Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyconeSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyconeSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyconeSide.cc (Version 7.1.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // Implementation of G4PolyconeSide, the face  << 
 27 // one conical side of a polycone              << 
 28 //                                                 23 //
 29 // Author: David C. Williams (davidw@scipp.ucs <<  24 // $Id: G4PolyconeSide.cc,v 1.10 2004/12/10 16:22:38 gcosmo Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-07-00-patch-01 $
                                                   >>  26 //
                                                   >>  27 // 
                                                   >>  28 // --------------------------------------------------------------------
                                                   >>  29 // GEANT 4 class source file
                                                   >>  30 //
                                                   >>  31 //
                                                   >>  32 // G4PolyconeSide.cc
                                                   >>  33 //
                                                   >>  34 // Implementation of the face representing one conical side of a polycone
                                                   >>  35 //
 30 // -------------------------------------------     36 // --------------------------------------------------------------------
 31                                                    37 
 32 #include "G4PolyconeSide.hh"                       38 #include "G4PolyconeSide.hh"
 33 #include "meshdefs.hh"                         << 
 34 #include "G4PhysicalConstants.hh"              << 
 35 #include "G4IntersectingCone.hh"                   39 #include "G4IntersectingCone.hh"
 36 #include "G4ClippablePolygon.hh"                   40 #include "G4ClippablePolygon.hh"
 37 #include "G4AffineTransform.hh"                    41 #include "G4AffineTransform.hh"
                                                   >>  42 #include "meshdefs.hh"
 38 #include "G4SolidExtentList.hh"                    43 #include "G4SolidExtentList.hh"
 39 #include "G4GeometryTolerance.hh"              << 
 40                                                    44 
 41 #include "Randomize.hh"                        << 
 42                                                << 
 43 // This new field helps to use the class G4PlS << 
 44 //                                                 45 //
 45 G4PlSideManager G4PolyconeSide::subInstanceMan << 
 46                                                << 
 47 // This macro changes the references to fields << 
 48 // in the class G4PlSideData.                  << 
 49 //                                             << 
 50 #define G4MT_pcphix ((subInstanceManager.offse << 
 51 #define G4MT_pcphiy ((subInstanceManager.offse << 
 52 #define G4MT_pcphiz ((subInstanceManager.offse << 
 53 #define G4MT_pcphik ((subInstanceManager.offse << 
 54                                                << 
 55 // Returns the private data instance manager.  << 
 56 //                                             << 
 57 const G4PlSideManager& G4PolyconeSide::GetSubI << 
 58 {                                              << 
 59   return subInstanceManager;                   << 
 60 }                                              << 
 61                                                << 
 62 // Constructor                                     46 // Constructor
 63 //                                                 47 //
 64 // Values for r1,z1 and r2,z2 should be specif     48 // Values for r1,z1 and r2,z2 should be specified in clockwise
 65 // order in (r,z).                                 49 // order in (r,z).
 66 //                                                 50 //
 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco <<  51 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ *prevRZ,
 68                                 const G4Polyco <<  52                                 const G4PolyconeSideRZ *tail,
 69                                 const G4Polyco <<  53                                 const G4PolyconeSideRZ *head,
 70                                 const G4Polyco <<  54                                 const G4PolyconeSideRZ *nextRZ,
 71                                       G4double     55                                       G4double thePhiStart, 
 72                                       G4double     56                                       G4double theDeltaPhi, 
 73                                       G4bool t     57                                       G4bool thePhiIsOpen, 
 74                                       G4bool i     58                                       G4bool isAllBehind )
                                                   >>  59   : corners(0)
 75 {                                                  60 {
 76   instanceID = subInstanceManager.CreateSubIns << 
 77                                                << 
 78   kCarTolerance = G4GeometryTolerance::GetInst << 
 79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p << 
 80                                                << 
 81   //                                               61   //
 82   // Record values                                 62   // Record values
 83   //                                               63   //
 84   r[0] = tail->r; z[0] = tail->z;                  64   r[0] = tail->r; z[0] = tail->z;
 85   r[1] = head->r; z[1] = head->z;                  65   r[1] = head->r; z[1] = head->z;
 86                                                    66   
 87   phiIsOpen = thePhiIsOpen;                        67   phiIsOpen = thePhiIsOpen;
 88   if (phiIsOpen)                                   68   if (phiIsOpen)
 89   {                                                69   {
 90     deltaPhi = theDeltaPhi;                        70     deltaPhi = theDeltaPhi;
 91     startPhi = thePhiStart;                        71     startPhi = thePhiStart;
 92                                                    72 
 93     //                                             73     //
 94     // Set phi values to our conventions           74     // Set phi values to our conventions
 95     //                                             75     //
 96     while (deltaPhi < 0.0)    // Loop checking <<  76     while (deltaPhi < 0.0) deltaPhi += twopi;
 97      deltaPhi += twopi;                        <<  77     while (startPhi < 0.0) startPhi += twopi;
 98     while (startPhi < 0.0)    // Loop checking << 
 99      startPhi += twopi;                        << 
100                                                    78     
101     //                                             79     //
102     // Calculate corner coordinates                80     // Calculate corner coordinates
103     //                                             81     //
104     ncorners = 4;                              <<  82     corners = new G4ThreeVector[4];
105     corners = new G4ThreeVector[ncorners];     << 
106                                                    83     
107     corners[0] = G4ThreeVector( tail->r*std::c     84     corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108                                 tail->r*std::s     85                                 tail->r*std::sin(startPhi), tail->z );
109     corners[1] = G4ThreeVector( head->r*std::c     86     corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110                                 head->r*std::s     87                                 head->r*std::sin(startPhi), head->z );
111     corners[2] = G4ThreeVector( tail->r*std::c     88     corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112                                 tail->r*std::s     89                                 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113     corners[3] = G4ThreeVector( head->r*std::c     90     corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114                                 head->r*std::s     91                                 head->r*std::sin(startPhi+deltaPhi), head->z );
115   }                                                92   }
116   else                                             93   else
117   {                                                94   {
118     deltaPhi = twopi;                              95     deltaPhi = twopi;
119     startPhi = 0.0;                                96     startPhi = 0.0;
120   }                                                97   }
121                                                    98   
122   allBehind = isAllBehind;                         99   allBehind = isAllBehind;
123                                                   100     
124   //                                              101   //
125   // Make our intersecting cone                   102   // Make our intersecting cone
126   //                                              103   //
127   cone = new G4IntersectingCone( r, z );          104   cone = new G4IntersectingCone( r, z );
128                                                   105   
129   //                                              106   //
130   // Calculate vectors in r,z space               107   // Calculate vectors in r,z space
131   //                                              108   //
132   rS = r[1]-r[0]; zS = z[1]-z[0];                 109   rS = r[1]-r[0]; zS = z[1]-z[0];
133   length = std::sqrt( rS*rS + zS*zS);             110   length = std::sqrt( rS*rS + zS*zS);
134   rS /= length; zS /= length;                     111   rS /= length; zS /= length;
135                                                   112   
136   rNorm = +zS;                                    113   rNorm = +zS;
137   zNorm = -rS;                                    114   zNorm = -rS;
138                                                   115   
139   G4double lAdj;                                  116   G4double lAdj;
140                                                   117   
141   prevRS = r[0]-prevRZ->r;                        118   prevRS = r[0]-prevRZ->r;
142   prevZS = z[0]-prevRZ->z;                        119   prevZS = z[0]-prevRZ->z;
143   lAdj = std::sqrt( prevRS*prevRS + prevZS*pre    120   lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144   prevRS /= lAdj;                                 121   prevRS /= lAdj;
145   prevZS /= lAdj;                                 122   prevZS /= lAdj;
146                                                   123 
147   rNormEdge[0] = rNorm + prevZS;                  124   rNormEdge[0] = rNorm + prevZS;
148   zNormEdge[0] = zNorm - prevRS;                  125   zNormEdge[0] = zNorm - prevRS;
149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0]     126   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150   rNormEdge[0] /= lAdj;                           127   rNormEdge[0] /= lAdj;
151   zNormEdge[0] /= lAdj;                           128   zNormEdge[0] /= lAdj;
152                                                   129 
