Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4PolyconeSide.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4PolyconeSide.cc (Version 11.3.0) and /geometry/solids/specific/src/G4PolyconeSide.cc (Version 11.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of G4PolyconeSide, the face      26 // Implementation of G4PolyconeSide, the face representing
 27 // one conical side of a polycone                  27 // one conical side of a polycone
 28 //                                                 28 //
 29 // Author: David C. Williams (davidw@scipp.ucs     29 // Author: David C. Williams (davidw@scipp.ucsc.edu)
 30 // -------------------------------------------     30 // --------------------------------------------------------------------
 31                                                    31 
 32 #include "G4PolyconeSide.hh"                       32 #include "G4PolyconeSide.hh"
 33 #include "meshdefs.hh"                             33 #include "meshdefs.hh"
 34 #include "G4PhysicalConstants.hh"                  34 #include "G4PhysicalConstants.hh"
 35 #include "G4IntersectingCone.hh"                   35 #include "G4IntersectingCone.hh"
 36 #include "G4ClippablePolygon.hh"                   36 #include "G4ClippablePolygon.hh"
 37 #include "G4AffineTransform.hh"                    37 #include "G4AffineTransform.hh"
 38 #include "G4SolidExtentList.hh"                    38 #include "G4SolidExtentList.hh"
 39 #include "G4GeometryTolerance.hh"                  39 #include "G4GeometryTolerance.hh"
 40                                                    40 
 41 #include "Randomize.hh"                            41 #include "Randomize.hh"
 42                                                    42 
 43 // This new field helps to use the class G4PlS     43 // This new field helps to use the class G4PlSideManager.
 44 //                                                 44 //
 45 G4PlSideManager G4PolyconeSide::subInstanceMan     45 G4PlSideManager G4PolyconeSide::subInstanceManager;
 46                                                    46 
 47 // This macro changes the references to fields     47 // This macro changes the references to fields that are now encapsulated
 48 // in the class G4PlSideData.                      48 // in the class G4PlSideData.
 49 //                                                 49 //
 50 #define G4MT_pcphix ((subInstanceManager.offse     50 #define G4MT_pcphix ((subInstanceManager.offset[instanceID]).fPhix)
 51 #define G4MT_pcphiy ((subInstanceManager.offse     51 #define G4MT_pcphiy ((subInstanceManager.offset[instanceID]).fPhiy)
 52 #define G4MT_pcphiz ((subInstanceManager.offse     52 #define G4MT_pcphiz ((subInstanceManager.offset[instanceID]).fPhiz)
 53 #define G4MT_pcphik ((subInstanceManager.offse     53 #define G4MT_pcphik ((subInstanceManager.offset[instanceID]).fPhik)
 54                                                    54 
 55 // Returns the private data instance manager.      55 // Returns the private data instance manager.
 56 //                                                 56 //
 57 const G4PlSideManager& G4PolyconeSide::GetSubI     57 const G4PlSideManager& G4PolyconeSide::GetSubInstanceManager()
 58 {                                                  58 {
 59   return subInstanceManager;                       59   return subInstanceManager;
 60 }                                                  60 }
 61                                                    61 
 62 // Constructor                                     62 // Constructor
 63 //                                                 63 //
 64 // Values for r1,z1 and r2,z2 should be specif     64 // Values for r1,z1 and r2,z2 should be specified in clockwise
 65 // order in (r,z).                                 65 // order in (r,z).
 66 //                                                 66 //
 67 G4PolyconeSide::G4PolyconeSide( const G4Polyco     67 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSideRZ* prevRZ,
 68                                 const G4Polyco     68                                 const G4PolyconeSideRZ* tail,
 69                                 const G4Polyco     69                                 const G4PolyconeSideRZ* head,
 70                                 const G4Polyco     70                                 const G4PolyconeSideRZ* nextRZ,
 71                                       G4double     71                                       G4double thePhiStart, 
 72                                       G4double     72                                       G4double theDeltaPhi, 
 73                                       G4bool t     73                                       G4bool thePhiIsOpen, 
 74                                       G4bool i     74                                       G4bool isAllBehind )
 75 {                                                  75 {
 76   instanceID = subInstanceManager.CreateSubIns     76   instanceID = subInstanceManager.CreateSubInstance();
 77                                                    77 
 78   kCarTolerance = G4GeometryTolerance::GetInst     78   kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
 79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_p     79   G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_pcphiz = 0.0; G4MT_pcphik = 0.0;
 80                                                    80 
 81   //                                               81   //
 82   // Record values                                 82   // Record values
 83   //                                               83   //
 84   r[0] = tail->r; z[0] = tail->z;                  84   r[0] = tail->r; z[0] = tail->z;
 85   r[1] = head->r; z[1] = head->z;                  85   r[1] = head->r; z[1] = head->z;
 86                                                    86   
 87   phiIsOpen = thePhiIsOpen;                        87   phiIsOpen = thePhiIsOpen;
 88   if (phiIsOpen)                                   88   if (phiIsOpen)
 89   {                                                89   {
 90     deltaPhi = theDeltaPhi;                        90     deltaPhi = theDeltaPhi;
 91     startPhi = thePhiStart;                        91     startPhi = thePhiStart;
 92                                                    92 
 93     //                                             93     //
 94     // Set phi values to our conventions           94     // Set phi values to our conventions
 95     //                                             95     //
 96     while (deltaPhi < 0.0)    // Loop checking     96     while (deltaPhi < 0.0)    // Loop checking, 13.08.2015, G.Cosmo
 97      deltaPhi += twopi;                            97      deltaPhi += twopi;
 98     while (startPhi < 0.0)    // Loop checking     98     while (startPhi < 0.0)    // Loop checking, 13.08.2015, G.Cosmo
 99      startPhi += twopi;                            99      startPhi += twopi;
100                                                   100     
101     //                                            101     //
102     // Calculate corner coordinates               102     // Calculate corner coordinates
103     //                                            103     //
104     ncorners = 4;                                 104     ncorners = 4;
105     corners = new G4ThreeVector[ncorners];        105     corners = new G4ThreeVector[ncorners];
106                                                   106     
107     corners[0] = G4ThreeVector( tail->r*std::c    107     corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108                                 tail->r*std::s    108                                 tail->r*std::sin(startPhi), tail->z );
109     corners[1] = G4ThreeVector( head->r*std::c    109     corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110                                 head->r*std::s    110                                 head->r*std::sin(startPhi), head->z );
111     corners[2] = G4ThreeVector( tail->r*std::c    111     corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112                                 tail->r*std::s    112                                 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113     corners[3] = G4ThreeVector( head->r*std::c    113     corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114                                 head->r*std::s    114                                 head->r*std::sin(startPhi+deltaPhi), head->z );
115   }                                               115   }
116   else                                            116   else
117   {                                               117   {
118     deltaPhi = twopi;                             118     deltaPhi = twopi;
119     startPhi = 0.0;                               119     startPhi = 0.0;
120   }                                               120   }
121                                                   121   
122   allBehind = isAllBehind;                        122   allBehind = isAllBehind;
123                                                   123     
124   //                                              124   //
125   // Make our intersecting cone                   125   // Make our intersecting cone
126   //                                              126   //
127   cone = new G4IntersectingCone( r, z );          127   cone = new G4IntersectingCone( r, z );
128                                                   128   
129   //                                              129   //
130   // Calculate vectors in r,z space               130   // Calculate vectors in r,z space
131   //                                              131   //
132   rS = r[1]-r[0]; zS = z[1]-z[0];                 132   rS = r[1]-r[0]; zS = z[1]-z[0];
133   length = std::sqrt( rS*rS + zS*zS);             133   length = std::sqrt( rS*rS + zS*zS);
134   rS /= length; zS /= length;                     134   rS /= length; zS /= length;
135                                                   135   
136   rNorm = +zS;                                    136   rNorm = +zS;
137   zNorm = -rS;                                    137   zNorm = -rS;
138                                                   138   
139   G4double lAdj;                                  139   G4double lAdj;
140                                                   140   
141   prevRS = r[0]-prevRZ->r;                        141   prevRS = r[0]-prevRZ->r;
142   prevZS = z[0]-prevRZ->z;                        142   prevZS = z[0]-prevRZ->z;
143   lAdj = std::sqrt( prevRS*prevRS + prevZS*pre    143   lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144   prevRS /= lAdj;                                 144   prevRS /= lAdj;
145   prevZS /= lAdj;                                 145   prevZS /= lAdj;
146                                                   146 
147   rNormEdge[0] = rNorm + prevZS;                  147   rNormEdge[0] = rNorm + prevZS;
148   zNormEdge[0] = zNorm - prevRS;                  148   zNormEdge[0] = zNorm - prevRS;
149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0]     149   lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150   rNormEdge[0] /= lAdj;                           150   rNormEdge[0] /= lAdj;
151   zNormEdge[0] /= lAdj;                           151   zNormEdge[0] /= lAdj;
152                                                   152 
153   nextRS = nextRZ->r-r[1];                        153   nextRS = nextRZ->r-r[1];
154   nextZS = nextRZ->z-z[1];                        154   nextZS = nextRZ->z-z[1];
155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nex    155   lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156   nextRS /= lAdj;                                 156   nextRS /= lAdj;
157   nextZS /= lAdj;                                 157   nextZS /= lAdj;
158                                                   158 
159   rNormEdge[1] = rNorm + nextZS;                  159   rNormEdge[1] = rNorm + nextZS;
160   zNormEdge[1] = zNorm - nextRS;                  160   zNormEdge[1] = zNorm - nextRS;
161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1]     161   lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162   rNormEdge[1] /= lAdj;                           162   rNormEdge[1] /= lAdj;
163   zNormEdge[1] /= lAdj;                           163   zNormEdge[1] /= lAdj;
164 }                                                 164 }
165                                                   165 
166 // Fake default constructor - sets only member    166 // Fake default constructor - sets only member data and allocates memory
167 //                            for usage restri    167 //                            for usage restricted to object persistency.
