Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of methods for the class G4U << 27 // 26 // 28 // 23.04.18 E.Tcherniaev: added extended BBox, << 27 // $Id: G4UnionSolid.cc,v 1.35 2007/10/23 14:42:31 grichine Exp $ 29 // 17.03.17 E.Tcherniaev: revision of SurfaceN << 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ >> 29 // >> 30 // Implementation of methods for the class G4IntersectionSolid >> 31 // >> 32 // History: >> 33 // 30 // 12.09.98 V.Grichine: first implementation 34 // 12.09.98 V.Grichine: first implementation >> 35 // 28.11.98 V.Grichine: fix while loops in DistToIn/Out >> 36 // 27.07.99 V.Grichine: modifications in DistToOut(p,v,...), while -> do-while >> 37 // 16.03.01 V.Grichine: modifications in CalculateExtent() >> 38 // 31 // ------------------------------------------- 39 // -------------------------------------------------------------------- 32 40 33 #include <sstream> << 34 << 35 #include "G4UnionSolid.hh" 41 #include "G4UnionSolid.hh" 36 42 37 #include "G4SystemOfUnits.hh" << 43 #include <sstream> >> 44 38 #include "G4VoxelLimits.hh" 45 #include "G4VoxelLimits.hh" 39 #include "G4VPVParameterisation.hh" 46 #include "G4VPVParameterisation.hh" 40 #include "G4GeometryTolerance.hh" 47 #include "G4GeometryTolerance.hh" 41 48 42 #include "G4VGraphicsScene.hh" 49 #include "G4VGraphicsScene.hh" 43 #include "G4Polyhedron.hh" 50 #include "G4Polyhedron.hh" 44 #include "G4PolyhedronArbitrary.hh" << 51 #include "G4NURBS.hh" 45 #include "HepPolyhedronProcessor.h" << 52 // #include "G4NURBSbox.hh" 46 << 47 #include "G4IntersectionSolid.hh" << 48 53 49 ////////////////////////////////////////////// << 54 /////////////////////////////////////////////////////////////////// 50 // 55 // 51 // Transfer all data members to G4BooleanSolid 56 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4V 57 // for them. pName will be in turn sent to G4VSolid 53 58 54 G4UnionSolid:: G4UnionSolid( const G4String& p 59 G4UnionSolid:: G4UnionSolid( const G4String& pName, 55 G4VSolid* p 60 G4VSolid* pSolidA , 56 G4VSolid* p 61 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 62 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 63 { 59 Init(); << 60 } 64 } 61 65 62 ////////////////////////////////////////////// << 66 ///////////////////////////////////////////////////////////////////// 63 // 67 // 64 // Constructor 68 // Constructor 65 69 66 G4UnionSolid::G4UnionSolid( const G4String& pN 70 G4UnionSolid::G4UnionSolid( const G4String& pName, 67 G4VSolid* pS 71 G4VSolid* pSolidA , 68 G4VSolid* pS 72 G4VSolid* pSolidB , 69 G4RotationMa 73 G4RotationMatrix* rotMatrix, 70 const G4ThreeVecto 74 const G4ThreeVector& transVector ) 71 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa 75 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 72 76 73 { 77 { 74 Init(); << 75 } 78 } 76 79 77 ////////////////////////////////////////////// << 80 /////////////////////////////////////////////////////////// 78 // 81 // 79 // Constructor 82 // Constructor 80 83 81 G4UnionSolid::G4UnionSolid( const G4String& pN 84 G4UnionSolid::G4UnionSolid( const G4String& pName, 82 G4VSolid* pS 85 G4VSolid* pSolidA , 83 G4VSolid* pS 86 G4VSolid* pSolidB , 84 const G4Transform3 87 const G4Transform3D& transform ) 85 : G4BooleanSolid(pName,pSolidA,pSolidB,trans 88 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 86 { 89 { 87 Init(); << 88 } 90 } 89 91 90 ////////////////////////////////////////////// << 92 ////////////////////////////////////////////////////////////////// 91 // 93 // 92 // Fake default constructor - sets only member 94 // Fake default constructor - sets only member data and allocates memory 93 // for usage restri 95 // for usage restricted to object persistency. 