153   nextRS = nextRZ->r-r[1];                        130   nextRS = nextRZ->r-r[1];
154   nextZS = nextRZ->z-z[1];                        131   nextZS = nextRZ->z-z[1];
155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nex    132   lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156   nextRS /= lAdj;                                 133   nextRS /= lAdj;
157   nextZS /= lAdj;                                 134   nextZS /= lAdj;
158                                                   135 
159   rNormEdge[1] = rNorm + nextZS;                  136   rNormEdge[1] = rNorm + nextZS;
160   zNormEdge[1] = zNorm - nextRS;                  137   zNormEdge[1] = zNorm - nextRS;
161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1]     138   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162   rNormEdge[1] /= lAdj;                           139   rNormEdge[1] /= lAdj;
163   zNormEdge[1] /= lAdj;                           140   zNormEdge[1] /= lAdj;
164 }                                                 141 }
165                                                   142 
166 // Fake default constructor - sets only member << 
167 //                            for usage restri << 
168 //                                             << 
169 G4PolyconeSide::G4PolyconeSide( __void__& )    << 
170   : startPhi(0.), deltaPhi(0.),                << 
171     rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 
172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS << 
173     kCarTolerance(0.), instanceID(0)           << 
174 {                                              << 
175   r[0] = r[1] = 0.;                            << 
176   z[0] = z[1] = 0.;                            << 
177   rNormEdge[0]= rNormEdge[1] = 0.;             << 
178   zNormEdge[0]= zNormEdge[1] = 0.;             << 
179 }                                              << 
180                                                   143 
                                                   >> 144 //
181 // Destructor                                     145 // Destructor
182 //                                                146 //  
183 G4PolyconeSide::~G4PolyconeSide()                 147 G4PolyconeSide::~G4PolyconeSide()
184 {                                                 148 {
185   delete cone;                                    149   delete cone;
186   if (phiIsOpen)  { delete [] corners; }       << 150   if (phiIsOpen) delete [] corners;
187 }                                                 151 }
188                                                   152 
                                                   >> 153 
                                                   >> 154 //
189 // Copy constructor                               155 // Copy constructor
190 //                                                156 //
191 G4PolyconeSide::G4PolyconeSide( const G4Polyco << 157 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide &source )
                                                   >> 158   : G4VCSGface()
192 {                                                 159 {
193   instanceID = subInstanceManager.CreateSubIns << 
194                                                << 
195   CopyStuff( source );                            160   CopyStuff( source );
196 }                                                 161 }
197                                                   162 
                                                   >> 163 
                                                   >> 164 //
198 // Assignment operator                            165 // Assignment operator
199 //                                                166 //
200 G4PolyconeSide& G4PolyconeSide::operator=( con << 167 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide &source )
201 {                                                 168 {
202   if (this == &source)  { return *this; }      << 169   if (this == &source) return *this;
203                                                   170 
204   delete cone;                                    171   delete cone;
205   if (phiIsOpen)  { delete [] corners; }       << 172   if (phiIsOpen) delete [] corners;
206                                                   173   
207   CopyStuff( source );                            174   CopyStuff( source );
208                                                   175   
209   return *this;                                   176   return *this;
210 }                                                 177 }
211                                                   178 
                                                   >> 179 
                                                   >> 180 //
212 // CopyStuff                                      181 // CopyStuff
213 //                                                182 //
214 void G4PolyconeSide::CopyStuff( const G4Polyco << 183 void G4PolyconeSide::CopyStuff( const G4PolyconeSide &source )
215 {                                                 184 {
216   r[0]    = source.r[0];                          185   r[0]    = source.r[0];
217   r[1]    = source.r[1];                          186   r[1]    = source.r[1];
218   z[0]    = source.z[0];                          187   z[0]    = source.z[0];
219   z[1]    = source.z[1];                          188   z[1]    = source.z[1];
220                                                   189   
221   startPhi  = source.startPhi;                    190   startPhi  = source.startPhi;
222   deltaPhi  = source.deltaPhi;                    191   deltaPhi  = source.deltaPhi;
223   phiIsOpen  = source.phiIsOpen;                  192   phiIsOpen  = source.phiIsOpen;
224   allBehind  = source.allBehind;                  193   allBehind  = source.allBehind;
225                                                << 
226   kCarTolerance = source.kCarTolerance;        << 
227   fSurfaceArea = source.fSurfaceArea;          << 
228                                                   194   
229   cone    = new G4IntersectingCone( *source.co    195   cone    = new G4IntersectingCone( *source.cone );
230                                                   196   
231   rNorm    = source.rNorm;                        197   rNorm    = source.rNorm;
232   zNorm    = source.zNorm;                        198   zNorm    = source.zNorm;
233   rS    = source.rS;                              199   rS    = source.rS;
234   zS    = source.zS;                              200   zS    = source.zS;
235   length    = source.length;                      201   length    = source.length;
236   prevRS    = source.prevRS;                      202   prevRS    = source.prevRS;
237   prevZS    = source.prevZS;                      203   prevZS    = source.prevZS;
238   nextRS    = source.nextRS;                      204   nextRS    = source.nextRS;
239   nextZS    = source.nextZS;                      205   nextZS    = source.nextZS;
240                                                   206   
241   rNormEdge[0]   = source.rNormEdge[0];           207   rNormEdge[0]   = source.rNormEdge[0];
242   rNormEdge[1]  = source.rNormEdge[1];            208   rNormEdge[1]  = source.rNormEdge[1];
243   zNormEdge[0]  = source.zNormEdge[0];            209   zNormEdge[0]  = source.zNormEdge[0];
244   zNormEdge[1]  = source.zNormEdge[1];            210   zNormEdge[1]  = source.zNormEdge[1];
245                                                   211   
246   if (phiIsOpen)                                  212   if (phiIsOpen)
247   {                                               213   {
248     ncorners = 4;                              << 214     corners = new G4ThreeVector[4];
249     corners = new G4ThreeVector[ncorners];     << 
250                                                   215     
251     corners[0] = source.corners[0];               216     corners[0] = source.corners[0];
252     corners[1] = source.corners[1];               217     corners[1] = source.corners[1];
253     corners[2] = source.corners[2];               218     corners[2] = source.corners[2];
254     corners[3] = source.corners[3];               219     corners[3] = source.corners[3];
255   }                                               220   }
256 }                                                 221 }
257                                                   222 
                                                   >> 223 
                                                   >> 224 //
258 // Intersect                                      225 // Intersect
259 //                                                226 //
260 G4bool G4PolyconeSide::Intersect( const G4Thre << 227 G4bool G4PolyconeSide::Intersect( const G4ThreeVector &p,
261                                   const G4Thre << 228                                   const G4ThreeVector &v,  
262                                         G4bool    229                                         G4bool outgoing,
263                                         G4doub    230                                         G4double surfTolerance,
264                                         G4doub << 231                                         G4double &distance,
265                                         G4doub << 232                                         G4double &distFromSurface,
266                                         G4Thre << 233                                         G4ThreeVector &normal,
267                                         G4bool << 234                                         G4bool &isAllBehind )
268 {                                                 235 {
269   G4double s1=0., s2=0.;                       << 236   G4double s1, s2;
270   G4double normSign = outgoing ? +1 : -1;         237   G4double normSign = outgoing ? +1 : -1;
271                                                   238   
272   isAllBehind = allBehind;                        239   isAllBehind = allBehind;
273                                                   240 
274   //                                              241   //
275   // Check for two possible intersections         242   // Check for two possible intersections
276   //                                              243   //
277   G4int nside = cone->LineHitsCone( p, v, &s1,    244   G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278   if (nside == 0) return false;                   245   if (nside == 0) return false;
279                                                   246     
280   //                                              247   //
281   // Check the first side first, since it is (    248   // Check the first side first, since it is (supposed to be) closest
282   //                                              249   //
283   G4ThreeVector hit = p + s1*v;                   250   G4ThreeVector hit = p + s1*v;
284                                                   251   
285   if (PointOnCone( hit, normSign, p, v, normal    252   if (PointOnCone( hit, normSign, p, v, normal ))
286   {                                               253   {
287     //                                            254     //
288     // Good intersection! What about the norma    255     // Good intersection! What about the normal? 
