 915 *edgeRZnorm = deltaR*rNormEdge[0] + delt << 916 } 877 } 917 else if (q > length) << 878 else if (s > length) 918 { 879 { 919 distOutside2 = sqr( q-length ); << 880 distOutside2 = sqr( s-length ); 920 if (edgeRZnorm != nullptr) << 881 if (edgeRZnorm) 921 { 882 { 922 deltaR = rx - r[1]; << 883 G4double deltaR = rx - r[1], deltaZ = zx - z[1]; 923 deltaZ = zx - z[1]; << 924 *edgeRZnorm = deltaR*rNormEdge[1] + delt 884 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1]; 925 } 885 } 926 } 886 } 927 else 887 else 928 { 888 { 929 distOutside2 = 0.; << 889 distOutside2 = 0; 930 if (edgeRZnorm != nullptr) *edgeRZnorm = a << 890 if (edgeRZnorm) *edgeRZnorm = answer; 931 } 891 } 932 892 933 if (phiIsOpen) 893 if (phiIsOpen) 934 { 894 { 935 // 895 // 936 // Finally, check phi 896 // Finally, check phi 937 // 897 // 938 G4double phi = GetPhi(p); << 898 G4double phi = p.phi(); 939 while( phi < startPhi ) // Loop checkin << 899 while( phi < startPhi ) phi += twopi; 940 phi += twopi; << 941 900 942 if (phi > startPhi+deltaPhi) 901 if (phi > startPhi+deltaPhi) 943 { 902 { 944 // 903 // 945 // Oops. Are we closer to the start phi 904 // Oops. Are we closer to the start phi or end phi? 946 // 905 // 947 G4double d1 = phi-startPhi-deltaPhi; 906 G4double d1 = phi-startPhi-deltaPhi; 948 while( phi > startPhi ) // Loop check << 907 while( phi > startPhi ) phi -= twopi; 949 phi -= twopi; << 950 G4double d2 = startPhi-phi; 908 G4double d2 = startPhi-phi; 951 909 952 if (d2 < d1) d1 = d2; 910 if (d2 < d1) d1 = d2; 953 911 954 // 912 // 955 // Add result to our distance 913 // Add result to our distance 956 // 914 // 957 G4double dist = d1*rx; 915 G4double dist = d1*rx; 958 916 959 distOutside2 += dist*dist; 917 distOutside2 += dist*dist; 960 if (edgeRZnorm != nullptr) << 918 if (edgeRZnorm) *edgeRZnorm = std::max(*edgeRZnorm,std::fabs(dist)); 961 { << 962 *edgeRZnorm = std::max(std::fabs(*edge << 963 } << 964 } 919 } 965 } 920 } 966 921 967 return answer; 922 return answer; 968 } 923 } 969 924 970 // DistanceAway << 971 // << 972 // Special version of DistanceAway for Inside. << 973 // Opposite parameter is not used, instead use << 974 // << 975 G4double G4PolyconeSide::DistanceAway( const G << 976 G << 977 G << 978 { << 979 // << 980 // Convert our point to r and z << 981 // << 982 G4double rx = p.perp(), zx = p.z(); << 983 << 984 // << 985 // Change sign of r if we should << 986 // << 987 G4int part = 1; << 988 if (rx < 0) part = -1; << 989 << 990 // << 991 // Calculate return value << 992 // << 993 G4double deltaR = rx - r[0]*part, deltaZ = z << 994 G4double answer = deltaR*rNorm*part + deltaZ << 995 << 996 // << 997 // Are we off the surface in r,z space? << 998 // << 999 G4double q = deltaR*rS*part + deltaZ*zS; << 1000 if (q < 0) << 1001 { << 1002 distOutside2 = q*q; << 1003 if (edgeRZnorm != nullptr) << 1004 { << 1005 *edgeRZnorm = deltaR*rNormEdge[0]*part << 1006 } << 1007 } << 1008 else if (q > length) << 1009 { << 1010 distOutside2 = sqr( q-length ); << 1011 if (edgeRZnorm != nullptr) << 1012 { << 1013 deltaR = rx - r[1]*part; << 1014 deltaZ = zx - z[1]; << 1015 *edgeRZnorm = deltaR*rNormEdge[1]*part << 1016 } << 1017 } << 1018 else << 1019 { << 1020 distOutside2 = 0.; << 1021 if (edgeRZnorm != nullptr) *edgeRZnorm = << 1022 } << 1023 << 1024 if (phiIsOpen) << 1025 { << 1026 // << 