94 96 95 G4UnionSolid::G4UnionSolid( __void__& a ) 97 G4UnionSolid::G4UnionSolid( __void__& a ) 96 : G4BooleanSolid(a) 98 : G4BooleanSolid(a) 97 { 99 { 98 } 100 } 99 101 100 ////////////////////////////////////////////// << 102 /////////////////////////////////////////////////////////// 101 // 103 // 102 // Destructor 104 // Destructor 103 105 104 G4UnionSolid::~G4UnionSolid() 106 G4UnionSolid::~G4UnionSolid() 105 = default; << 106 << 107 ////////////////////////////////////////////// << 108 // << 109 // Copy constructor << 110 << 111 G4UnionSolid::G4UnionSolid(const G4UnionSolid& << 112 : G4BooleanSolid (rhs) << 113 { 107 { 114 fPMin = rhs.fPMin; << 115 fPMax = rhs.fPMax; << 116 halfCarTolerance=0.5*kCarTolerance; << 117 } 108 } 118 109 119 ////////////////////////////////////////////// << 110 /////////////////////////////////////////////////////////////// 120 // 111 // 121 // Assignment operator << 122 << 123 G4UnionSolid& G4UnionSolid::operator = (const << 124 { << 125 // Check assignment to self << 126 // << 127 if (this == &rhs) { return *this; } << 128 << 129 // Copy base class data << 130 // << 131 G4BooleanSolid::operator=(rhs); << 132 << 133 fPMin = rhs.fPMin; << 134 fPMax = rhs.fPMax; << 135 halfCarTolerance = rhs.halfCarTolerance; << 136 << 137 return *this; << 138 } << 139 << 140 ////////////////////////////////////////////// << 141 // << 142 // Initialisation << 143 << 144 void G4UnionSolid::Init() << 145 { << 146 G4ThreeVector pdelta(kCarTolerance,kCarToler << 147 G4ThreeVector pmin, pmax; << 148 BoundingLimits(pmin, pmax); << 149 fPMin = pmin - pdelta; << 150 fPMax = pmax + pdelta; << 151 halfCarTolerance=0.5*kCarTolerance; << 152 } << 153 << 154 ////////////////////////////////////////////// << 155 // 112 // 156 // Get bounding box << 157 << 158 void G4UnionSolid::BoundingLimits(G4ThreeVecto << 159 G4ThreeVecto << 160 { << 161 G4ThreeVector minA,maxA, minB,maxB; << 162 fPtrSolidA->BoundingLimits(minA,maxA); << 163 fPtrSolidB->BoundingLimits(minB,maxB); << 164 << 165 pMin.set(std::min(minA.x(),minB.x()), << 166 std::min(minA.y(),minB.y()), << 167 std::min(minA.z(),minB.z())); << 168 << 169 pMax.set(std::max(maxA.x(),maxB.x()), << 170 std::max(maxA.y(),maxB.y()), << 171 std::max(maxA.z(),maxB.z())); << 172 << 173 // Check correctness of the bounding box << 174 // << 175 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 176 { << 177 std::ostringstream message; << 178 message << "Bad bounding box (min >= max) << 179 << GetName() << " !" << 180 << "\npMin = " << pMin << 181 << "\npMax = " << pMax; << 182 G4Exception("G4UnionSolid::BoundingLimits( << 183 JustWarning, message); << 184 DumpInfo(); << 185 } << 186 } << 187 << 188 ////////////////////////////////////////////// << 189 // << 190 // Calculate extent under transform and specif << 191 113 192 G4bool 114 G4bool 193 G4UnionSolid::CalculateExtent( const EAxis pAx 115 G4UnionSolid::CalculateExtent( const EAxis pAxis, 194 const G4VoxelLi 116 const G4VoxelLimits& pVoxelLimit, 195 const G4AffineT 117 const G4AffineTransform& pTransform, 196 G4double& 118 G4double& pMin, 197 G4double& 119 G4double& pMax ) const 198 { 120 { 199 G4bool touchesA, touchesB, out ; 121 G4bool touchesA, touchesB, out ; 200 G4double minA = kInfinity, minB = kInfinit 122 G4double minA = kInfinity, minB = kInfinity, 201 maxA = -kInfinity, maxB = -kInfinit 123 maxA = -kInfinity, maxB = -kInfinity; 202 124 203 touchesA = fPtrSolidA->CalculateExtent( pAxi 125 touchesA = fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 204 pTra 126 pTransform, minA, maxA); 205 touchesB = fPtrSolidB->CalculateExtent( pAxi << 127 touchesB= fPtrSolidB->CalculateExtent( pAxis, pVoxelLimit, 206 pTra << 128 pTransform, minB, maxB); 207 if( touchesA || touchesB ) 129 if( touchesA || touchesB ) 208 { 130 { 209 pMin = std::min( minA, minB ); 131 pMin = std::min( minA, minB ); 210 pMax = std::max( maxA, maxB ); 132 pMax = std::max( maxA, maxB ); 211 out = true ; 133 out = true ; 212 } 134 } 213 else << 135 else out = false ; 214 { << 215 out = false ; << 216 } << 217 136 218 return out ; // It exists in this slice if 137 return out ; // It exists in this slice if either one does. 219 } 138 } 220 139 221 ////////////////////////////////////////////// << 140 ///////////////////////////////////////////////////// 222 // 141 // 223 // Important comment: When solids A and B touc 142 // Important comment: When solids A and B touch together along flat 224 // surface the surface points will be consider 143 // surface the surface points will be considered as kSurface, while points 225 // located around will correspond to kInside 144 // located around will correspond to kInside 226 145 227 EInside G4UnionSolid::Inside( const G4ThreeVec 146 EInside G4UnionSolid::Inside( const G4ThreeVector& p ) const 228 { 147 { 229 if (std::max(p.z()-fPMax.z(), fPMin.z()-p.z( << 230 << 231 EInside positionA = fPtrSolidA->Inside(p); 148 EInside positionA = fPtrSolidA->Inside(p); 232 if (positionA == kInside) { return position << 149 if (positionA == kInside) return kInside; 233 EInside positionB = fPtrSolidB->Inside(p); << 234 if (positionA == kOutside) { return position << 235 << 236 if (positionB == kInside) { return position << 237 if (positionB == kOutside) { return position << 238 150 239 // Both points are on surface << 151 EInside positionB = fPtrSolidB->Inside(p); 240 // << 241 static const G4double rtol << 242 = 1000*G4GeometryTolerance::GetInstance()- << 243 152 244 return ((fPtrSolidA->SurfaceNormal(p) + << 153 if( positionA == kInside || positionB == kInside || 245 fPtrSolidB->SurfaceNormal(p)).mag2( << 154 ( positionA == kSurface && positionB == kSurface && >> 155 ( fPtrSolidA->SurfaceNormal(p) + >> 156 fPtrSolidB->SurfaceNormal(p) ).mag2() < >> 157 1000*G4GeometryTolerance::GetInstance()->GetRadialTolerance() ) ) >> 158 { >> 159 return kInside; >> 160 } >> 161 else >> 162 { >> 163 if( ( positionA != kInside && positionB == kSurface ) || >> 164 ( positionB != kInside && positionA == kSurface ) || >> 165 ( positionA == kSurface && positionB == kSurface ) ) return kSurface; >> 166 else return kOutside; >> 167 } 246 } 168 } 247 169 248 ////////////////////////////////////////////// << 170 ////////////////////////////////////////////////////////////// >> 171 // 249 // 172 // 250 // Get surface normal << 251 173 252 G4ThreeVector 174 G4ThreeVector 253 G4UnionSolid::SurfaceNormal( const G4ThreeVect 175 G4UnionSolid::SurfaceNormal( const G4ThreeVector& p ) const 254 { 176 { 255 EInside positionA = fPtrSolidA->Inside(p); << 177 G4ThreeVector normal; 256 EInside positionB = fPtrSolidB->Inside(p); << 257 << 258 if (positionA == kSurface && << 259 positionB == kOutside) return fPtrSolidA << 260 178 261 if (positionA == kOutside && << 179 #ifdef G4BOOLDEBUG 262 positionB == kSurface) return fPtrSolidB << 180 if( Inside(p) == kOutside ) >> 181 { >> 182 G4cout << "WARNING - Invalid call in " >> 183 << "G4UnionSolid::SurfaceNormal(p)" << G4endl >> 184 << " Point p is outside !" << G4endl; >> 