289     //                                            256     //
290     if (normSign*v.dot(normal) > 0)               257     if (normSign*v.dot(normal) > 0)
291     {                                             258     {
292       //                                          259       //
293       // We have a valid intersection, but it     260       // We have a valid intersection, but it could very easily
294       // be behind the point. To decide if we     261       // be behind the point. To decide if we tolerate this,
295       // we have to see if the point p is on t    262       // we have to see if the point p is on the surface near
296       // the intersecting point.                  263       // the intersecting point.
297       //                                          264       //
298       // What does it mean exactly for the poi    265       // What does it mean exactly for the point p to be "near"
299       // the intersection? It means that if we    266       // the intersection? It means that if we draw a line from
300       // p to the hit, the line remains entire    267       // p to the hit, the line remains entirely within the
301       // tolerance bounds of the cone. To test    268       // tolerance bounds of the cone. To test this, we can
302       // ask if the normal is correct near p.     269       // ask if the normal is correct near p.
303       //                                          270       //
304       G4double pr = p.perp();                     271       G4double pr = p.perp();
305       if (pr < DBL_MIN) pr = DBL_MIN;             272       if (pr < DBL_MIN) pr = DBL_MIN;
306       G4ThreeVector pNormal( rNorm*p.x()/pr, r    273       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307       if (normSign*v.dot(pNormal) > 0)            274       if (normSign*v.dot(pNormal) > 0)
308       {                                           275       {
309         //                                        276         //
310         // p and intersection in same hemisphe    277         // p and intersection in same hemisphere
311         //                                        278         //
312         G4double distOutside2;                    279         G4double distOutside2;
313         distFromSurface = -normSign*DistanceAw    280         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314         if (distOutside2 < surfTolerance*surfT    281         if (distOutside2 < surfTolerance*surfTolerance)
315         {                                         282         {
316           if (distFromSurface > -surfTolerance    283           if (distFromSurface > -surfTolerance)
317           {                                       284           {
318             //                                    285             //
319             // We are just inside or away from    286             // We are just inside or away from the
320             // surface. Accept *any* value of     287             // surface. Accept *any* value of distance.
321             //                                    288             //
322             distance = s1;                        289             distance = s1;
323             return true;                          290             return true;
324           }                                       291           }
325         }                                         292         }
326       }                                           293       }
327       else                                        294       else 
328         distFromSurface = s1;                     295         distFromSurface = s1;
329                                                   296       
330       //                                          297       //
331       // Accept positive distances                298       // Accept positive distances
332       //                                          299       //
333       if (s1 > 0)                                 300       if (s1 > 0)
334       {                                           301       {
335         distance = s1;                            302         distance = s1;
336         return true;                              303         return true;
337       }                                           304       }
338     }                                             305     }
339   }                                               306   }  
340                                                   307   
341   if (nside==1) return false;                     308   if (nside==1) return false;
342                                                   309   
343   //                                              310   //
344   // Well, try the second hit                     311   // Well, try the second hit
345   //                                              312   //  
346   hit = p + s2*v;                                 313   hit = p + s2*v;
347                                                   314   
348   if (PointOnCone( hit, normSign, p, v, normal    315   if (PointOnCone( hit, normSign, p, v, normal ))
349   {                                               316   {
350     //                                            317     //
351     // Good intersection! What about the norma    318     // Good intersection! What about the normal? 
352     //                                            319     //
353     if (normSign*v.dot(normal) > 0)               320     if (normSign*v.dot(normal) > 0)
354     {                                             321     {
355       G4double pr = p.perp();                     322       G4double pr = p.perp();
356       if (pr < DBL_MIN) pr = DBL_MIN;             323       if (pr < DBL_MIN) pr = DBL_MIN;
357       G4ThreeVector pNormal( rNorm*p.x()/pr, r    324       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358       if (normSign*v.dot(pNormal) > 0)            325       if (normSign*v.dot(pNormal) > 0)
359       {                                           326       {
360         G4double distOutside2;                    327         G4double distOutside2;
361         distFromSurface = -normSign*DistanceAw    328         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362         if (distOutside2 < surfTolerance*surfT    329         if (distOutside2 < surfTolerance*surfTolerance)
363         {                                         330         {
364           if (distFromSurface > -surfTolerance    331           if (distFromSurface > -surfTolerance)
365           {                                       332           {
366             distance = s2;                        333             distance = s2;
367             return true;                          334             return true;
368           }                                       335           }
369         }                                         336         }
370       }                                           337       }
371       else                                        338       else 
372         distFromSurface = s2;                     339         distFromSurface = s2;
373                                                   340       
374       if (s2 > 0)                                 341       if (s2 > 0)
375       {                                           342       {
376         distance = s2;                            343         distance = s2;
377         return true;                              344         return true;
378       }                                           345       }
379     }                                             346     }
380   }                                               347   }  
381                                                   348 
382   //                                              349   //
383   // Better luck next time                        350   // Better luck next time
384   //                                              351   //
385   return false;                                   352   return false;
386 }                                                 353 }
387                                                   354 
388 // Distance                                    << 355 
389 //                                             << 356 G4double G4PolyconeSide::Distance( const G4ThreeVector &p, G4bool outgoing )
390 G4double G4PolyconeSide::Distance( const G4Thr << 
391 {                                                 357 {
392   G4double normSign = outgoing ? -1 : +1;         358   G4double normSign = outgoing ? -1 : +1;
393   G4double distFrom, distOut2;                    359   G4double distFrom, distOut2;
394                                                   360   
395   //                                              361   //
396   // We have two tries for each hemisphere. Tr    362   // We have two tries for each hemisphere. Try the closest first.
397   //                                              363   //
398   distFrom = normSign*DistanceAway( p, false,     364   distFrom = normSign*DistanceAway( p, false, distOut2 );
399   if (distFrom > -0.5*kCarTolerance )             365   if (distFrom > -0.5*kCarTolerance )
400   {                                               366   {
401     //                                            367     //
402     // Good answer                                368     // Good answer
403     //                                            369     //
404     if (distOut2 > 0)                             370     if (distOut2 > 0) 
405       return std::sqrt( distFrom*distFrom + di    371       return std::sqrt( distFrom*distFrom + distOut2 );
406     else                                          372     else 
407       return std::fabs(distFrom);                 373       return std::fabs(distFrom);
408   }                                               374   }
409                                                   375   
410   //                                              376   //
411   // Try second side.                             377   // Try second side. 
412   //                                              378   //
413   distFrom = normSign*DistanceAway( p,  true,     379   distFrom = normSign*DistanceAway( p,  true, distOut2 );
414   if (distFrom > -0.5*kCarTolerance)              380   if (distFrom > -0.5*kCarTolerance)
415   {                                               381   {
416                                                   382 
417     if (distOut2 > 0)                             383     if (distOut2 > 0) 
418       return std::sqrt( distFrom*distFrom + di    384       return std::sqrt( distFrom*distFrom + distOut2 );
419     else                                          385     else
420       return std::fabs(distFrom);                 386       return std::fabs(distFrom);
421   }                                               387   }
422                                                   388   
423   return kInfinity;                               389   return kInfinity;
424 }                                                 390 }
425                                                   391 
                                                   >> 392 
                                                   >> 393 //
426 // Inside                                         394 // Inside
427 //                                                395 //
428 EInside G4PolyconeSide::Inside( const G4ThreeV << 396 EInside G4PolyconeSide::Inside( const G4ThreeVector &p,
429                                       G4double    397                                       G4double tolerance, 
430                                       G4double << 398                                       G4double *bestDistance )
431 {                                                 399 {
432   G4double distFrom, distOut2, dist2;          << 400   //
433   G4double edgeRZnorm;                         << 401   // Check both sides
                                                   >> 402   //
                                                   >> 403   G4double distFrom[2], distOut2[2], dist2[2];
                                                   >> 404   G4double edgeRZnorm[2];
434                                                   405      
435   distFrom =  DistanceAway( p, distOut2, &edge << 406   distFrom[0] =  DistanceAway( p, false, distOut2[0], edgeRZnorm   );
436   dist2 = distFrom*distFrom + distOut2;        << 407   distFrom[1] =  DistanceAway( p,  true, distOut2[1], edgeRZnorm+1 );
437                                                << 
438   *bestDistance = std::sqrt( dist2);           << 
439                                                   408   
                                                   >> 409   dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
                                                   >> 410   dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
                                                   >> 411   
                                                   >> 412   //
                                                   >> 413   // Who's closest?