1027 // Finally, check phi << 1028 // << 1029 G4double phi = GetPhi(p); << 1030 while( phi < startPhi ) // Loop checki << 1031 phi += twopi; << 1032 << 1033 if (phi > startPhi+deltaPhi) << 1034 { << 1035 // << 1036 // Oops. Are we closer to the start phi << 1037 // << 1038 G4double d1 = phi-startPhi-deltaPhi; << 1039 while( phi > startPhi ) // Loop chec << 1040 phi -= twopi; << 1041 G4double d2 = startPhi-phi; << 1042 << 1043 if (d2 < d1) d1 = d2; << 1044 << 1045 // << 1046 // Add result to our distance << 1047 // << 1048 G4double dist = d1*rx*part; << 1049 << 1050 distOutside2 += dist*dist; << 1051 if (edgeRZnorm != nullptr) << 1052 { << 1053 *edgeRZnorm = std::max(std::fabs(*edg << 1054 } << 1055 } << 1056 } << 1057 << 1058 return answer; << 1059 } << 1060 925 >> 926 // 1061 // PointOnCone 927 // PointOnCone 1062 // 928 // 1063 // Decide if a point is on a cone and return 929 // Decide if a point is on a cone and return normal if it is 1064 // 930 // 1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 931 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit, 1066 G4d 932 G4double normSign, 1067 const G4T << 933 const G4ThreeVector &p, 1068 const G4T << 934 const G4ThreeVector &v, 1069 G4T << 935 G4ThreeVector &normal ) 1070 { 936 { 1071 G4double rx = hit.perp(); 937 G4double rx = hit.perp(); 1072 // 938 // 1073 // Check radial/z extent, as appropriate 939 // Check radial/z extent, as appropriate 1074 // 940 // 1075 if (!cone->HitOn( rx, hit.z() )) return fal 941 if (!cone->HitOn( rx, hit.z() )) return false; 1076 942 1077 if (phiIsOpen) 943 if (phiIsOpen) 1078 { 944 { 1079 G4double phiTolerant = 2.0*kCarTolerance/ 945 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance); 1080 // 946 // 1081 // Check phi segment. Here we have to be 947 // Check phi segment. Here we have to be careful 1082 // to use the standard method consistent 948 // to use the standard method consistent with 1083 // PolyPhiFace. See PolyPhiFace::InsideEd 949 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact 1084 // 950 // 1085 G4double phi = GetPhi(hit); << 951 G4double phi = hit.phi(); 1086 while( phi < startPhi-phiTolerant ) // << 952 while( phi < startPhi-phiTolerant ) phi += twopi; 1087 phi += twopi; << 1088 953 1089 if (phi > startPhi+deltaPhi+phiTolerant) 954 if (phi > startPhi+deltaPhi+phiTolerant) return false; 1090 955 1091 if (phi > startPhi+deltaPhi-phiTolerant) 956 if (phi > startPhi+deltaPhi-phiTolerant) 1092 { 957 { 1093 // 958 // 1094 // Exact treatment 959 // Exact treatment 1095 // 960 // 1096 G4ThreeVector qx = p + v; 961 G4ThreeVector qx = p + v; 1097 G4ThreeVector qa = qx - corners[2], 962 G4ThreeVector qa = qx - corners[2], 1098 qb = qx - corners[3]; 963 qb = qx - corners[3]; 1099 G4ThreeVector qacb = qa.cross(qb); 964 G4ThreeVector qacb = qa.cross(qb); 1100 965 1101 if (normSign*qacb.dot(v) < 0) return fa 966 if (normSign*qacb.dot(v) < 0) return false; 1102 } 967 } 1103 else if (phi < phiTolerant) 968 else if (phi < phiTolerant) 1104 { 969 { 1105 G4ThreeVector qx = p + v; 970 G4ThreeVector qx = p + v; 1106 G4ThreeVector qa = qx - corners[1], 971 G4ThreeVector qa = qx - corners[1], 1107 qb = qx - corners[0]; 972 qb = qx - corners[0]; 1108 G4ThreeVector qacb = qa.cross(qb); 973 G4ThreeVector qacb = qa.cross(qb); 1109 974 1110 if (normSign*qacb.dot(v) < 0) return fa 975 if (normSign*qacb.dot(v) < 0) return false; 1111 } 976 } 1112 } 977 } 1113 978 1114 // 979 // 1115 // We have a good hit! Calculate normal 980 // We have a good hit! Calculate normal 1116 // 981 // 1117 if (rx < DBL_MIN) 982 if (rx < DBL_MIN) 1118 normal = G4ThreeVector( 0, 0, zNorm < 0 ? 