168 //                                                168 //
169 G4PolyconeSide::G4PolyconeSide( __void__& )       169 G4PolyconeSide::G4PolyconeSide( __void__& )
170   : startPhi(0.), deltaPhi(0.),                   170   : startPhi(0.), deltaPhi(0.),
171     rNorm(0.), zNorm(0.), rS(0.), zS(0.), leng << 171     cone(0), rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS    172     prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.),
173     kCarTolerance(0.), instanceID(0)              173     kCarTolerance(0.), instanceID(0)
174 {                                                 174 {
175   r[0] = r[1] = 0.;                               175   r[0] = r[1] = 0.;
176   z[0] = z[1] = 0.;                               176   z[0] = z[1] = 0.;
177   rNormEdge[0]= rNormEdge[1] = 0.;                177   rNormEdge[0]= rNormEdge[1] = 0.;
178   zNormEdge[0]= zNormEdge[1] = 0.;                178   zNormEdge[0]= zNormEdge[1] = 0.;
179 }                                                 179 }
180                                                   180 
181 // Destructor                                     181 // Destructor
182 //                                                182 //  
183 G4PolyconeSide::~G4PolyconeSide()                 183 G4PolyconeSide::~G4PolyconeSide()
184 {                                                 184 {
185   delete cone;                                    185   delete cone;
186   if (phiIsOpen)  { delete [] corners; }          186   if (phiIsOpen)  { delete [] corners; }
187 }                                                 187 }
188                                                   188 
189 // Copy constructor                               189 // Copy constructor
190 //                                                190 //
191 G4PolyconeSide::G4PolyconeSide( const G4Polyco    191 G4PolyconeSide::G4PolyconeSide( const G4PolyconeSide& source )
                                                   >> 192   : G4VCSGface()
192 {                                                 193 {
193   instanceID = subInstanceManager.CreateSubIns    194   instanceID = subInstanceManager.CreateSubInstance();
194                                                   195 
195   CopyStuff( source );                            196   CopyStuff( source );
196 }                                                 197 }
197                                                   198 
198 // Assignment operator                            199 // Assignment operator
199 //                                                200 //
200 G4PolyconeSide& G4PolyconeSide::operator=( con    201 G4PolyconeSide& G4PolyconeSide::operator=( const G4PolyconeSide& source )
201 {                                                 202 {
202   if (this == &source)  { return *this; }         203   if (this == &source)  { return *this; }
203                                                   204 
204   delete cone;                                    205   delete cone;
205   if (phiIsOpen)  { delete [] corners; }          206   if (phiIsOpen)  { delete [] corners; }
206                                                   207   
207   CopyStuff( source );                            208   CopyStuff( source );
208                                                   209   
209   return *this;                                   210   return *this;
210 }                                                 211 }
211                                                   212 
212 // CopyStuff                                      213 // CopyStuff
213 //                                                214 //
214 void G4PolyconeSide::CopyStuff( const G4Polyco    215 void G4PolyconeSide::CopyStuff( const G4PolyconeSide& source )
215 {                                                 216 {
216   r[0]    = source.r[0];                          217   r[0]    = source.r[0];
217   r[1]    = source.r[1];                          218   r[1]    = source.r[1];
218   z[0]    = source.z[0];                          219   z[0]    = source.z[0];
219   z[1]    = source.z[1];                          220   z[1]    = source.z[1];
220                                                   221   
221   startPhi  = source.startPhi;                    222   startPhi  = source.startPhi;
222   deltaPhi  = source.deltaPhi;                    223   deltaPhi  = source.deltaPhi;
223   phiIsOpen  = source.phiIsOpen;                  224   phiIsOpen  = source.phiIsOpen;
224   allBehind  = source.allBehind;                  225   allBehind  = source.allBehind;
225                                                   226 
226   kCarTolerance = source.kCarTolerance;           227   kCarTolerance = source.kCarTolerance;
227   fSurfaceArea = source.fSurfaceArea;             228   fSurfaceArea = source.fSurfaceArea;
228                                                   229   
229   cone    = new G4IntersectingCone( *source.co    230   cone    = new G4IntersectingCone( *source.cone );
230                                                   231   
231   rNorm    = source.rNorm;                        232   rNorm    = source.rNorm;
232   zNorm    = source.zNorm;                        233   zNorm    = source.zNorm;
233   rS    = source.rS;                              234   rS    = source.rS;
234   zS    = source.zS;                              235   zS    = source.zS;
235   length    = source.length;                      236   length    = source.length;
236   prevRS    = source.prevRS;                      237   prevRS    = source.prevRS;
237   prevZS    = source.prevZS;                      238   prevZS    = source.prevZS;
238   nextRS    = source.nextRS;                      239   nextRS    = source.nextRS;
239   nextZS    = source.nextZS;                      240   nextZS    = source.nextZS;
240                                                   241   
241   rNormEdge[0]   = source.rNormEdge[0];           242   rNormEdge[0]   = source.rNormEdge[0];
242   rNormEdge[1]  = source.rNormEdge[1];            243   rNormEdge[1]  = source.rNormEdge[1];
243   zNormEdge[0]  = source.zNormEdge[0];            244   zNormEdge[0]  = source.zNormEdge[0];
244   zNormEdge[1]  = source.zNormEdge[1];            245   zNormEdge[1]  = source.zNormEdge[1];
245                                                   246   
246   if (phiIsOpen)                                  247   if (phiIsOpen)
247   {                                               248   {
248     ncorners = 4;                                 249     ncorners = 4;
249     corners = new G4ThreeVector[ncorners];        250     corners = new G4ThreeVector[ncorners];
250                                                   251     
251     corners[0] = source.corners[0];               252     corners[0] = source.corners[0];
252     corners[1] = source.corners[1];               253     corners[1] = source.corners[1];
253     corners[2] = source.corners[2];               254     corners[2] = source.corners[2];
254     corners[3] = source.corners[3];               255     corners[3] = source.corners[3];
255   }                                               256   }
256 }                                                 257 }
257                                                   258 
258 // Intersect                                      259 // Intersect
259 //                                                260 //
260 G4bool G4PolyconeSide::Intersect( const G4Thre    261 G4bool G4PolyconeSide::Intersect( const G4ThreeVector& p,
261                                   const G4Thre    262                                   const G4ThreeVector& v,  
262                                         G4bool    263                                         G4bool outgoing,
263                                         G4doub    264                                         G4double surfTolerance,
264                                         G4doub    265                                         G4double& distance,
265                                         G4doub    266                                         G4double& distFromSurface,
266                                         G4Thre    267                                         G4ThreeVector& normal,
267                                         G4bool    268                                         G4bool& isAllBehind )
268 {                                                 269 {
269   G4double s1=0., s2=0.;                       << 270   G4double s1, s2;
270   G4double normSign = outgoing ? +1 : -1;         271   G4double normSign = outgoing ? +1 : -1;
271                                                   272   
272   isAllBehind = allBehind;                        273   isAllBehind = allBehind;
273                                                   274 
274   //                                              275   //
275   // Check for two possible intersections         276   // Check for two possible intersections
276   //                                              277   //
277   G4int nside = cone->LineHitsCone( p, v, &s1,    278   G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278   if (nside == 0) return false;                   279   if (nside == 0) return false;
279                                                   280     
280   //                                              281   //
281   // Check the first side first, since it is (    282   // Check the first side first, since it is (supposed to be) closest
282   //                                              283   //
283   G4ThreeVector hit = p + s1*v;                   284   G4ThreeVector hit = p + s1*v;
284                                                   285   
285   if (PointOnCone( hit, normSign, p, v, normal    286   if (PointOnCone( hit, normSign, p, v, normal ))
286   {                                               287   {
287     //                                            288     //
288     // Good intersection! What about the norma    289     // Good intersection! What about the normal? 