                                                   >> 414   //
                                                   >> 415   G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
                                                   >> 416   
                                                   >> 417   *bestDistance = std::sqrt( dist2[i] );
                                                   >> 418   
                                                   >> 419   //
440   // Okay then, inside or out?                    420   // Okay then, inside or out?
441   //                                              421   //
442   if ( (std::fabs(edgeRZnorm) < tolerance)     << 422   if ( (std::fabs(edgeRZnorm[i]) < tolerance)
443     && (distOut2< tolerance*tolerance) )       << 423     && (distOut2[i] < tolerance*tolerance) )
444     return kSurface;                              424     return kSurface;
445   else if (edgeRZnorm < 0)                     << 425   else if (edgeRZnorm[i] < 0)
446     return kInside;                               426     return kInside;
447   else                                            427   else
448     return kOutside;                              428     return kOutside;
449 }                                                 429 }
450                                                   430 
                                                   >> 431 
                                                   >> 432 //
451 // Normal                                         433 // Normal
452 //                                                434 //
453 G4ThreeVector G4PolyconeSide::Normal( const G4 << 435 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector &p,
454                                             G4 << 436                                             G4double *bestDistance )
455 {                                                 437 {
456   if (p == G4ThreeVector(0.,0.,0.))  { return  << 438   G4ThreeVector dFrom;
457                                                << 439   G4double dOut2;
458   G4double dFrom, dOut2;                       << 
459                                                   440   
460   dFrom = DistanceAway( p, false, dOut2 );        441   dFrom = DistanceAway( p, false, dOut2 );
461                                                   442   
462   *bestDistance = std::sqrt( dFrom*dFrom + dOu    443   *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
463                                                   444   
464   G4double rds = p.perp();                     << 445   G4double rad = p.perp();
465   if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 446   return G4ThreeVector( rNorm*p.x()/rad, rNorm*p.y()/rad, zNorm );
466   return G4ThreeVector( 0.,0., zNorm ).unit(); << 
467 }                                                 447 }
468                                                   448 
                                                   >> 449 
                                                   >> 450 //
469 // Extent                                         451 // Extent
470 //                                                452 //
471 G4double G4PolyconeSide::Extent( const G4Three    453 G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
472 {                                                 454 {
473   if (axis.perp2() < DBL_MIN)                     455   if (axis.perp2() < DBL_MIN)
474   {                                               456   {
475     //                                            457     //
476     // Special case                               458     // Special case
477     //                                            459     //
478     return axis.z() < 0 ? -cone->ZLo() : cone-    460     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
479   }                                               461   }
480                                                   462 
481   //                                              463   //
482   // Is the axis pointing inside our phi gap?     464   // Is the axis pointing inside our phi gap?
483   //                                              465   //
484   if (phiIsOpen)                                  466   if (phiIsOpen)
485   {                                               467   {
486     G4double phi = GetPhi(axis);               << 468     G4double phi = axis.phi();
487     while( phi < startPhi )    // Loop checkin << 469     while( phi < startPhi ) phi += twopi;
488       phi += twopi;                            << 
489                                                   470     
490     if (phi > deltaPhi+startPhi)                  471     if (phi > deltaPhi+startPhi)
491     {                                             472     {
492       //                                          473       //
493       // Yeah, looks so. Make four three vecto    474       // Yeah, looks so. Make four three vectors defining the phi
494       // opening                                  475       // opening
495       //                                          476       //
496       G4double cosP = std::cos(startPhi), sinP    477       G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
497       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z    478       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
498       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z    479       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
499       cosP = std::cos(startPhi+deltaPhi); sinP    480       cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
500       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z    481       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
501       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z    482       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
502                                                   483       
503       G4double ad = axis.dot(a),                  484       G4double ad = axis.dot(a),
504                bd = axis.dot(b),               << 485          bd = axis.dot(b),
505                cd = axis.dot(c),               << 486          cd = axis.dot(c),
506                dd = axis.dot(d);               << 487          dd = axis.dot(d);
507                                                   488       
508       if (bd > ad) ad = bd;                       489       if (bd > ad) ad = bd;
509       if (cd > ad) ad = cd;                       490       if (cd > ad) ad = cd;
510       if (dd > ad) ad = dd;                       491       if (dd > ad) ad = dd;
511                                                   492       
512       return ad;                                  493       return ad;
513     }                                             494     }
514   }                                               495   }
515                                                   496 
516   //                                              497   //
517   // Check either end                             498   // Check either end
518   //                                              499   //
519   G4double aPerp = axis.perp();                   500   G4double aPerp = axis.perp();
520                                                   501   
521   G4double a = aPerp*r[0] + axis.z()*z[0];        502   G4double a = aPerp*r[0] + axis.z()*z[0];
522   G4double b = aPerp*r[1] + axis.z()*z[1];        503   G4double b = aPerp*r[1] + axis.z()*z[1];
523                                                   504   
524   if (b > a) a = b;                               505   if (b > a) a = b;
525                                                   506   
526   return a;                                       507   return a;
527 }                                                 508 }
528                                                   509 
                                                   >> 510 
                                                   >> 511 
                                                   >> 512 //
529 // CalculateExtent                                513 // CalculateExtent
530 //                                                514 //
531 // See notes in G4VCSGface                        515 // See notes in G4VCSGface
532 //                                                516 //
533 void G4PolyconeSide::CalculateExtent( const EA    517 void G4PolyconeSide::CalculateExtent( const EAxis axis, 
534                                       const G4 << 518                                       const G4VoxelLimits &voxelLimit,
535                                       const G4 << 519                                       const G4AffineTransform &transform,
536                                             G4 << 520                                             G4SolidExtentList &extentList )
537 {                                                 521 {
538   G4ClippablePolygon polygon;                     522   G4ClippablePolygon polygon;
539                                                   523   
540   //                                              524   //
541   // Here we will approximate (ala G4Cons) and    525   // Here we will approximate (ala G4Cons) and divide our conical section
542   // into segments, like G4Polyhedra. When doi    526   // into segments, like G4Polyhedra. When doing so, the radius
543   // is extented far enough such that the segm    527   // is extented far enough such that the segments always lie
544   // just outside the surface of the conical s    528   // just outside the surface of the conical section we are
545   // approximating.                               529   // approximating.
546   //                                              530   //
547                                                   531   
548   //                                              532   //
549   // Choose phi size of our segment(s) based o    533   // Choose phi size of our segment(s) based on constants as
550   // defined in meshdefs.hh                       534   // defined in meshdefs.hh
551   //                                              535   //
552   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe    536   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
553   if (numPhi < kMinMeshSections)                  537   if (numPhi < kMinMeshSections) 
554     numPhi = kMinMeshSections;                    538     numPhi = kMinMeshSections;
555   else if (numPhi > kMaxMeshSections)             539   else if (numPhi > kMaxMeshSections)
556     numPhi = kMaxMeshSections;                    540     numPhi = kMaxMeshSections;
557                                                   541     
558   G4double sigPhi = deltaPhi/numPhi;              542   G4double sigPhi = deltaPhi/numPhi;
559                                                   543   
560   //                                              544   //
561   // Determine radius factor to keep segments     545   // Determine radius factor to keep segments outside
562   //                                              546   //
563   G4double rFudge = 1.0/std::cos(0.5*sigPhi);     547   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
564                                                   548   
565   //                                              549   //
566   // Decide which radius to use on each end of    550   // Decide which radius to use on each end of the side,
567   // and whether a transition mesh is required    551   // and whether a transition mesh is required
568   //                                              552   //
569   // {r0,z0}  - Beginning of this side            553   // {r0,z0}  - Beginning of this side
570   // {r1,z1}  - Ending of this side               554   // {r1,z1}  - Ending of this side
571   // {r2,z0}  - Beginning of transition piece     555   // {r2,z0}  - Beginning of transition piece connecting previous
572   //            side (and ends at beginning of    556   //            side (and ends at beginning of this side)
573   //                                              557   //
574   // So, order is 2 --> 0 --> 1.                  558   // So, order is 2 --> 0 --> 1.