185 G4cout << " p = " << p << G4endl; >> 186 G4cerr << "WARNING - Invalid call in " >> 187 << "G4UnionSolid::SurfaceNormal(p)" << G4endl >> 188 << " Point p is outside !" << G4endl; >> 189 G4cerr << " p = " << p << G4endl; >> 190 } >> 191 #endif 263 192 264 if (positionA == kSurface && << 193 if(fPtrSolidA->Inside(p) == kSurface && fPtrSolidB->Inside(p) != kInside) 265 positionB == kSurface) << 266 { << 267 if (Inside(p) == kSurface) << 268 { 194 { 269 G4ThreeVector normalA = fPtrSolidA->Surf << 195 normal= fPtrSolidA->SurfaceNormal(p) ; 270 G4ThreeVector normalB = fPtrSolidB->Surf << 271 return (normalA + normalB).unit(); << 272 } 196 } 273 } << 197 else if(fPtrSolidB->Inside(p) == kSurface && >> 198 fPtrSolidA->Inside(p) != kInside) >> 199 { >> 200 normal= fPtrSolidB->SurfaceNormal(p) ; >> 201 } >> 202 else >> 203 { >> 204 normal= fPtrSolidA->SurfaceNormal(p) ; 274 #ifdef G4BOOLDEBUG 205 #ifdef G4BOOLDEBUG 275 G4String surf[3] = { "OUTSIDE", "SURFACE", " << 206 if(Inside(p)==kInside) 276 std::ostringstream message; << 207 { 277 G4int oldprc = message.precision(16); << 208 G4cout << "WARNING - Invalid call in " 278 message << "Invalid call of SurfaceNormal(p) << 209 << "G4UnionSolid::SurfaceNormal(p)" << G4endl 279 << GetName() << " !" << 210 << " Point p is inside !" << G4endl; 280 << "\nPoint p" << p << " is " << sur << 211 G4cout << " p = " << p << G4endl; 281 message.precision(oldprc); << 212 G4cerr << "WARNING - Invalid call in " 282 G4Exception("G4UnionSolid::SurfaceNormal()", << 213 << "G4UnionSolid::SurfaceNormal(p)" << G4endl 283 JustWarning, message); << 214 << " Point p is inside !" << G4endl; >> 215 G4cerr << " p = " << p << G4endl; >> 216 } 284 #endif 217 #endif 285 return fPtrSolidA->SurfaceNormal(p); << 218 } >> 219 return normal; 286 } 220 } 287 221 288 ////////////////////////////////////////////// << 222 ///////////////////////////////////////////////////////////// 289 // 223 // 290 // The same algorithm as in DistanceToIn(p) 224 // The same algorithm as in DistanceToIn(p) 291 225 292 G4double 226 G4double 293 G4UnionSolid::DistanceToIn( const G4ThreeVecto 227 G4UnionSolid::DistanceToIn( const G4ThreeVector& p, 294 const G4ThreeVecto << 228 const G4ThreeVector& v ) const 295 { 229 { 296 #ifdef G4BOOLDEBUG 230 #ifdef G4BOOLDEBUG 297 if( Inside(p) == kInside ) 231 if( Inside(p) == kInside ) 298 { 232 { 299 G4cout << "WARNING - Invalid call in " 233 G4cout << "WARNING - Invalid call in " 300 << "G4UnionSolid::DistanceToIn(p,v) 234 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 301 << " Point p is inside !" << G4end 235 << " Point p is inside !" << G4endl; 302 G4cout << " p = " << p << G4endl; 236 G4cout << " p = " << p << G4endl; 303 G4cout << " v = " << v << G4endl; 237 G4cout << " v = " << v << G4endl; 304 G4cerr << "WARNING - Invalid call in " 238 G4cerr << "WARNING - Invalid call in " 305 << "G4UnionSolid::DistanceToIn(p,v) 239 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 306 << " Point p is inside !" << G4end 240 << " Point p is inside !" << G4endl; 307 G4cerr << " p = " << p << G4endl; 241 G4cerr << " p = " << p << G4endl; 308 G4cerr << " v = " << v << G4endl; 242 G4cerr << " v = " << v << G4endl; 309 } 243 } 310 #endif 244 #endif 311 245 312 return std::min(fPtrSolidA->DistanceToIn(p,v 246 return std::min(fPtrSolidA->DistanceToIn(p,v), 313 fPtrSolidB->DistanceToIn(p,v << 247 fPtrSolidB->DistanceToIn(p,v) ) ; 314 } 248 } 315 249 316 ////////////////////////////////////////////// << 250 //////////////////////////////////////////////////////// 317 // 251 // 318 // Approximate