983 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 ); 1119 else 984 else 1120 normal = G4ThreeVector( rNorm*hit.x()/rx, 985 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm ); 1121 return true; 986 return true; 1122 } 987 } 1123 988 >> 989 >> 990 // 1124 // FindLineIntersect 991 // FindLineIntersect 1125 // 992 // 1126 // Decide the point at which two 2-dimensiona 993 // Decide the point at which two 2-dimensional lines intersect 1127 // 994 // 1128 // Equation of line: x = x1 + s*tx1 995 // Equation of line: x = x1 + s*tx1 1129 // y = y1 + s*ty1 996 // y = y1 + s*ty1 1130 // 997 // 1131 // It is assumed that the lines are *not* par 998 // It is assumed that the lines are *not* parallel 1132 // 999 // 1133 void G4PolyconeSide::FindLineIntersect( G4dou 1000 void G4PolyconeSide::FindLineIntersect( G4double x1, G4double y1, 1134 G4dou 1001 G4double tx1, G4double ty1, 1135 G4dou 1002 G4double x2, G4double y2, 1136 G4dou 1003 G4double tx2, G4double ty2, 1137 G4dou << 1004 G4double &x, G4double &y ) 1138 { 1005 { 1139 // 1006 // 1140 // The solution is a simple linear equation 1007 // The solution is a simple linear equation 1141 // 1008 // 1142 G4double deter = tx1*ty2 - tx2*ty1; 1009 G4double deter = tx1*ty2 - tx2*ty1; 1143 1010 1144 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d 1011 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter; 1145 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d 1012 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter; 1146 1013 1147 // 1014 // 1148 // We want the answer to not depend on whic 1015 // We want the answer to not depend on which order the 1149 // lines were specified. Take average. 1016 // lines were specified. Take average. 1150 // 1017 // 1151 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1018 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 ); 1152 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1019 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 ); 1153 } << 1154 << 1155 // Calculate surface area for GetPointOnSurfa << 1156 // << 1157 G4double G4PolyconeSide::SurfaceArea() << 1158 { << 1159 if(fSurfaceArea==0.) << 1160 { << 1161 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr << 1162 fSurfaceArea *= 0.5*(deltaPhi); << 1163 } << 1164 return fSurfaceArea; << 1165 } << 1166 << 1167 // GetPointOnFace << 1168 // << 1169 G4ThreeVector G4PolyconeSide::GetPointOnFace( << 1170 { << 1171 G4double x,y,zz; << 1172 G4double rr,phi,dz,dr; << 1173 dr=r[1]-r[0];dz=z[1]-z[0]; << 1174 phi=startPhi+deltaPhi*G4UniformRand(); << 1175 rr=r[0]+dr*G4UniformRand(); << 1176 << 1177 x=rr*std::cos(phi); << 1178 y=rr*std::sin(phi); << 1179 << 1180 // PolyconeSide has a Ring Form << 1181 // << 1182 if (dz==0.) << 1183 { << 1184 zz=z[0]; << 1185 } << 1186 else << 1187 { << 1188 if(dr==0.) // PolyconeSide has a Tube Fo << 1189 { << 1190 zz = z[0]+dz*G4UniformRand(); << 1191 } << 1192 else << 1193 { << 1194 zz = z[0]+(rr-r[0])*dz/dr; << 1195 } << 1196 } << 1197 << 1198 return {x,y,zz}; << 1199 } 1020 } 1200 1021