289     //                                            290     //
290     if (normSign*v.dot(normal) > 0)               291     if (normSign*v.dot(normal) > 0)
291     {                                             292     {
292       //                                          293       //
293       // We have a valid intersection, but it     294       // We have a valid intersection, but it could very easily
294       // be behind the point. To decide if we     295       // be behind the point. To decide if we tolerate this,
295       // we have to see if the point p is on t    296       // we have to see if the point p is on the surface near
296       // the intersecting point.                  297       // the intersecting point.
297       //                                          298       //
298       // What does it mean exactly for the poi    299       // What does it mean exactly for the point p to be "near"
299       // the intersection? It means that if we    300       // the intersection? It means that if we draw a line from
300       // p to the hit, the line remains entire    301       // p to the hit, the line remains entirely within the
301       // tolerance bounds of the cone. To test    302       // tolerance bounds of the cone. To test this, we can
302       // ask if the normal is correct near p.     303       // ask if the normal is correct near p.
303       //                                          304       //
304       G4double pr = p.perp();                     305       G4double pr = p.perp();
305       if (pr < DBL_MIN) pr = DBL_MIN;             306       if (pr < DBL_MIN) pr = DBL_MIN;
306       G4ThreeVector pNormal( rNorm*p.x()/pr, r    307       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307       if (normSign*v.dot(pNormal) > 0)            308       if (normSign*v.dot(pNormal) > 0)
308       {                                           309       {
309         //                                        310         //
310         // p and intersection in same hemisphe    311         // p and intersection in same hemisphere
311         //                                        312         //
312         G4double distOutside2;                    313         G4double distOutside2;
313         distFromSurface = -normSign*DistanceAw    314         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314         if (distOutside2 < surfTolerance*surfT    315         if (distOutside2 < surfTolerance*surfTolerance)
315         {                                         316         {
316           if (distFromSurface > -surfTolerance    317           if (distFromSurface > -surfTolerance)
317           {                                       318           {
318             //                                    319             //
319             // We are just inside or away from    320             // We are just inside or away from the
320             // surface. Accept *any* value of     321             // surface. Accept *any* value of distance.
321             //                                    322             //
322             distance = s1;                        323             distance = s1;
323             return true;                          324             return true;
324           }                                       325           }
325         }                                         326         }
326       }                                           327       }
327       else                                        328       else 
328         distFromSurface = s1;                     329         distFromSurface = s1;
329                                                   330       
330       //                                          331       //
331       // Accept positive distances                332       // Accept positive distances
332       //                                          333       //
333       if (s1 > 0)                                 334       if (s1 > 0)
334       {                                           335       {
335         distance = s1;                            336         distance = s1;
336         return true;                              337         return true;
337       }                                           338       }
338     }                                             339     }
339   }                                               340   }  
340                                                   341   
341   if (nside==1) return false;                     342   if (nside==1) return false;
342                                                   343   
343   //                                              344   //
344   // Well, try the second hit                     345   // Well, try the second hit
345   //                                              346   //  
346   hit = p + s2*v;                                 347   hit = p + s2*v;
347                                                   348   
348   if (PointOnCone( hit, normSign, p, v, normal    349   if (PointOnCone( hit, normSign, p, v, normal ))
349   {                                               350   {
350     //                                            351     //
351     // Good intersection! What about the norma    352     // Good intersection! What about the normal? 
352     //                                            353     //
353     if (normSign*v.dot(normal) > 0)               354     if (normSign*v.dot(normal) > 0)
354     {                                             355     {
355       G4double pr = p.perp();                     356       G4double pr = p.perp();
356       if (pr < DBL_MIN) pr = DBL_MIN;             357       if (pr < DBL_MIN) pr = DBL_MIN;
357       G4ThreeVector pNormal( rNorm*p.x()/pr, r    358       G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358       if (normSign*v.dot(pNormal) > 0)            359       if (normSign*v.dot(pNormal) > 0)
359       {                                           360       {
360         G4double distOutside2;                    361         G4double distOutside2;
361         distFromSurface = -normSign*DistanceAw    362         distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362         if (distOutside2 < surfTolerance*surfT    363         if (distOutside2 < surfTolerance*surfTolerance)
363         {                                         364         {
364           if (distFromSurface > -surfTolerance    365           if (distFromSurface > -surfTolerance)
365           {                                       366           {
366             distance = s2;                        367             distance = s2;
367             return true;                          368             return true;
368           }                                       369           }
369         }                                         370         }
370       }                                           371       }
371       else                                        372       else 
372         distFromSurface = s2;                     373         distFromSurface = s2;
373                                                   374       
374       if (s2 > 0)                                 375       if (s2 > 0)
375       {                                           376       {
376         distance = s2;                            377         distance = s2;
377         return true;                              378         return true;
378       }                                           379       }
379     }                                             380     }
380   }                                               381   }  
381                                                   382 
382   //                                              383   //
383   // Better luck next time                        384   // Better luck next time
384   //                                              385   //
385   return false;                                   386   return false;
386 }                                                 387 }
387                                                   388 
388 // Distance                                       389 // Distance
389 //                                                390 //
390 G4double G4PolyconeSide::Distance( const G4Thr    391 G4double G4PolyconeSide::Distance( const G4ThreeVector& p, G4bool outgoing )
391 {                                                 392 {
392   G4double normSign = outgoing ? -1 : +1;         393   G4double normSign = outgoing ? -1 : +1;
393   G4double distFrom, distOut2;                    394   G4double distFrom, distOut2;
394                                                   395   
395   //                                              396   //
396   // We have two tries for each hemisphere. Tr    397   // We have two tries for each hemisphere. Try the closest first.
397   //                                              398   //
398   distFrom = normSign*DistanceAway( p, false,     399   distFrom = normSign*DistanceAway( p, false, distOut2 );
399   if (distFrom > -0.5*kCarTolerance )             400   if (distFrom > -0.5*kCarTolerance )
400   {                                               401   {
401     //                                            402     //
402     // Good answer                                403     // Good answer
403     //                                            404     //
404     if (distOut2 > 0)                             405     if (distOut2 > 0) 
405       return std::sqrt( distFrom*distFrom + di    406       return std::sqrt( distFrom*distFrom + distOut2 );
406     else                                          407     else 
407       return std::fabs(distFrom);                 408       return std::fabs(distFrom);
408   }                                               409   }
409                                                   410   
410   //                                              411   //
411   // Try second side.                             412   // Try second side. 
412   //                                              413   //
413   distFrom = normSign*DistanceAway( p,  true,     414   distFrom = normSign*DistanceAway( p,  true, distOut2 );
414   if (distFrom > -0.5*kCarTolerance)              415   if (distFrom > -0.5*kCarTolerance)
415   {                                               416   {
416                                                   417 
417     if (distOut2 > 0)                             418     if (distOut2 > 0) 
418       return std::sqrt( distFrom*distFrom + di    419       return std::sqrt( distFrom*distFrom + distOut2 );
419     else                                          420     else
420       return std::fabs(distFrom);                 421       return std::fabs(distFrom);
421   }                                               422   }
422                                                   423   
423   return kInfinity;                               424   return kInfinity;
424 }                                                 425 }
425                                                   426 
426 // Inside                                         427 // Inside
427 //                                                428 //
428 EInside G4PolyconeSide::Inside( const G4ThreeV    429 EInside G4PolyconeSide::Inside( const G4ThreeVector& p,
429                                       G4double    430                                       G4double tolerance, 
430                                       G4double    431                                       G4double* bestDistance )
431 {                                                 432 {
432   G4double distFrom, distOut2, dist2;             433   G4double distFrom, distOut2, dist2;
433   G4double edgeRZnorm;                            434   G4double edgeRZnorm;
434                                                   435      
435   distFrom =  DistanceAway( p, distOut2, &edge    436   distFrom =  DistanceAway( p, distOut2, &edgeRZnorm );
436   dist2 = distFrom*distFrom + distOut2;           437   dist2 = distFrom*distFrom + distOut2;
437                                                   438  
438   *bestDistance = std::sqrt( dist2);              439   *bestDistance = std::sqrt( dist2);
439                                                   440   
440   // Okay then, inside or out?                    441   // Okay then, inside or out?