575   //                    -------                   559   //                    -------
576   //                                              560   //
577   // r2 < 0 indicates that no transition piece    561   // r2 < 0 indicates that no transition piece is required
578   //                                              562   //
579   G4double r0, r1, r2, z0, z1;                    563   G4double r0, r1, r2, z0, z1;
580                                                   564   
581   r2 = -1;  // By default: no transition piece    565   r2 = -1;  // By default: no transition piece
582                                                   566   
583   if (rNorm < -DBL_MIN)                           567   if (rNorm < -DBL_MIN)
584   {                                               568   {
585     //                                            569     //
586     // This side faces *inward*, and so our me    570     // This side faces *inward*, and so our mesh has
587     // the same radius                            571     // the same radius
588     //                                            572     //
589     r1 = r[1];                                    573     r1 = r[1];
590     z1 = z[1];                                    574     z1 = z[1];
591     z0 = z[0];                                    575     z0 = z[0];
592     r0 = r[0];                                    576     r0 = r[0];
593                                                   577     
594     r2 = -1;                                      578     r2 = -1;
595                                                   579     
596     if (prevZS > DBL_MIN)                         580     if (prevZS > DBL_MIN)
597     {                                             581     {
598       //                                          582       //
599       // The previous side is facing outwards     583       // The previous side is facing outwards
600       //                                          584       //
601       if ( prevRS*zS - prevZS*rS > 0 )            585       if ( prevRS*zS - prevZS*rS > 0 )
602       {                                           586       {
603         //                                        587         //
604         // Transition was convex: build transi    588         // Transition was convex: build transition piece
605         //                                        589         //
606         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;     590         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
607       }                                           591       }
608       else                                        592       else
609       {                                           593       {
610         //                                        594         //
611         // Transition was concave: short this     595         // Transition was concave: short this side
612         //                                        596         //
613         FindLineIntersect( z0, r0, zS, rS,        597         FindLineIntersect( z0, r0, zS, rS,
614                            z0, r0*rFudge, prev    598                            z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
615       }                                           599       }
616     }                                             600     }
617                                                   601     
618     if ( nextZS > DBL_MIN && (rS*nextZS - zS*n    602     if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
619     {                                             603     {
620       //                                          604       //
621       // The next side is facing outwards, for    605       // The next side is facing outwards, forming a 
622       // concave transition: short this side      606       // concave transition: short this side
623       //                                          607       //
624       FindLineIntersect( z1, r1, zS, rS,          608       FindLineIntersect( z1, r1, zS, rS,
625                          z1, r1*rFudge, nextZS    609                          z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
626     }                                             610     }
627   }                                               611   }
628   else if (rNorm > DBL_MIN)                       612   else if (rNorm > DBL_MIN)
629   {                                               613   {
630     //                                            614     //
631     // This side faces *outward* and is given     615     // This side faces *outward* and is given a boost to
632     // it radius                                  616     // it radius
633     //                                            617     //
634     r0 = r[0]*rFudge;                             618     r0 = r[0]*rFudge;
635     z0 = z[0];                                    619     z0 = z[0];
636     r1 = r[1]*rFudge;                             620     r1 = r[1]*rFudge;
637     z1 = z[1];                                    621     z1 = z[1];
638                                                   622     
639     if (prevZS < -DBL_MIN)                        623     if (prevZS < -DBL_MIN)
640     {                                             624     {
641       //                                          625       //
642       // The previous side is facing inwards      626       // The previous side is facing inwards
643       //                                          627       //
644       if ( prevRS*zS - prevZS*rS > 0 )            628       if ( prevRS*zS - prevZS*rS > 0 )
645       {                                           629       {
646         //                                        630         //
647         // Transition was convex: build transi    631         // Transition was convex: build transition piece
648         //                                        632         //
649         if (r[0] > DBL_MIN) r2 = r[0];            633         if (r[0] > DBL_MIN) r2 = r[0];
650       }                                           634       }
651       else                                        635       else
652       {                                           636       {
653         //                                        637         //
654         // Transition was concave: short this     638         // Transition was concave: short this side
655         //                                        639         //
656         FindLineIntersect( z0, r0, zS, rS*rFud    640         FindLineIntersect( z0, r0, zS, rS*rFudge,
657                            z0, r[0], prevZS, p    641                            z0, r[0], prevZS, prevRS, z0, r0 );
658       }                                           642       }
659     }                                             643     }
660                                                   644     
661     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*    645     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
662     {                                             646     {
663       //                                          647       //
664       // The next side is facing inwards, form    648       // The next side is facing inwards, forming a 
665       // concave transition: short this side      649       // concave transition: short this side
666       //                                          650       //
667       FindLineIntersect( z1, r1, zS, rS*rFudge    651       FindLineIntersect( z1, r1, zS, rS*rFudge,
668                          z1, r[1], nextZS, nex    652                          z1, r[1], nextZS, nextRS, z1, r1 );
669     }                                             653     }
670   }                                               654   }
671   else                                            655   else
672   {                                               656   {
673     //                                            657     //
674     // This side is perpendicular to the z axi    658     // This side is perpendicular to the z axis (is a disk)
675     //                                            659     //
676     // Whether or not r0 needs a rFudge factor    660     // Whether or not r0 needs a rFudge factor depends
677     // on the normal of the previous edge. Sim    661     // on the normal of the previous edge. Similar with r1
678     // and the next edge. No transition piece     662     // and the next edge. No transition piece is required.
679     //                                            663     //
680     r0 = r[0];                                    664     r0 = r[0];
681     r1 = r[1];                                    665     r1 = r[1];
682     z0 = z[0];                                    666     z0 = z[0];
683     z1 = z[1];                                    667     z1 = z[1];
684                                                   668     
685     if (prevZS > DBL_MIN) r0 *= rFudge;           669     if (prevZS > DBL_MIN) r0 *= rFudge;
686     if (nextZS > DBL_MIN) r1 *= rFudge;           670     if (nextZS > DBL_MIN) r1 *= rFudge;
687   }                                               671   }
688                                                   672   
689   //                                              673   //
690   // Loop                                         674   // Loop
691   //                                              675   //
692   G4double phi = startPhi,                        676   G4double phi = startPhi, 
693            cosPhi = std::cos(phi),                677            cosPhi = std::cos(phi), 
694            sinPhi = std::sin(phi);                678            sinPhi = std::sin(phi);
695                                                   679   
696   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 )    680   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
697                     v1( r1*cosPhi, r1*sinPhi,     681                     v1( r1*cosPhi, r1*sinPhi, z1 ),
698   v2, w0, w1, w2;                                 682   v2, w0, w1, w2;
699   transform.ApplyPointTransform( v0 );            683   transform.ApplyPointTransform( v0 );
700   transform.ApplyPointTransform( v1 );            684   transform.ApplyPointTransform( v1 );
701                                                   685   
702   if (r2 >= 0)                                    686   if (r2 >= 0)
703   {                                               687   {
704     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi,     688     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
705     transform.ApplyPointTransform( v2 );          689     transform.ApplyPointTransform( v2 );
706   }                                               690   }
707                                                   691 
708   do    // Loop checking, 13.08.2015, G.Cosmo  << 692   do
709   {                                               693   {
710     phi += sigPhi;                                694     phi += sigPhi;
711     if (numPhi == 1) phi = startPhi+deltaPhi;     695     if (numPhi == 1) phi = startPhi+deltaPhi;  // Try to avoid roundoff
712     cosPhi = std::cos(phi),                       696     cosPhi = std::cos(phi), 
713     sinPhi = std::sin(phi);                       697     sinPhi = std::sin(phi);
714                                                   698     
715     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     699     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
716     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     700     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
717     transform.ApplyPointTransform( w0 );          701     transform.ApplyPointTransform( w0 );
718     transform.ApplyPointTransform( w1 );          702     transform.ApplyPointTransform( w1 );
719                                                   703     
720     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w    704     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
721                                                   705     
722     //                                            706     //
723     // Build polygon, taking special care to k    707     // Build polygon, taking special care to keep the vertices
724     // in order                                   708     // in order
725     //                                            709     //
726     polygon.ClearAllVertices();                   710     polygon.ClearAllVertices();
727                                                   711 
728     polygon.AddVertexInOrder( v0 );               712     polygon.AddVertexInOrder( v0 );
729     polygon.AddVertexInOrder( v1 );               713     polygon.AddVertexInOrder( v1 );
730     polygon.AddVertexInOrder( w1 );               714     polygon.AddVertexInOrder( w1 );
731     polygon.AddVertexInOrder( w0 );               715     polygon.AddVertexInOrder( w0 );
732                                                   716 
733     //                                            717     //
734     // Get extent                                 718     // Get extent
735     //                                            719     //
736     if (polygon.PartialClip( voxelLimit, axis     720     if (polygon.PartialClip( voxelLimit, axis ))
737     {                                             721     {
738       //                                          722       //
739       // Get dot product of normal with target    723       // Get dot product of normal with target axis
740       //                                          724       //
741       polygon.SetNormal( deltaV.cross(v1-v0).u    725       polygon.SetNormal( deltaV.cross(v1-v0).unit() );
742                                                   726       
743       extentList.AddSurface( polygon );           727       extentList.AddSurface( polygon );
744     }                                             728     }
745                                                   729     
746     if (r2 >= 0)                                  730     if (r2 >= 0)
747     {                                             731     {
748       //                                          732       //
749       // Repeat, for transition piece             733       // Repeat, for transition piece
750       //                                          734       //
751       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi    735       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
752       transform.ApplyPointTransform( w2 );        736       transform.ApplyPointTransform( w2 );
753                                                   737 
754       polygon.ClearAllVertices();                 738       polygon.ClearAllVertices();
755                                                   739 
756       polygon.AddVertexInOrder( v2 );             740       polygon.AddVertexInOrder( v2 );
757       polygon.AddVertexInOrder( v0 );             741       polygon.AddVertexInOrder( v0 );
758       polygon.AddVertexInOrder( w0 );             742       polygon.AddVertexInOrder( w0 );
759       polygon.AddVertexInOrder( w2 );             743       polygon.AddVertexInOrder( w2 );
760                                                   744 
761       if (polygon.PartialClip( voxelLimit, axi    745       if (polygon.PartialClip( voxelLimit, axis ))
762       {                                           746       {
763         polygon.SetNormal( deltaV.cross(v0-v2)    747         polygon.SetNormal( deltaV.cross(v0-v2).unit() );
764                                                   748         
765         extentList.AddSurface( polygon );         749         extentList.AddSurface( polygon );
766       }                                           750       }
767                                                   751       
768       v2 = w2;                                    752       v2 = w2;
769     }                                             753     }
770                                                   754     
771     //                                            755     //
772     // Next vertex                                756     // Next vertex
773     //                                            757     //    
774     v0 = w0;                                      758     v0 = w0;
775     v1 = w1;                                      759     v1 = w1;
776   } while( --numPhi > 0 );                        760   } while( --numPhi > 0 );
777                                                   761   
778   //                                              762   //
779   // We are almost done. But, it is important     763   // We are almost done. But, it is important that we leave no
780   // gaps in the surface of our solid. By usin    764   // gaps in the surface of our solid. By using rFudge, however,
781   // we've done exactly that, if we have a phi    765   // we've done exactly that, if we have a phi segment. 
782   // Add two additional faces if necessary        766   // Add two additional faces if necessary
783   //                                              767   //
784   if (phiIsOpen && rNorm > DBL_MIN)               768   if (phiIsOpen && rNorm > DBL_MIN)
785   {                                               769   {    
786     cosPhi = std::cos(startPhi);               << 770     G4double cosPhi = std::cos(startPhi),
787     sinPhi = std::sin(startPhi);               << 771        sinPhi = std::sin(startPhi);
788                                                   772 
789     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi    773     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
790                   a1( r[1]*cosPhi, r[1]*sinPhi    774                   a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
791                   b0( r0*cosPhi, r0*sinPhi, z[    775                   b0( r0*cosPhi, r0*sinPhi, z[0] ),
792                   b1( r1*cosPhi, r1*sinPhi, z[    776                   b1( r1*cosPhi, r1*sinPhi, z[1] );
793                                                   777   
794     transform.ApplyPointTransform( a0 );          778     transform.ApplyPointTransform( a0 );
795     transform.ApplyPointTransform( a1 );          779     transform.ApplyPointTransform( a1 );
796     transform.ApplyPointTransform( b0 );          780     transform.ApplyPointTransform( b0 );
797     transform.ApplyPointTransform( b1 );          781     transform.ApplyPointTransform( b1 );
798                                                   782 
799     polygon.ClearAllVertices();                   783     polygon.ClearAllVertices();
800                                                   784 
801     polygon.AddVertexInOrder( a0 );               785     polygon.AddVertexInOrder( a0 );
802     polygon.AddVertexInOrder( a1 );               786     polygon.AddVertexInOrder( a1 );
803     polygon.AddVertexInOrder( b0 );               787     polygon.AddVertexInOrder( b0 );
804     polygon.AddVertexInOrder( b1 );               788     polygon.AddVertexInOrder( b1 );
805                                                   789     
806     if (polygon.PartialClip( voxelLimit , axis    790     if (polygon.PartialClip( voxelLimit , axis))
807     {                                             791     {
808       G4ThreeVector normal( sinPhi, -cosPhi, 0    792       G4ThreeVector normal( sinPhi, -cosPhi, 0 );
809       polygon.SetNormal( transform.TransformAx    793       polygon.SetNormal( transform.TransformAxis( normal ) );
810                                                   794         
811       extentList.AddSurface( polygon );           795       extentList.AddSurface( polygon );
812     }                                             796     }
813                                                   797     
814     cosPhi = std::cos(startPhi+deltaPhi);         798     cosPhi = std::cos(startPhi+deltaPhi);
815     sinPhi = std::sin(startPhi+deltaPhi);         799     sinPhi = std::sin(startPhi+deltaPhi);
816                                                   800     
817     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP    801     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
818     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP    802     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
819     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     803     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
820     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     804     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
821     transform.ApplyPointTransform( a0 );          805     transform.ApplyPointTransform( a0 );
822     transform.ApplyPointTransform( a1 );          806     transform.ApplyPointTransform( a1 );
823     transform.ApplyPointTransform( b0 );          807     transform.ApplyPointTransform( b0 );
824     transform.ApplyPointTransform( b1 );          808     transform.ApplyPointTransform( b1 );
825                                                   809 
826     polygon.ClearAllVertices();                   810     polygon.ClearAllVertices();
827                                                   811 
828     polygon.AddVertexInOrder( a0 );               812     polygon.AddVertexInOrder( a0 );
829     polygon.AddVertexInOrder( a1 );               813     polygon.AddVertexInOrder( a1 );
830     polygon.AddVertexInOrder( b0 );               814     polygon.AddVertexInOrder( b0 );
831     polygon.AddVertexInOrder( b1 );               815     polygon.AddVertexInOrder( b1 );
832                                                   816     
833     if (polygon.PartialClip( voxelLimit, axis     817     if (polygon.PartialClip( voxelLimit, axis ))
834     {                                             818     {
835       G4ThreeVector normal( -sinPhi, cosPhi, 0    819       G4ThreeVector normal( -sinPhi, cosPhi, 0 );
836       polygon.SetNormal( transform.TransformAx    820       polygon.SetNormal( transform.TransformAxis( normal ) );
837                                                   821         
838       extentList.AddSurface( polygon );           822       extentList.AddSurface( polygon );
839     }                                             823     }
840   }                                               824   }
841                                                   825     
842   return;                                         826   return;
843 }                                                 827 }
844                                                   828 
845 // GetPhi                                      << 
846 //                                             << 
847 // Calculate Phi for a given 3-vector (point), << 
848 // same point, in the attempt to avoid consecu << 
849 // quantity                                    << 
850 //                                             << 
851 G4double G4PolyconeSide::GetPhi( const G4Three << 
852 {                                              << 
853   G4double val=0.;                             << 
854   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, << 
855                                                << 
856   if (vphi != p)                               << 
857   {                                            << 
858     val = p.phi();                             << 
859     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y();  << 
860     G4MT_pcphik = val;                         << 
861   }                                            << 
862   else                                         << 
863   {                                            << 
864     val = G4MT_pcphik;                         << 
865   }                                            << 
866   return val;                                  << 
867 }                                              << 
868                                                   829 
                                                   >> 830 //
869 // DistanceAway                                   831 // DistanceAway
870 //                                                832 //
871 // Calculate distance of a point from our coni    833 // Calculate distance of a point from our conical surface, including the effect
872 // of any phi segmentation                        834 // of any phi segmentation
873 //                                                835 //
874 // Arguments:                                     836 // Arguments:
875 //  p             - (in) Point to check           837 //  p             - (in) Point to check
876 //  opposite      - (in) If true, check opposi    838 //  opposite      - (in) If true, check opposite hemisphere (see below)
877 //  distOutside   - (out) Additional distance     839 //  distOutside   - (out) Additional distance outside the edges of the surface
878 //  edgeRZnorm    - (out) if negative, point i    840 //  edgeRZnorm    - (out) if negative, point is inside
879 //                                                841 //
880 //  return value = distance from the conical p    842 //  return value = distance from the conical plane, if extrapolated beyond edges,
881 //                 signed by whether the point    843 //                 signed by whether the point is in inside or outside the shape
882 //                                                844 //
883 // Notes:                                         845 // Notes:
884 //  * There are two answers, depending on whic    846 //  * There are two answers, depending on which hemisphere is considered.