441   //                                              442   //
442   if ( (std::fabs(edgeRZnorm) < tolerance)        443   if ( (std::fabs(edgeRZnorm) < tolerance)
443     && (distOut2< tolerance*tolerance) )          444     && (distOut2< tolerance*tolerance) )
444     return kSurface;                              445     return kSurface;
445   else if (edgeRZnorm < 0)                        446   else if (edgeRZnorm < 0)
446     return kInside;                               447     return kInside;
447   else                                            448   else
448     return kOutside;                              449     return kOutside;
449 }                                                 450 }
450                                                   451 
451 // Normal                                         452 // Normal
452 //                                                453 //
453 G4ThreeVector G4PolyconeSide::Normal( const G4    454 G4ThreeVector G4PolyconeSide::Normal( const G4ThreeVector& p,
454                                             G4    455                                             G4double* bestDistance )
455 {                                                 456 {
456   if (p == G4ThreeVector(0.,0.,0.))  { return     457   if (p == G4ThreeVector(0.,0.,0.))  { return p; }
457                                                   458 
458   G4double dFrom, dOut2;                          459   G4double dFrom, dOut2;
459                                                   460   
460   dFrom = DistanceAway( p, false, dOut2 );        461   dFrom = DistanceAway( p, false, dOut2 );
461                                                   462   
462   *bestDistance = std::sqrt( dFrom*dFrom + dOu    463   *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
463                                                   464   
464   G4double rds = p.perp();                        465   G4double rds = p.perp();
465   if (rds!=0.) { return {rNorm*p.x()/rds,rNorm << 466   if (rds!=0.) { return G4ThreeVector(rNorm*p.x()/rds,rNorm*p.y()/rds,zNorm); }
466   return G4ThreeVector( 0.,0., zNorm ).unit();    467   return G4ThreeVector( 0.,0., zNorm ).unit();
467 }                                                 468 }
468                                                   469 
469 // Extent                                         470 // Extent
470 //                                                471 //
471 G4double G4PolyconeSide::Extent( const G4Three    472 G4double G4PolyconeSide::Extent( const G4ThreeVector axis )
472 {                                                 473 {
473   if (axis.perp2() < DBL_MIN)                     474   if (axis.perp2() < DBL_MIN)
474   {                                               475   {
475     //                                            476     //
476     // Special case                               477     // Special case
477     //                                            478     //
478     return axis.z() < 0 ? -cone->ZLo() : cone-    479     return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
479   }                                               480   }
480                                                   481 
481   //                                              482   //
482   // Is the axis pointing inside our phi gap?     483   // Is the axis pointing inside our phi gap?
483   //                                              484   //
484   if (phiIsOpen)                                  485   if (phiIsOpen)
485   {                                               486   {
486     G4double phi = GetPhi(axis);                  487     G4double phi = GetPhi(axis);
487     while( phi < startPhi )    // Loop checkin    488     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
488       phi += twopi;                               489       phi += twopi;
489                                                   490     
490     if (phi > deltaPhi+startPhi)                  491     if (phi > deltaPhi+startPhi)
491     {                                             492     {
492       //                                          493       //
493       // Yeah, looks so. Make four three vecto    494       // Yeah, looks so. Make four three vectors defining the phi
494       // opening                                  495       // opening
495       //                                          496       //
496       G4double cosP = std::cos(startPhi), sinP    497       G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
497       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z    498       G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
498       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z    499       G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
499       cosP = std::cos(startPhi+deltaPhi); sinP    500       cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
500       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z    501       G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
501       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z    502       G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
502                                                   503       
503       G4double ad = axis.dot(a),                  504       G4double ad = axis.dot(a),
504                bd = axis.dot(b),                  505                bd = axis.dot(b),
505                cd = axis.dot(c),                  506                cd = axis.dot(c),
506                dd = axis.dot(d);                  507                dd = axis.dot(d);
507                                                   508       
508       if (bd > ad) ad = bd;                       509       if (bd > ad) ad = bd;
509       if (cd > ad) ad = cd;                       510       if (cd > ad) ad = cd;
510       if (dd > ad) ad = dd;                       511       if (dd > ad) ad = dd;
511                                                   512       
512       return ad;                                  513       return ad;
513     }                                             514     }
514   }                                               515   }
515                                                   516 
516   //                                              517   //
517   // Check either end                             518   // Check either end
518   //                                              519   //
519   G4double aPerp = axis.perp();                   520   G4double aPerp = axis.perp();
520                                                   521   
521   G4double a = aPerp*r[0] + axis.z()*z[0];        522   G4double a = aPerp*r[0] + axis.z()*z[0];
522   G4double b = aPerp*r[1] + axis.z()*z[1];        523   G4double b = aPerp*r[1] + axis.z()*z[1];
523                                                   524   
524   if (b > a) a = b;                               525   if (b > a) a = b;
525                                                   526   
526   return a;                                       527   return a;
527 }                                                 528 }
528                                                   529 
529 // CalculateExtent                                530 // CalculateExtent
530 //                                                531 //
531 // See notes in G4VCSGface                        532 // See notes in G4VCSGface
532 //                                                533 //
533 void G4PolyconeSide::CalculateExtent( const EA    534 void G4PolyconeSide::CalculateExtent( const EAxis axis, 
534                                       const G4    535                                       const G4VoxelLimits& voxelLimit,
535                                       const G4    536                                       const G4AffineTransform& transform,
536                                             G4    537                                             G4SolidExtentList& extentList )
537 {                                                 538 {
538   G4ClippablePolygon polygon;                     539   G4ClippablePolygon polygon;
539                                                   540   
540   //                                              541   //
541   // Here we will approximate (ala G4Cons) and    542   // Here we will approximate (ala G4Cons) and divide our conical section
542   // into segments, like G4Polyhedra. When doi    543   // into segments, like G4Polyhedra. When doing so, the radius
543   // is extented far enough such that the segm    544   // is extented far enough such that the segments always lie
544   // just outside the surface of the conical s    545   // just outside the surface of the conical section we are
545   // approximating.                               546   // approximating.
546   //                                              547   //
547                                                   548   
548   //                                              549   //
549   // Choose phi size of our segment(s) based o    550   // Choose phi size of our segment(s) based on constants as
550   // defined in meshdefs.hh                       551   // defined in meshdefs.hh
551   //                                              552   //
552   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDe    553   G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
553   if (numPhi < kMinMeshSections)                  554   if (numPhi < kMinMeshSections) 
554     numPhi = kMinMeshSections;                    555     numPhi = kMinMeshSections;
555   else if (numPhi > kMaxMeshSections)             556   else if (numPhi > kMaxMeshSections)
556     numPhi = kMaxMeshSections;                    557     numPhi = kMaxMeshSections;
557                                                   558     
558   G4double sigPhi = deltaPhi/numPhi;              559   G4double sigPhi = deltaPhi/numPhi;
559                                                   560   
560   //                                              561   //
561   // Determine radius factor to keep segments     562   // Determine radius factor to keep segments outside
562   //                                              563   //
563   G4double rFudge = 1.0/std::cos(0.5*sigPhi);     564   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
564                                                   565   
565   //                                              566   //
566   // Decide which radius to use on each end of    567   // Decide which radius to use on each end of the side,
567   // and whether a transition mesh is required    568   // and whether a transition mesh is required
568   //                                              569   //
569   // {r0,z0}  - Beginning of this side            570   // {r0,z0}  - Beginning of this side
570   // {r1,z1}  - Ending of this side               571   // {r1,z1}  - Ending of this side
571   // {r2,z0}  - Beginning of transition piece     572   // {r2,z0}  - Beginning of transition piece connecting previous
572   //            side (and ends at beginning of    573   //            side (and ends at beginning of this side)
573   //                                              574   //
574   // So, order is 2 --> 0 --> 1.                  575   // So, order is 2 --> 0 --> 1.