885 //                                                847 //
886 G4double G4PolyconeSide::DistanceAway( const G << 848 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector &p,
887                                              G    849                                              G4bool opposite,
888                                              G << 850                                              G4double &distOutside2,
889                                              G << 851                                              G4double *edgeRZnorm  )
890 {                                                 852 {
891   //                                              853   //
892   // Convert our point to r and z                 854   // Convert our point to r and z
893   //                                              855   //
894   G4double rx = p.perp(), zx = p.z();             856   G4double rx = p.perp(), zx = p.z();
895                                                   857   
896   //                                              858   //
897   // Change sign of r if opposite says we shou    859   // Change sign of r if opposite says we should
898   //                                              860   //
899   if (opposite) rx = -rx;                         861   if (opposite) rx = -rx;
900                                                   862   
901   //                                              863   //
902   // Calculate return value                       864   // Calculate return value
903   //                                              865   //
904   G4double deltaR  = rx - r[0], deltaZ = zx -     866   G4double deltaR  = rx - r[0], deltaZ = zx - z[0];
905   G4double answer = deltaR*rNorm + deltaZ*zNor    867   G4double answer = deltaR*rNorm + deltaZ*zNorm;
906                                                   868   
907   //                                              869   //
908   // Are we off the surface in r,z space?         870   // Are we off the surface in r,z space?
909   //                                              871   //
910   G4double q = deltaR*rS + deltaZ*zS;          << 872   G4double s = deltaR*rS + deltaZ*zS;
911   if (q < 0)                                   << 873   if (s < 0)
912   {                                               874   {
913     distOutside2 = q*q;                        << 875     distOutside2 = s*s;
914     if (edgeRZnorm != nullptr)                 << 876     if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
915       *edgeRZnorm = deltaR*rNormEdge[0] + delt << 
916   }                                               877   }
917   else if (q > length)                         << 878   else if (s > length)
918   {                                               879   {
919     distOutside2 = sqr( q-length );            << 880     distOutside2 = sqr( s-length );
920     if (edgeRZnorm != nullptr)                 << 881     if (edgeRZnorm)
921     {                                             882     {
922       deltaR = rx - r[1];                      << 883       G4double deltaR  = rx - r[1], deltaZ = zx - z[1];
923       deltaZ = zx - z[1];                      << 
924       *edgeRZnorm = deltaR*rNormEdge[1] + delt    884       *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
925     }                                             885     }
926   }                                               886   }
927   else                                            887   else
928   {                                               888   {
929     distOutside2 = 0.;                         << 889     distOutside2 = 0;
930     if (edgeRZnorm != nullptr) *edgeRZnorm = a << 890     if (edgeRZnorm) *edgeRZnorm = answer;
931   }                                               891   }
932                                                   892 
933   if (phiIsOpen)                                  893   if (phiIsOpen)
934   {                                               894   {
935     //                                            895     //
936     // Finally, check phi                         896     // Finally, check phi
937     //                                            897     //
938     G4double phi = GetPhi(p);                  << 898     G4double phi = p.phi();
939     while( phi < startPhi )    // Loop checkin << 899     while( phi < startPhi ) phi += twopi;
940       phi += twopi;                            << 
941                                                   900     
942     if (phi > startPhi+deltaPhi)                  901     if (phi > startPhi+deltaPhi)
943     {                                             902     {
944       //                                          903       //
945       // Oops. Are we closer to the start phi     904       // Oops. Are we closer to the start phi or end phi?
946       //                                          905       //
947       G4double d1 = phi-startPhi-deltaPhi;        906       G4double d1 = phi-startPhi-deltaPhi;
948       while( phi > startPhi )    // Loop check << 907       while( phi > startPhi ) phi -= twopi;
949         phi -= twopi;                          << 
950       G4double d2 = startPhi-phi;                 908       G4double d2 = startPhi-phi;
951                                                   909       
952       if (d2 < d1) d1 = d2;                       910       if (d2 < d1) d1 = d2;
953                                                   911       
954       //                                          912       //
955       // Add result to our distance               913       // Add result to our distance
956       //                                          914       //
957       G4double dist = d1*rx;                      915       G4double dist = d1*rx;
958                                                   916       
959       distOutside2 += dist*dist;                  917       distOutside2 += dist*dist;
960       if (edgeRZnorm != nullptr)               << 918       if (edgeRZnorm) *edgeRZnorm = std::max(*edgeRZnorm,std::fabs(dist));
961       {                                        << 
962         *edgeRZnorm = std::max(std::fabs(*edge << 
963       }                                        << 
964     }                                             919     }
965   }                                               920   }
966                                                   921 
967   return answer;                                  922   return answer;
968 }                                                 923 }
969                                                   924 
970 // DistanceAway                                << 
971 //                                             << 
972 // Special version of DistanceAway for Inside. << 
973 // Opposite parameter is not used, instead use << 
974 //                                             << 
975 G4double G4PolyconeSide::DistanceAway( const G << 
976                                              G << 
977                                              G << 
978 {                                              << 
979   //                                           << 
980   // Convert our point to r and z              << 
981   //                                           << 
982   G4double rx = p.perp(), zx = p.z();          << 
983                                                << 
984   //                                           << 
985   // Change sign of r if we should             << 
986   //                                           << 
987   G4int part = 1;                              << 
988   if (rx < 0) part = -1;                       << 
989                                                << 
990   //                                           << 
991   // Calculate return value                    << 
992   //                                           << 
993   G4double deltaR = rx - r[0]*part, deltaZ = z << 
994   G4double answer = deltaR*rNorm*part + deltaZ << 
995                                                << 
996   //                                           << 
997   // Are we off the surface in r,z space?      << 
998   //                                           << 
999   G4double q = deltaR*rS*part + deltaZ*zS;     << 
1000   if (q < 0)                                  << 
1001   {                                           << 
1002     distOutside2 = q*q;                       << 
1003     if (edgeRZnorm != nullptr)                << 
1004     {                                         << 
1005       *edgeRZnorm = deltaR*rNormEdge[0]*part  << 
1006     }                                         << 
1007   }                                           << 
1008   else if (q > length)                        << 
1009   {                                           << 
1010     distOutside2 = sqr( q-length );           << 
1011     if (edgeRZnorm != nullptr)                << 
1012     {                                         << 
1013       deltaR = rx - r[1]*part;                << 
1014       deltaZ = zx - z[1];                     << 
1015       *edgeRZnorm = deltaR*rNormEdge[1]*part  << 
1016     }                                         << 
1017   }                                           << 
1018   else                                        << 
1019   {                                           << 
1020     distOutside2 = 0.;                        << 
1021     if (edgeRZnorm != nullptr) *edgeRZnorm =  << 
1022   }                                           << 
1023                                               << 
1024   if (phiIsOpen)                              << 
1025   {                                           << 
1026     //                                        << 
1027     // Finally, check phi                     << 
1028     //                                        << 
1029     G4double phi = GetPhi(p);                 << 
1030     while( phi < startPhi )    // Loop checki << 
1031       phi += twopi;                           << 
1032                                               << 
1033     if (phi > startPhi+deltaPhi)              << 
1034     {                                         << 
1035       //                                      << 
1036       // Oops. Are we closer to the start phi << 
1037       //                                      << 
1038       G4double d1 = phi-startPhi-deltaPhi;    << 
1039       while( phi > startPhi )    // Loop chec << 
1040         phi -= twopi;                         << 
1041       G4double d2 = startPhi-phi;             << 
1042                                               << 
1043       if (d2 < d1) d1 = d2;                   << 
1044                                               << 
1045       //                                      << 
1046       // Add result to our distance           << 
1047       //                                      << 
1048       G4double dist = d1*rx*part;             << 
1049                                               << 
1050       distOutside2 += dist*dist;              << 
1051       if (edgeRZnorm != nullptr)              << 
1052       {                                       << 
1053         *edgeRZnorm = std::max(std::fabs(*edg << 
1054       }                                       << 