575   //                    -------                   576   //                    -------
576   //                                              577   //
577   // r2 < 0 indicates that no transition piece    578   // r2 < 0 indicates that no transition piece is required
578   //                                              579   //
579   G4double r0, r1, r2, z0, z1;                    580   G4double r0, r1, r2, z0, z1;
580                                                   581   
581   r2 = -1;  // By default: no transition piece    582   r2 = -1;  // By default: no transition piece
582                                                   583   
583   if (rNorm < -DBL_MIN)                           584   if (rNorm < -DBL_MIN)
584   {                                               585   {
585     //                                            586     //
586     // This side faces *inward*, and so our me    587     // This side faces *inward*, and so our mesh has
587     // the same radius                            588     // the same radius
588     //                                            589     //
589     r1 = r[1];                                    590     r1 = r[1];
590     z1 = z[1];                                    591     z1 = z[1];
591     z0 = z[0];                                    592     z0 = z[0];
592     r0 = r[0];                                    593     r0 = r[0];
593                                                   594     
594     r2 = -1;                                      595     r2 = -1;
595                                                   596     
596     if (prevZS > DBL_MIN)                         597     if (prevZS > DBL_MIN)
597     {                                             598     {
598       //                                          599       //
599       // The previous side is facing outwards     600       // The previous side is facing outwards
600       //                                          601       //
601       if ( prevRS*zS - prevZS*rS > 0 )            602       if ( prevRS*zS - prevZS*rS > 0 )
602       {                                           603       {
603         //                                        604         //
604         // Transition was convex: build transi    605         // Transition was convex: build transition piece
605         //                                        606         //
606         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;     607         if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
607       }                                           608       }
608       else                                        609       else
609       {                                           610       {
610         //                                        611         //
611         // Transition was concave: short this     612         // Transition was concave: short this side
612         //                                        613         //
613         FindLineIntersect( z0, r0, zS, rS,        614         FindLineIntersect( z0, r0, zS, rS,
614                            z0, r0*rFudge, prev    615                            z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
615       }                                           616       }
616     }                                             617     }
617                                                   618     
618     if ( nextZS > DBL_MIN && (rS*nextZS - zS*n    619     if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
619     {                                             620     {
620       //                                          621       //
621       // The next side is facing outwards, for    622       // The next side is facing outwards, forming a 
622       // concave transition: short this side      623       // concave transition: short this side
623       //                                          624       //
624       FindLineIntersect( z1, r1, zS, rS,          625       FindLineIntersect( z1, r1, zS, rS,
625                          z1, r1*rFudge, nextZS    626                          z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
626     }                                             627     }
627   }                                               628   }
628   else if (rNorm > DBL_MIN)                       629   else if (rNorm > DBL_MIN)
629   {                                               630   {
630     //                                            631     //
631     // This side faces *outward* and is given     632     // This side faces *outward* and is given a boost to
632     // it radius                                  633     // it radius
633     //                                            634     //
634     r0 = r[0]*rFudge;                             635     r0 = r[0]*rFudge;
635     z0 = z[0];                                    636     z0 = z[0];
636     r1 = r[1]*rFudge;                             637     r1 = r[1]*rFudge;
637     z1 = z[1];                                    638     z1 = z[1];
638                                                   639     
639     if (prevZS < -DBL_MIN)                        640     if (prevZS < -DBL_MIN)
640     {                                             641     {
641       //                                          642       //
642       // The previous side is facing inwards      643       // The previous side is facing inwards
643       //                                          644       //
644       if ( prevRS*zS - prevZS*rS > 0 )            645       if ( prevRS*zS - prevZS*rS > 0 )
645       {                                           646       {
646         //                                        647         //
647         // Transition was convex: build transi    648         // Transition was convex: build transition piece
648         //                                        649         //
649         if (r[0] > DBL_MIN) r2 = r[0];            650         if (r[0] > DBL_MIN) r2 = r[0];
650       }                                           651       }
651       else                                        652       else
652       {                                           653       {
653         //                                        654         //
654         // Transition was concave: short this     655         // Transition was concave: short this side
655         //                                        656         //
656         FindLineIntersect( z0, r0, zS, rS*rFud    657         FindLineIntersect( z0, r0, zS, rS*rFudge,
657                            z0, r[0], prevZS, p    658                            z0, r[0], prevZS, prevRS, z0, r0 );
658       }                                           659       }
659     }                                             660     }
660                                                   661     
661     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*    662     if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
662     {                                             663     {
663       //                                          664       //
664       // The next side is facing inwards, form    665       // The next side is facing inwards, forming a 
665       // concave transition: short this side      666       // concave transition: short this side
666       //                                          667       //
667       FindLineIntersect( z1, r1, zS, rS*rFudge    668       FindLineIntersect( z1, r1, zS, rS*rFudge,
668                          z1, r[1], nextZS, nex    669                          z1, r[1], nextZS, nextRS, z1, r1 );
669     }                                             670     }
670   }                                               671   }
671   else                                            672   else
672   {                                               673   {
673     //                                            674     //
674     // This side is perpendicular to the z axi    675     // This side is perpendicular to the z axis (is a disk)
675     //                                            676     //
676     // Whether or not r0 needs a rFudge factor    677     // Whether or not r0 needs a rFudge factor depends
677     // on the normal of the previous edge. Sim    678     // on the normal of the previous edge. Similar with r1
678     // and the next edge. No transition piece     679     // and the next edge. No transition piece is required.
679     //                                            680     //
680     r0 = r[0];                                    681     r0 = r[0];
681     r1 = r[1];                                    682     r1 = r[1];
682     z0 = z[0];                                    683     z0 = z[0];
683     z1 = z[1];                                    684     z1 = z[1];
684                                                   685     
685     if (prevZS > DBL_MIN) r0 *= rFudge;           686     if (prevZS > DBL_MIN) r0 *= rFudge;
686     if (nextZS > DBL_MIN) r1 *= rFudge;           687     if (nextZS > DBL_MIN) r1 *= rFudge;
687   }                                               688   }
688                                                   689   
689   //                                              690   //
690   // Loop                                         691   // Loop
691   //                                              692   //
692   G4double phi = startPhi,                        693   G4double phi = startPhi, 
693            cosPhi = std::cos(phi),                694            cosPhi = std::cos(phi), 
694            sinPhi = std::sin(phi);                695            sinPhi = std::sin(phi);
695                                                   696   
696   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 )    697   G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
697                     v1( r1*cosPhi, r1*sinPhi,     698                     v1( r1*cosPhi, r1*sinPhi, z1 ),
698   v2, w0, w1, w2;                                 699   v2, w0, w1, w2;
699   transform.ApplyPointTransform( v0 );            700   transform.ApplyPointTransform( v0 );
700   transform.ApplyPointTransform( v1 );            701   transform.ApplyPointTransform( v1 );
701                                                   702   
702   if (r2 >= 0)                                    703   if (r2 >= 0)
703   {                                               704   {
704     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi,     705     v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
705     transform.ApplyPointTransform( v2 );          706     transform.ApplyPointTransform( v2 );
706   }                                               707   }
707                                                   708 
708   do    // Loop checking, 13.08.2015, G.Cosmo     709   do    // Loop checking, 13.08.2015, G.Cosmo
709   {                                               710   {
710     phi += sigPhi;                                711     phi += sigPhi;
711     if (numPhi == 1) phi = startPhi+deltaPhi;     712     if (numPhi == 1) phi = startPhi+deltaPhi;  // Try to avoid roundoff
712     cosPhi = std::cos(phi),                       713     cosPhi = std::cos(phi), 
713     sinPhi = std::sin(phi);                       714     sinPhi = std::sin(phi);
714                                                   715     
715     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     716     w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
716     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     717     w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
717     transform.ApplyPointTransform( w0 );          718     transform.ApplyPointTransform( w0 );
718     transform.ApplyPointTransform( w1 );          719     transform.ApplyPointTransform( w1 );
719                                                   720     
720     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w    721     G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
721                                                   722     
722     //                                            723     //
723     // Build polygon, taking special care to k    724     // Build polygon, taking special care to keep the vertices
724     // in order                                   725     // in order
725     //                                            726     //
726     polygon.ClearAllVertices();                   727     polygon.ClearAllVertices();
727                                                   728 
728     polygon.AddVertexInOrder( v0 );               729     polygon.AddVertexInOrder( v0 );
729     polygon.AddVertexInOrder( v1 );               730     polygon.AddVertexInOrder( v1 );
730     polygon.AddVertexInOrder( w1 );               731     polygon.AddVertexInOrder( w1 );
731     polygon.AddVertexInOrder( w0 );               732     polygon.AddVertexInOrder( w0 );
732                                                   733 
733     //                                            734     //
734     // Get extent                                 735     // Get extent
735     //                                            736     //
736     if (polygon.PartialClip( voxelLimit, axis     737     if (polygon.PartialClip( voxelLimit, axis ))
737     {                                             738     {
738       //                                          739       //
739       // Get dot product of normal with target    740       // Get dot product of normal with target axis
740       //                                          741       //
741       polygon.SetNormal( deltaV.cross(v1-v0).u    742       polygon.SetNormal( deltaV.cross(v1-v0).unit() );
742                                                   743       
743       extentList.AddSurface( polygon );           744       extentList.AddSurface( polygon );
744     }                                             745     }
745                                                   746     
746     if (r2 >= 0)                                  747     if (r2 >= 0)
747     {                                             748     {
748       //                                          749       //
749       // Repeat, for transition piece             750       // Repeat, for transition piece
750       //                                          751       //
751       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi    752       w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
752       transform.ApplyPointTransform( w2 );        753       transform.ApplyPointTransform( w2 );
753                                                   754 
754       polygon.ClearAllVertices();                 755       polygon.ClearAllVertices();
755                                                   756 
756       polygon.AddVertexInOrder( v2 );             757       polygon.AddVertexInOrder( v2 );
757       polygon.AddVertexInOrder( v0 );             758       polygon.AddVertexInOrder( v0 );
758       polygon.AddVertexInOrder( w0 );             759       polygon.AddVertexInOrder( w0 );
759       polygon.AddVertexInOrder( w2 );             760       polygon.AddVertexInOrder( w2 );
760                                                   761 
761       if (polygon.PartialClip( voxelLimit, axi    762       if (polygon.PartialClip( voxelLimit, axis ))
762       {                                           763       {
763         polygon.SetNormal( deltaV.cross(v0-v2)    764         polygon.SetNormal( deltaV.cross(v0-v2).unit() );
764                                                   765         
765         extentList.AddSurface( polygon );         766         extentList.AddSurface( polygon );
766       }                                           767       }
767                                                   768       
768       v2 = w2;                                    769       v2 = w2;
769     }                                             770     }
770                                                   771     
771     //                                            772     //
772     // Next vertex                                773     // Next vertex
773     //                                            774     //    
774     v0 = w0;                                      775     v0 = w0;
775     v1 = w1;                                      776     v1 = w1;
776   } while( --numPhi > 0 );                        777   } while( --numPhi > 0 );
777                                                   778   
778   //                                              779   //
779   // We are almost done. But, it is important     780   // We are almost done. But, it is important that we leave no
780   // gaps in the surface of our solid. By usin    781   // gaps in the surface of our solid. By using rFudge, however,
781   // we've done exactly that, if we have a phi    782   // we've done exactly that, if we have a phi segment. 
782   // Add two additional faces if necessary        783   // Add two additional faces if necessary
783   //                                              784   //
784   if (phiIsOpen && rNorm > DBL_MIN)               785   if (phiIsOpen && rNorm > DBL_MIN)
785   {                                               786   {    
786     cosPhi = std::cos(startPhi);                  787     cosPhi = std::cos(startPhi);
787     sinPhi = std::sin(startPhi);                  788     sinPhi = std::sin(startPhi);
788                                                   789 
789     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi    790     G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
790                   a1( r[1]*cosPhi, r[1]*sinPhi    791                   a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
791                   b0( r0*cosPhi, r0*sinPhi, z[    792                   b0( r0*cosPhi, r0*sinPhi, z[0] ),
792                   b1( r1*cosPhi, r1*sinPhi, z[    793                   b1( r1*cosPhi, r1*sinPhi, z[1] );
793                                                   794   
794     transform.ApplyPointTransform( a0 );          795     transform.ApplyPointTransform( a0 );
795     transform.ApplyPointTransform( a1 );          796     transform.ApplyPointTransform( a1 );
796     transform.ApplyPointTransform( b0 );          797     transform.ApplyPointTransform( b0 );
797     transform.ApplyPointTransform( b1 );          798     transform.ApplyPointTransform( b1 );
798                                                   799 
799     polygon.ClearAllVertices();                   800     polygon.ClearAllVertices();
800                                                   801 
801     polygon.AddVertexInOrder( a0 );               802     polygon.AddVertexInOrder( a0 );
802     polygon.AddVertexInOrder( a1 );               803     polygon.AddVertexInOrder( a1 );
803     polygon.AddVertexInOrder( b0 );               804     polygon.AddVertexInOrder( b0 );
804     polygon.AddVertexInOrder( b1 );               805     polygon.AddVertexInOrder( b1 );
805                                                   806     
806     if (polygon.PartialClip( voxelLimit , axis    807     if (polygon.PartialClip( voxelLimit , axis))
807     {                                             808     {
808       G4ThreeVector normal( sinPhi, -cosPhi, 0    809       G4ThreeVector normal( sinPhi, -cosPhi, 0 );
809       polygon.SetNormal( transform.TransformAx    810       polygon.SetNormal( transform.TransformAxis( normal ) );
810                                                   811         
811       extentList.AddSurface( polygon );           812       extentList.AddSurface( polygon );
812     }                                             813     }
813                                                   814     
814     cosPhi = std::cos(startPhi+deltaPhi);         815     cosPhi = std::cos(startPhi+deltaPhi);
815     sinPhi = std::sin(startPhi+deltaPhi);         816     sinPhi = std::sin(startPhi+deltaPhi);
816                                                   817     
817     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinP    818     a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
818     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinP    819     a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
819     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi,     820     b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
820     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi,     821     b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
821     transform.ApplyPointTransform( a0 );          822     transform.ApplyPointTransform( a0 );
822     transform.ApplyPointTransform( a1 );          823     transform.ApplyPointTransform( a1 );
823     transform.ApplyPointTransform( b0 );          824     transform.ApplyPointTransform( b0 );
824     transform.ApplyPointTransform( b1 );          825     transform.ApplyPointTransform( b1 );
825                                                   826 
826     polygon.ClearAllVertices();                   827     polygon.ClearAllVertices();
827                                                   828 
828     polygon.AddVertexInOrder( a0 );               829     polygon.AddVertexInOrder( a0 );
829     polygon.AddVertexInOrder( a1 );               830     polygon.AddVertexInOrder( a1 );
830     polygon.AddVertexInOrder( b0 );               831     polygon.AddVertexInOrder( b0 );
831     polygon.AddVertexInOrder( b1 );               832     polygon.AddVertexInOrder( b1 );
832                                                   833     
833     if (polygon.PartialClip( voxelLimit, axis     834     if (polygon.PartialClip( voxelLimit, axis ))
834     {                                             835     {
835       G4ThreeVector normal( -sinPhi, cosPhi, 0    836       G4ThreeVector normal( -sinPhi, cosPhi, 0 );
836       polygon.SetNormal( transform.TransformAx    837       polygon.SetNormal( transform.TransformAxis( normal ) );
837                                                   838         
838       extentList.AddSurface( polygon );           839       extentList.AddSurface( polygon );
839     }                                             840     }
840   }                                               841   }
841                                                   842     
842   return;                                         843   return;
843 }                                                 844 }
844                                                   845 
845 // GetPhi                                         846 // GetPhi
846 //                                                847 //
847 // Calculate Phi for a given 3-vector (point),    848 // Calculate Phi for a given 3-vector (point), if not already cached for the
848 // same point, in the attempt to avoid consecu    849 // same point, in the attempt to avoid consecutive computation of the same
849 // quantity                                       850 // quantity
850 //                                                851 //
851 G4double G4PolyconeSide::GetPhi( const G4Three    852 G4double G4PolyconeSide::GetPhi( const G4ThreeVector& p )
852 {                                                 853 {
853   G4double val=0.;                                854   G4double val=0.;
854   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy,    855   G4ThreeVector vphi(G4MT_pcphix, G4MT_pcphiy, G4MT_pcphiz);
855                                                   856 
856   if (vphi != p)                                  857   if (vphi != p)
857   {                                               858   {
858     val = p.phi();                                859     val = p.phi();
859     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y();     860     G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); G4MT_pcphiz = p.z();
860     G4MT_pcphik = val;                            861     G4MT_pcphik = val;
861   }                                               862   }
862   else                                            863   else
863   {                                               864   {
864     val = G4MT_pcphik;                            865     val = G4MT_pcphik;
865   }                                               866   }
866   return val;                                     867   return val;
867 }                                                 868 }
868                                                   869 
869 // DistanceAway                                   870 // DistanceAway
870 //                                                871 //
871 // Calculate distance of a point from our coni    872 // Calculate distance of a point from our conical surface, including the effect
872 // of any phi segmentation                        873 // of any phi segmentation
873 //                                                874 //
874 // Arguments:                                     875 // Arguments:
875 //  p             - (in) Point to check           876 //  p             - (in) Point to check
876 //  opposite      - (in) If true, check opposi    877 //  opposite      - (in) If true, check opposite hemisphere (see below)
877 //  distOutside   - (out) Additional distance     878 //  distOutside   - (out) Additional distance outside the edges of the surface
878 //  edgeRZnorm    - (out) if negative, point i    879 //  edgeRZnorm    - (out) if negative, point is inside
879 //                                                880 //
880 //  return value = distance from the conical p    881 //  return value = distance from the conical plane, if extrapolated beyond edges,
881 //                 signed by whether the point    882 //                 signed by whether the point is in inside or outside the shape
882 //                                                883 //
883 // Notes:                                         884 // Notes:
884 //  * There are two answers, depending on whic    885 //  * There are two answers, depending on which hemisphere is considered.
885 //                                                886 //
886 G4double G4PolyconeSide::DistanceAway( const G    887 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector& p,
887                                              G    888                                              G4bool opposite,
888                                              G    889                                              G4double& distOutside2,
889                                              G    890                                              G4double* edgeRZnorm  )
890 {                                                 891 {
891   //                                              892   //
892   // Convert our point to r and z                 893   // Convert our point to r and z
893   //                                              894   //
894   G4double rx = p.perp(), zx = p.z();             895   G4double rx = p.perp(), zx = p.z();
895                                                   896   
896   //                                              897   //
897   // Change sign of r if opposite says we shou    898   // Change sign of r if opposite says we should
898   //                                              899   //
899   if (opposite) rx = -rx;                         900   if (opposite) rx = -rx;
900                                                   901   
901   //                                              902   //
902   // Calculate return value                       903   // Calculate return value
903   //                                              904   //
904   G4double deltaR  = rx - r[0], deltaZ = zx -     905   G4double deltaR  = rx - r[0], deltaZ = zx - z[0];
905   G4double answer = deltaR*rNorm + deltaZ*zNor    906   G4double answer = deltaR*rNorm + deltaZ*zNorm;
906                                                   907   
907   //                                              908   //
908   // Are we off the surface in r,z space?         909   // Are we off the surface in r,z space?