1055     }                                         << 
1056   }                                           << 
1057                                               << 
1058   return answer;                              << 
1059 }                                             << 
1060                                                  925 
                                                   >> 926 //
1061 // PointOnCone                                   927 // PointOnCone
1062 //                                               928 //
1063 // Decide if a point is on a cone and return     929 // Decide if a point is on a cone and return normal if it is
1064 //                                               930 //
1065 G4bool G4PolyconeSide::PointOnCone( const G4T << 931 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector &hit,
1066                                           G4d    932                                           G4double normSign,
1067                                     const G4T << 933                                     const G4ThreeVector &p,
1068                                     const G4T << 934                                     const G4ThreeVector &v,
1069                                           G4T << 935                                           G4ThreeVector &normal )
1070 {                                                936 {
1071   G4double rx = hit.perp();                      937   G4double rx = hit.perp();
1072   //                                             938   //
1073   // Check radial/z extent, as appropriate       939   // Check radial/z extent, as appropriate
1074   //                                             940   //
1075   if (!cone->HitOn( rx, hit.z() )) return fal    941   if (!cone->HitOn( rx, hit.z() )) return false;
1076                                                  942   
1077   if (phiIsOpen)                                 943   if (phiIsOpen)
1078   {                                              944   {
1079     G4double phiTolerant = 2.0*kCarTolerance/    945     G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1080     //                                           946     //
1081     // Check phi segment. Here we have to be     947     // Check phi segment. Here we have to be careful
1082     // to use the standard method consistent     948     // to use the standard method consistent with
1083     // PolyPhiFace. See PolyPhiFace::InsideEd    949     // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1084     //                                           950     //
1085     G4double phi = GetPhi(hit);               << 951     G4double phi = hit.phi();
1086     while( phi < startPhi-phiTolerant )   //  << 952     while( phi < startPhi-phiTolerant ) phi += twopi;
1087       phi += twopi;                           << 
1088                                                  953     
1089     if (phi > startPhi+deltaPhi+phiTolerant)     954     if (phi > startPhi+deltaPhi+phiTolerant) return false;
1090                                                  955     
1091     if (phi > startPhi+deltaPhi-phiTolerant)     956     if (phi > startPhi+deltaPhi-phiTolerant)
1092     {                                            957     {
1093       //                                         958       //
1094       // Exact treatment                         959       // Exact treatment
1095       //                                         960       //
1096       G4ThreeVector qx = p + v;                  961       G4ThreeVector qx = p + v;
1097       G4ThreeVector qa = qx - corners[2],        962       G4ThreeVector qa = qx - corners[2],
1098               qb = qx - corners[3];              963               qb = qx - corners[3];
1099       G4ThreeVector qacb = qa.cross(qb);         964       G4ThreeVector qacb = qa.cross(qb);
1100                                                  965       
1101       if (normSign*qacb.dot(v) < 0) return fa    966       if (normSign*qacb.dot(v) < 0) return false;
1102     }                                            967     }
1103     else if (phi < phiTolerant)                  968     else if (phi < phiTolerant)
1104     {                                            969     {
1105       G4ThreeVector qx = p + v;                  970       G4ThreeVector qx = p + v;
1106       G4ThreeVector qa = qx - corners[1],        971       G4ThreeVector qa = qx - corners[1],
1107               qb = qx - corners[0];              972               qb = qx - corners[0];
1108       G4ThreeVector qacb = qa.cross(qb);         973       G4ThreeVector qacb = qa.cross(qb);
1109                                                  974       
1110       if (normSign*qacb.dot(v) < 0) return fa    975       if (normSign*qacb.dot(v) < 0) return false;
1111     }                                            976     }
1112   }                                              977   }
1113                                                  978   
1114   //                                             979   //
1115   // We have a good hit! Calculate normal        980   // We have a good hit! Calculate normal
1116   //                                             981   //
1117   if (rx < DBL_MIN)                              982   if (rx < DBL_MIN) 
1118     normal = G4ThreeVector( 0, 0, zNorm < 0 ?    983     normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1119   else                                           984   else
1120     normal = G4ThreeVector( rNorm*hit.x()/rx,    985     normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1121   return true;                                   986   return true;
1122 }                                                987 }
1123                                                  988 
                                                   >> 989 
                                                   >> 990 //
1124 // FindLineIntersect                             991 // FindLineIntersect
1125 //                                               992 //
1126 // Decide the point at which two 2-dimensiona    993 // Decide the point at which two 2-dimensional lines intersect
1127 //                                               994 //
1128 // Equation of line: x = x1 + s*tx1              995 // Equation of line: x = x1 + s*tx1
1129 //                   y = y1 + s*ty1              996 //                   y = y1 + s*ty1
1130 //                                               997 //
1131 // It is assumed that the lines are *not* par    998 // It is assumed that the lines are *not* parallel
1132 //                                               999 //
1133 void G4PolyconeSide::FindLineIntersect( G4dou    1000 void G4PolyconeSide::FindLineIntersect( G4double x1,  G4double y1,
1134                                         G4dou    1001                                         G4double tx1, G4double ty1,
1135                                         G4dou    1002                                         G4double x2,  G4double y2,
1136                                         G4dou    1003                                         G4double tx2, G4double ty2,
1137                                         G4dou << 1004                                         G4double &x,  G4double &y )
1138 {                                                1005 {
1139   //                                             1006   //
1140   // The solution is a simple linear equation    1007   // The solution is a simple linear equation
1141   //                                             1008   //
1142   G4double deter = tx1*ty2 - tx2*ty1;            1009   G4double deter = tx1*ty2 - tx2*ty1;
1143                                                  1010   
1144   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d    1011   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1145   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d    1012   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1146                                                  1013 
1147   //                                             1014   //
1148   // We want the answer to not depend on whic    1015   // We want the answer to not depend on which order the
1149   // lines were specified. Take average.         1016   // lines were specified. Take average.
1150   //                                             1017   //
1151   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );             1018   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1152   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );             1019   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1153 }                                             << 
1154                                               << 
1155 // Calculate surface area for GetPointOnSurfa << 
1156 //                                            << 
1157 G4double G4PolyconeSide::SurfaceArea()        << 
1158 {                                             << 
1159   if(fSurfaceArea==0.)                        << 
1160   {                                           << 
1161     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr << 
1162     fSurfaceArea *= 0.5*(deltaPhi);           << 
1163   }                                           << 
1164   return fSurfaceArea;                        << 
1165 }                                             << 
1166                                               << 
1167 // GetPointOnFace                             << 
1168 //                                            << 
1169 G4ThreeVector G4PolyconeSide::GetPointOnFace( << 
1170 {                                             << 
1171   G4double x,y,zz;                            << 
1172   G4double rr,phi,dz,dr;                      << 
1173   dr=r[1]-r[0];dz=z[1]-z[0];                  << 
1174   phi=startPhi+deltaPhi*G4UniformRand();      << 
1175   rr=r[0]+dr*G4UniformRand();                 << 
1176                                               << 
1177   x=rr*std::cos(phi);                         << 
1178   y=rr*std::sin(phi);                         << 
1179                                               << 
1180   // PolyconeSide has a Ring Form             << 
1181   //                                          << 
1182   if (dz==0.)                                 << 
1183   {                                           << 
1184     zz=z[0];                                  << 
1185   }                                           << 
1186   else                                        << 
1187   {                                           << 
1188     if(dr==0.)  // PolyconeSide has a Tube Fo << 
1189     {                                         << 
1190       zz = z[0]+dz*G4UniformRand();           << 
1191     }                                         << 
1192     else                                      << 
1193     {                                         << 
1194       zz = z[0]+(rr-r[0])*dz/dr;              << 
1195     }                                         << 
1196   }                                           << 
1197                                               << 
1198   return {x,y,zz};                            << 
1199 }                                                1020 }
1200                                                  1021