909   //                                              910   //
910   G4double q = deltaR*rS + deltaZ*zS;             911   G4double q = deltaR*rS + deltaZ*zS;
911   if (q < 0)                                      912   if (q < 0)
912   {                                               913   {
913     distOutside2 = q*q;                           914     distOutside2 = q*q;
914     if (edgeRZnorm != nullptr)                    915     if (edgeRZnorm != nullptr)
915       *edgeRZnorm = deltaR*rNormEdge[0] + delt    916       *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
916   }                                               917   }
917   else if (q > length)                            918   else if (q > length)
918   {                                               919   {
919     distOutside2 = sqr( q-length );               920     distOutside2 = sqr( q-length );
920     if (edgeRZnorm != nullptr)                    921     if (edgeRZnorm != nullptr)
921     {                                             922     {
922       deltaR = rx - r[1];                         923       deltaR = rx - r[1];
923       deltaZ = zx - z[1];                         924       deltaZ = zx - z[1];
924       *edgeRZnorm = deltaR*rNormEdge[1] + delt    925       *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
925     }                                             926     }
926   }                                               927   }
927   else                                            928   else
928   {                                               929   {
929     distOutside2 = 0.;                            930     distOutside2 = 0.;
930     if (edgeRZnorm != nullptr) *edgeRZnorm = a    931     if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
931   }                                               932   }
932                                                   933 
933   if (phiIsOpen)                                  934   if (phiIsOpen)
934   {                                               935   {
935     //                                            936     //
936     // Finally, check phi                         937     // Finally, check phi
937     //                                            938     //
938     G4double phi = GetPhi(p);                     939     G4double phi = GetPhi(p);
939     while( phi < startPhi )    // Loop checkin    940     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
940       phi += twopi;                               941       phi += twopi;
941                                                   942     
942     if (phi > startPhi+deltaPhi)                  943     if (phi > startPhi+deltaPhi)
943     {                                             944     {
944       //                                          945       //
945       // Oops. Are we closer to the start phi     946       // Oops. Are we closer to the start phi or end phi?
946       //                                          947       //
947       G4double d1 = phi-startPhi-deltaPhi;        948       G4double d1 = phi-startPhi-deltaPhi;
948       while( phi > startPhi )    // Loop check    949       while( phi > startPhi )    // Loop checking, 13.08.2015, G.Cosmo
949         phi -= twopi;                             950         phi -= twopi;
950       G4double d2 = startPhi-phi;                 951       G4double d2 = startPhi-phi;
951                                                   952       
952       if (d2 < d1) d1 = d2;                       953       if (d2 < d1) d1 = d2;
953                                                   954       
954       //                                          955       //
955       // Add result to our distance               956       // Add result to our distance
956       //                                          957       //
957       G4double dist = d1*rx;                      958       G4double dist = d1*rx;
958                                                   959       
959       distOutside2 += dist*dist;                  960       distOutside2 += dist*dist;
960       if (edgeRZnorm != nullptr)                  961       if (edgeRZnorm != nullptr)
961       {                                           962       {
962         *edgeRZnorm = std::max(std::fabs(*edge    963         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
963       }                                           964       }
964     }                                             965     }
965   }                                               966   }
966                                                   967 
967   return answer;                                  968   return answer;
968 }                                                 969 }
969                                                   970 
970 // DistanceAway                                   971 // DistanceAway
971 //                                                972 //
972 // Special version of DistanceAway for Inside.    973 // Special version of DistanceAway for Inside.
973 // Opposite parameter is not used, instead use    974 // Opposite parameter is not used, instead use sign of rx for choosing the side
974 //                                                975 //
975 G4double G4PolyconeSide::DistanceAway( const G    976 G4double G4PolyconeSide::DistanceAway( const G4ThreeVector& p,
976                                              G    977                                              G4double& distOutside2,
977                                              G    978                                              G4double* edgeRZnorm  )
978 {                                                 979 {
979   //                                              980   //
980   // Convert our point to r and z                 981   // Convert our point to r and z
981   //                                              982   //
982   G4double rx = p.perp(), zx = p.z();             983   G4double rx = p.perp(), zx = p.z();
983                                                   984   
984   //                                              985   //
985   // Change sign of r if we should                986   // Change sign of r if we should
986   //                                              987   //
987   G4int part = 1;                                 988   G4int part = 1;
988   if (rx < 0) part = -1;                          989   if (rx < 0) part = -1;
989                                                   990   
990   //                                              991   //
991   // Calculate return value                       992   // Calculate return value
992   //                                              993   //
993   G4double deltaR = rx - r[0]*part, deltaZ = z    994   G4double deltaR = rx - r[0]*part, deltaZ = zx - z[0];
994   G4double answer = deltaR*rNorm*part + deltaZ    995   G4double answer = deltaR*rNorm*part + deltaZ*zNorm;
995                                                   996   
996   //                                              997   //
997   // Are we off the surface in r,z space?         998   // Are we off the surface in r,z space?
998   //                                              999   //
999   G4double q = deltaR*rS*part + deltaZ*zS;        1000   G4double q = deltaR*rS*part + deltaZ*zS;
1000   if (q < 0)                                     1001   if (q < 0)
1001   {                                              1002   {
1002     distOutside2 = q*q;                          1003     distOutside2 = q*q;
1003     if (edgeRZnorm != nullptr)                   1004     if (edgeRZnorm != nullptr)
1004     {                                            1005     {
1005       *edgeRZnorm = deltaR*rNormEdge[0]*part     1006       *edgeRZnorm = deltaR*rNormEdge[0]*part + deltaZ*zNormEdge[0];
1006     }                                            1007     }
1007   }                                              1008   }
1008   else if (q > length)                           1009   else if (q > length)
1009   {                                              1010   {
1010     distOutside2 = sqr( q-length );              1011     distOutside2 = sqr( q-length );
1011     if (edgeRZnorm != nullptr)                   1012     if (edgeRZnorm != nullptr)
1012     {                                            1013     {
1013       deltaR = rx - r[1]*part;                   1014       deltaR = rx - r[1]*part;
1014       deltaZ = zx - z[1];                        1015       deltaZ = zx - z[1];
1015       *edgeRZnorm = deltaR*rNormEdge[1]*part     1016       *edgeRZnorm = deltaR*rNormEdge[1]*part + deltaZ*zNormEdge[1];
1016     }                                            1017     }
1017   }                                              1018   }
1018   else                                           1019   else
1019   {                                              1020   {
1020     distOutside2 = 0.;                           1021     distOutside2 = 0.;
1021     if (edgeRZnorm != nullptr) *edgeRZnorm =     1022     if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
1022   }                                              1023   }
1023                                                  1024 
1024   if (phiIsOpen)                                 1025   if (phiIsOpen)
1025   {                                              1026   {
1026     //                                           1027     //
1027     // Finally, check phi                        1028     // Finally, check phi
1028     //                                           1029     //
1029     G4double phi = GetPhi(p);                    1030     G4double phi = GetPhi(p);
1030     while( phi < startPhi )    // Loop checki    1031     while( phi < startPhi )    // Loop checking, 13.08.2015, G.Cosmo
1031       phi += twopi;                              1032       phi += twopi;
1032                                                  1033     
1033     if (phi > startPhi+deltaPhi)                 1034     if (phi > startPhi+deltaPhi)
1034     {                                            1035     {
1035       //                                         1036       //
1036       // Oops. Are we closer to the start phi    1037       // Oops. Are we closer to the start phi or end phi?
1037       //                                         1038       //
1038       G4double d1 = phi-startPhi-deltaPhi;       1039       G4double d1 = phi-startPhi-deltaPhi;
1039       while( phi > startPhi )    // Loop chec    1040       while( phi > startPhi )    // Loop checking, 13.08.2015, G.Cosmo
1040         phi -= twopi;                            1041         phi -= twopi;
1041       G4double d2 = startPhi-phi;                1042       G4double d2 = startPhi-phi;
1042                                                  1043       
1043       if (d2 < d1) d1 = d2;                      1044       if (d2 < d1) d1 = d2;
1044                                                  1045       
1045       //                                         1046       //
1046       // Add result to our distance              1047       // Add result to our distance
1047       //                                         1048       //
1048       G4double dist = d1*rx*part;                1049       G4double dist = d1*rx*part;
1049                                                  1050       
1050       distOutside2 += dist*dist;                 1051       distOutside2 += dist*dist;
1051       if (edgeRZnorm != nullptr)                 1052       if (edgeRZnorm != nullptr)
1052       {                                          1053       {
1053         *edgeRZnorm = std::max(std::fabs(*edg    1054         *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
1054       }                                          1055       }
1055     }                                            1056     }
1056   }                                              1057   }
1057                                                  1058 
1058   return answer;                                 1059   return answer;
1059 }                                                1060 }
1060                                                  1061 
1061 // PointOnCone                                   1062 // PointOnCone
1062 //                                               1063 //
1063 // Decide if a point is on a cone and return     1064 // Decide if a point is on a cone and return normal if it is
1064 //                                               1065 //
1065 G4bool G4PolyconeSide::PointOnCone( const G4T    1066 G4bool G4PolyconeSide::PointOnCone( const G4ThreeVector& hit,
1066                                           G4d    1067                                           G4double normSign,
1067                                     const G4T    1068                                     const G4ThreeVector& p,
1068                                     const G4T    1069                                     const G4ThreeVector& v,
1069                                           G4T    1070                                           G4ThreeVector& normal )
1070 {                                                1071 {
1071   G4double rx = hit.perp();                      1072   G4double rx = hit.perp();
1072   //                                             1073   //
1073   // Check radial/z extent, as appropriate       1074   // Check radial/z extent, as appropriate
1074   //                                             1075   //
1075   if (!cone->HitOn( rx, hit.z() )) return fal    1076   if (!cone->HitOn( rx, hit.z() )) return false;
1076                                                  1077   
1077   if (phiIsOpen)                                 1078   if (phiIsOpen)
1078   {                                              1079   {
1079     G4double phiTolerant = 2.0*kCarTolerance/    1080     G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1080     //                                           1081     //
1081     // Check phi segment. Here we have to be     1082     // Check phi segment. Here we have to be careful
1082     // to use the standard method consistent     1083     // to use the standard method consistent with
1083     // PolyPhiFace. See PolyPhiFace::InsideEd    1084     // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1084     //                                           1085     //
1085     G4double phi = GetPhi(hit);                  1086     G4double phi = GetPhi(hit);
1086     while( phi < startPhi-phiTolerant )   //     1087     while( phi < startPhi-phiTolerant )   // Loop checking, 13.08.2015, G.Cosmo
1087       phi += twopi;                              1088       phi += twopi;
1088                                                  1089     
1089     if (phi > startPhi+deltaPhi+phiTolerant)     1090     if (phi > startPhi+deltaPhi+phiTolerant) return false;
1090                                                  1091     
1091     if (phi > startPhi+deltaPhi-phiTolerant)     1092     if (phi > startPhi+deltaPhi-phiTolerant)
1092     {                                            1093     {
1093       //                                         1094       //
1094       // Exact treatment                         1095       // Exact treatment
1095       //                                         1096       //
1096       G4ThreeVector qx = p + v;                  1097       G4ThreeVector qx = p + v;
1097       G4ThreeVector qa = qx - corners[2],        1098       G4ThreeVector qa = qx - corners[2],
1098               qb = qx - corners[3];              1099               qb = qx - corners[3];
1099       G4ThreeVector qacb = qa.cross(qb);         1100       G4ThreeVector qacb = qa.cross(qb);
1100                                                  1101       
1101       if (normSign*qacb.dot(v) < 0) return fa    1102       if (normSign*qacb.dot(v) < 0) return false;
1102     }                                            1103     }
1103     else if (phi < phiTolerant)                  1104     else if (phi < phiTolerant)
1104     {                                            1105     {
1105       G4ThreeVector qx = p + v;                  1106       G4ThreeVector qx = p + v;
1106       G4ThreeVector qa = qx - corners[1],        1107       G4ThreeVector qa = qx - corners[1],
1107               qb = qx - corners[0];              1108               qb = qx - corners[0];
1108       G4ThreeVector qacb = qa.cross(qb);         1109       G4ThreeVector qacb = qa.cross(qb);
1109                                                  1110       
1110       if (normSign*qacb.dot(v) < 0) return fa    1111       if (normSign*qacb.dot(v) < 0) return false;
1111     }                                            1112     }
1112   }                                              1113   }
1113                                                  1114   
1114   //                                             1115   //
1115   // We have a good hit! Calculate normal        1116   // We have a good hit! Calculate normal
1116   //                                             1117   //
1117   if (rx < DBL_MIN)                              1118   if (rx < DBL_MIN) 
1118     normal = G4ThreeVector( 0, 0, zNorm < 0 ?    1119     normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1119   else                                           1120   else
1120     normal = G4ThreeVector( rNorm*hit.x()/rx,    1121     normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1121   return true;                                   1122   return true;
1122 }                                                1123 }
1123                                                  1124 
1124 // FindLineIntersect                             1125 // FindLineIntersect
1125 //                                               1126 //
1126 // Decide the point at which two 2-dimensiona    1127 // Decide the point at which two 2-dimensional lines intersect
1127 //                                               1128 //
1128 // Equation of line: x = x1 + s*tx1              1129 // Equation of line: x = x1 + s*tx1
1129 //                   y = y1 + s*ty1              1130 //                   y = y1 + s*ty1
1130 //                                               1131 //
1131 // It is assumed that the lines are *not* par    1132 // It is assumed that the lines are *not* parallel
1132 //                                               1133 //
1133 void G4PolyconeSide::FindLineIntersect( G4dou    1134 void G4PolyconeSide::FindLineIntersect( G4double x1,  G4double y1,
1134                                         G4dou    1135                                         G4double tx1, G4double ty1,
1135                                         G4dou    1136                                         G4double x2,  G4double y2,
1136                                         G4dou    1137                                         G4double tx2, G4double ty2,
1137                                         G4dou    1138                                         G4double& x,  G4double& y )
1138 {                                                1139 {
1139   //                                             1140   //
1140   // The solution is a simple linear equation    1141   // The solution is a simple linear equation
1141   //                                             1142   //
1142   G4double deter = tx1*ty2 - tx2*ty1;            1143   G4double deter = tx1*ty2 - tx2*ty1;
1143                                                  1144   
1144   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/d    1145   G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1145   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/d    1146   G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1146                                                  1147 
1147   //                                             1148   //
1148   // We want the answer to not depend on whic    1149   // We want the answer to not depend on which order the
1149   // lines were specified. Take average.         1150   // lines were specified. Take average.
1150   //                                             1151   //
1151   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );             1152   x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1152   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );             1153   y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1153 }                                                1154 }
1154                                                  1155 
1155 // Calculate surface area for GetPointOnSurfa    1156 // Calculate surface area for GetPointOnSurface()
1156 //                                               1157 //
1157 G4double G4PolyconeSide::SurfaceArea()           1158 G4double G4PolyconeSide::SurfaceArea() 
1158 {                                                1159 { 
1159   if(fSurfaceArea==0.)                           1160   if(fSurfaceArea==0.)
1160   {                                              1161   {
1161     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr    1162     fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1162     fSurfaceArea *= 0.5*(deltaPhi);              1163     fSurfaceArea *= 0.5*(deltaPhi);
1163   }                                              1164   }  
1164   return fSurfaceArea;                           1165   return fSurfaceArea;
1165 }                                                1166 }
1166                                                  1167 
1167 // GetPointOnFace                                1168 // GetPointOnFace
1168 //                                               1169 //
1169 G4ThreeVector G4PolyconeSide::GetPointOnFace(    1170 G4ThreeVector G4PolyconeSide::GetPointOnFace()
1170 {                                                1171 {
1171   G4double x,y,zz;                               1172   G4double x,y,zz;
1172   G4double rr,phi,dz,dr;                         1173   G4double rr,phi,dz,dr;
1173   dr=r[1]-r[0];dz=z[1]-z[0];                     1174   dr=r[1]-r[0];dz=z[1]-z[0];
1174   phi=startPhi+deltaPhi*G4UniformRand();         1175   phi=startPhi+deltaPhi*G4UniformRand();
1175   rr=r[0]+dr*G4UniformRand();                    1176   rr=r[0]+dr*G4UniformRand();
1176                                                  1177  
1177   x=rr*std::cos(phi);                            1178   x=rr*std::cos(phi);
1178   y=rr*std::sin(phi);                            1179   y=rr*std::sin(phi);
1179                                                  1180 
1180   // PolyconeSide has a Ring Form                1181   // PolyconeSide has a Ring Form
1181   //                                             1182   //
1182   if (dz==0.)                                    1183   if (dz==0.)
1183   {                                              1184   {
1184     zz=z[0];                                     1185     zz=z[0];
1185   }                                              1186   }
1186   else                                           1187   else
1187   {                                              1188   {
1188     if(dr==0.)  // PolyconeSide has a Tube Fo    1189     if(dr==0.)  // PolyconeSide has a Tube Form
1189     {                                            1190     {
1190       zz = z[0]+dz*G4UniformRand();              1191       zz = z[0]+dz*G4UniformRand();
1191     }                                            1192     }
1192     else                                         1193     else
1193     {                                            1194     {
1194       zz = z[0]+(rr-r[0])*dz/dr;                 1195       zz = z[0]+(rr-r[0])*dz/dr;
1195     }                                            1196     }
1196   }                                              1197   }
1197                                                  1198 
1198   return {x,y,zz};                            << 1199   return G4ThreeVector(x,y,zz);
1199 }                                                1200 }
1200                                                  1201