nearest distance from the point 252 // Approximate nearest distance from the point p to the union of 319 // two solids 253 // two solids 320 254 321 G4double 255 G4double 322 G4UnionSolid::DistanceToIn( const G4ThreeVecto << 256 G4UnionSolid::DistanceToIn( const G4ThreeVector& p) const 323 { 257 { 324 #ifdef G4BOOLDEBUG 258 #ifdef G4BOOLDEBUG 325 if( Inside(p) == kInside ) 259 if( Inside(p) == kInside ) 326 { 260 { 327 G4cout << "WARNING - Invalid call in " 261 G4cout << "WARNING - Invalid call in " 328 << "G4UnionSolid::DistanceToIn(p)" 262 << "G4UnionSolid::DistanceToIn(p)" << G4endl 329 << " Point p is inside !" << G4end 263 << " Point p is inside !" << G4endl; 330 G4cout << " p = " << p << G4endl; 264 G4cout << " p = " << p << G4endl; 331 G4cerr << "WARNING - Invalid call in " 265 G4cerr << "WARNING - Invalid call in " 332 << "G4UnionSolid::DistanceToIn(p)" 266 << "G4UnionSolid::DistanceToIn(p)" << G4endl 333 << " Point p is inside !" << G4end 267 << " Point p is inside !" << G4endl; 334 G4cerr << " p = " << p << G4endl; 268 G4cerr << " p = " << p << G4endl; 335 } 269 } 336 #endif 270 #endif 337 G4double distA = fPtrSolidA->DistanceToIn(p) 271 G4double distA = fPtrSolidA->DistanceToIn(p) ; 338 G4double distB = fPtrSolidB->DistanceToIn(p) 272 G4double distB = fPtrSolidB->DistanceToIn(p) ; 339 G4double safety = std::min(distA,distB) ; 273 G4double safety = std::min(distA,distB) ; 340 if(safety < 0.0) safety = 0.0 ; 274 if(safety < 0.0) safety = 0.0 ; 341 return safety ; 275 return safety ; 342 } 276 } 343 277 344 ////////////////////////////////////////////// << 278 ////////////////////////////////////////////////////////// 345 // 279 // 346 // The same algorithm as DistanceToOut(p) 280 // The same algorithm as DistanceToOut(p) 347 281 348 G4double 282 G4double 349 G4UnionSolid::DistanceToOut( const G4ThreeVect 283 G4UnionSolid::DistanceToOut( const G4ThreeVector& p, 350 const G4ThreeVect << 284 const G4ThreeVector& v, 351 const G4bool calc << 285 const G4bool calcNorm, 352 G4bool* val << 286 G4bool *validNorm, 353 G4ThreeVect << 287 G4ThreeVector *n ) const 354 { 288 { 355 G4double dist = 0.0, disTmp = 0.0 ; 289 G4double dist = 0.0, disTmp = 0.0 ; 356 G4ThreeVector normTmp; 290 G4ThreeVector normTmp; 357 G4ThreeVector* nTmp = &normTmp; << 291 G4ThreeVector* nTmp= &normTmp; 358 292 359 if( Inside(p) == kOutside ) 293 if( Inside(p) == kOutside ) 360 { 294 { 361 #ifdef G4BOOLDEBUG 295 #ifdef G4BOOLDEBUG 362 G4cout << "Position:" << G4endl << G4en 296 G4cout << "Position:" << G4endl << G4endl; 363 G4cout << "p.x() = " << p.x()/mm << " 297 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 364 G4cout << "p.y() = " << p.y()/mm << " 298 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 365 G4cout << "p.z() = " << p.z()/mm << " 299 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 366 G4cout << "Direction:" << G4endl << G4en 300 G4cout << "Direction:" << G4endl << G4endl; 367 G4cout << "v.x() = " << v.x() << G4end 301 G4cout << "v.x() = " << v.x() << G4endl; 368 G4cout << "v.y() = " << v.y() << G4end 302 G4cout << "v.y() = " << v.y() << G4endl; 369 G4cout << "v.z() = " << v.z() << G4end 303 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 370 G4cout << "WARNING - Invalid call in " 304 G4cout << "WARNING - Invalid call in " 371 << "G4UnionSolid::DistanceToOut(p 305 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 372 << " Point p is outside !" << G4 306 << " Point p is outside !" << G4endl; 373 G4cout << " p = " << p << G4end 307 G4cout << " p = " << p << G4endl; 374 G4cout << " v = " << v << G4end 308 G4cout << " v = " << v << G4endl; 375 G4cerr << "WARNING - Invalid call in " 309 G4cerr << "WARNING - Invalid call in " 376 << "G4UnionSolid::DistanceToOut(p 310 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 377 << " Point p is outside !" << G4 311 << " Point p is outside !" << G4endl; 378 G4cerr << " p = " << p << G4end 312 G4cerr << " p = " << p << G4endl; 379 G4cerr << " v = " << v << G4end 313 G4cerr << " v = " << v << G4endl; 380 #endif 314 #endif 381 } 315 } 382 else 316 else 383 { 317 { 384 EInside positionA = fPtrSolidA->Inside(p) 318 EInside positionA = fPtrSolidA->Inside(p) ; >> 319 // EInside positionB = fPtrSolidB->Inside(p) ; 385 320 386 if( positionA != kOutside ) 321 if( positionA != kOutside ) 387 { 322 { 388 do // Loop checking, 13.08.2015, G.Cosm << 323 do 389 { 324 { 390 disTmp = fPtrSolidA->DistanceToOut(p+d 325 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 391 val << 326 validNorm,nTmp) ; 392 dist += disTmp ; 327 dist += disTmp ; 393 328 394 if(fPtrSolidB->Inside(p+dist*v) != kOu 329 if(fPtrSolidB->Inside(p+dist*v) != kOutside) 395 { 330 { 396 disTmp = fPtrSolidB->DistanceToOut(p 331 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 397 v << 332 validNorm,nTmp) ; 398 dist += disTmp ; 333 dist += disTmp ; 399 } 334 } 400 } 335 } 401 while( (fPtrSolidA->Inside(p+dist*v) != << 336 // while( Inside(p+dist*v) == kInside ) ; 402 && (disTmp > halfCarTolerance) ); << 337 while( fPtrSolidA->Inside(p+dist*v) != kOutside && >> 338 disTmp > 0.5*kCarTolerance ) ; 403 } 339 } 404 else // if( positionB != kOutside ) 340 else // if( positionB != kOutside ) 405 { 341 { 406 do // Loop checking, 13.08.2015, G.Cosm << 342 do 407 { 343 { 408 disTmp = fPtrSolidB->DistanceToOut(p+d 344 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 409 val << 345 validNorm,nTmp) ; 410 dist += disTmp ; 346 dist += disTmp ; 411 347 412 if(fPtrSolidA->Inside(p+dist*v) != kOu 348 if(fPtrSolidA->Inside(p+dist*v) != kOutside) 413 { 349 { 414 disTmp = fPtrSolidA->DistanceToOut(p 350 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 415 v << 351 validNorm,nTmp) ; 416 dist += disTmp ; 352 dist += disTmp ; 417 } 353 } 418 } 354 } 419 while( (fPtrSolidB->Inside(p+dist*v) != << 355 // while( Inside(p+dist*v) == kInside ) ; 420 && (disTmp > halfCarTolerance) ); << 356 while( (fPtrSolidB->Inside(p+dist*v) != kOutside) >> 357 && (disTmp > 0.5*kCarTolerance) ) ; 421 } 358 } 422 } 359 } 423 if( calcNorm ) 360 if( calcNorm ) 424 { 361 { 425 *validNorm = false ; 362 *validNorm = false ; 426 *n = *nTmp ; 363 *n = *nTmp ; 427 } 364 } 428 return dist ; 365 return dist ; 429 } 366 } 430 367 431 ////////////////////////////////////////////// << 368 ////////////////////////////////////////////////////////////// 432 // 369 // 433 // Inverted algorithm of DistanceToIn(p) 370 // Inverted algorithm of DistanceToIn(p) 434 371 435 G4double 372 G4double 436 G4UnionSolid::DistanceToOut( const G4ThreeVect 373 G4UnionSolid::DistanceToOut( const G4ThreeVector& p ) const 437 { 374 { 438 G4double distout = 0.0; 375 G4double distout = 0.0; 439 if( Inside(p) == kOutside ) 376 if( Inside(p) == kOutside ) 440 { 377 { 441 #ifdef G4BOOLDEBUG 378 #ifdef G4BOOLDEBUG 442 G4cout << "WARNING - Invalid call in " 379 G4cout << "WARNING - Invalid call in " 443 << "G4UnionSolid::DistanceToOut(p)" 380 << "G4UnionSolid::DistanceToOut(p)" << G4endl 444 << " Point p is outside !" << G4en 381 << " Point p is outside !" << G4endl; 445 G4cout << " p = " << p << G4endl; 382 G4cout << " p = " << p << G4endl; 446 G4cerr << "WARNING - Invalid call in " 383 G4cerr << "WARNING - Invalid call in " 447 << "G4UnionSolid::DistanceToOut(p)" 384 << "G4UnionSolid::DistanceToOut(p)" << G4endl 448 << " Point p is outside !" << G4en 385 << " Point p is outside !" << G4endl; 449 G4cerr << " p = " << p << G4endl; 386 G4cerr << " p = " << p << G4endl; 450 #endif 387 #endif 451 } 388 } 452 else 389 else 453 { 390 { 454 EInside positionA = fPtrSolidA->Inside(p) 391 EInside positionA = fPtrSolidA->Inside(p) ; 455 EInside positionB = fPtrSolidB->Inside(p) 392 EInside positionB = fPtrSolidB->Inside(p) ; 456 393 457 // Is this equivalent ?? 394 // Is this equivalent ?? 458 // if( ! ( (positionA == kOutside)) && 395 // if( ! ( (positionA == kOutside)) && 459 // (positionB == kOutside)) ) 396 // (positionB == kOutside)) ) 460 if((positionA == kInside && positionB == 397 if((positionA == kInside && positionB == kInside ) || 461 (positionA == kInside && positionB == 398 (positionA == kInside && positionB == kSurface ) || 462 (positionA == kSurface && positionB == 399 (positionA == kSurface && positionB == kInside ) ) 463 { 400 { 464 distout= std::max(fPtrSolidA->DistanceTo 401 distout= std::max(fPtrSolidA->DistanceToOut(p), 465 fPtrSolidB->DistanceTo << 402 fPtrSolidB->DistanceToOut(p) ) ; 466 } 403 } 467 else 404 else 468 { 405 { 469 if(positionA == kOutside) 406 if(positionA == kOutside) 470 { 407 { 471 distout= fPtrSolidB->DistanceToOut(p) 408 distout= fPtrSolidB->DistanceToOut(p) ; 472 } 409 } 473 else 410 else 474 { 411 { 475 distout= fPtrSolidA->DistanceToOut(p) 412 distout= fPtrSolidA->DistanceToOut(p) ; 476 } 413 } 477 } 414 } 478 } 415 } 479 return distout; 416 return distout; 480 } 417 } 481 418 482 ////////////////////////////////////////////// << 419 ////////////////////////////////////////////////////////////// >> 420 // 483 // 421 // 484 // GetEntityType << 485 422 486 G4GeometryType G4UnionSolid::GetEntityType() c 423 G4GeometryType G4UnionSolid::GetEntityType() const 487 { 424 { 488 return {"G4UnionSolid"}; << 425 return G4String("G4UnionSolid"); 489 } 426 } 490 427 491 ////////////////////////////////////////////// << 428 ////////////////////////////////////////////////////////////// 492 // 429 // 493 // Make a clone of the object << 494 << 495 G4VSolid* G4UnionSolid::Clone() const << 496 { << 497 return new G4UnionSolid(*this); << 498 } << 499 << 500 ////////////////////////////////////////////// << 501 // 430 // 502 // ComputeDimensions << 503 431 504 void 432 void 505 G4UnionSolid::ComputeDimensions( G4VPVPa 433 G4UnionSolid::ComputeDimensions( G4VPVParameterisation*, 506 const G4int, 434 const G4int, 507 const G4VPhys 435 const G4VPhysicalVolume* ) 508 { 436 { 509 } 437 } 510 438 511 ////////////////////////////////////////////// << 439 ///////////////////////////////////////////////// 512 // 440 // 513 // DescribeYourselfTo << 441 // 514 442 515 void 443 void 516 G4UnionSolid::DescribeYourselfTo ( G4VGraphics 444 G4UnionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 517 { 445 { 518 scene.AddSolid (*this); 446 scene.AddSolid (*this); 519 } 447 } 520 448 521 ////////////////////////////////////////////// << 449 //////////////////////////////////////////////////// >> 450 // 522 // 451 // 523 // CreatePolyhedron << 524 452 525 G4Polyhedron* 453 G4Polyhedron* 526 G4UnionSolid::CreatePolyhedron () const << 454 G4UnionSolid::CreatePolyhedron () const 527 { 455 { 528 if (fExternalBoolProcessor == nullptr) << 456 G4Polyhedron* pA = fPtrSolidA->GetPolyhedron(); 529 { << 457 G4Polyhedron* pB = fPtrSolidB->GetPolyhedron(); 530 HepPolyhedronProcessor processor; << 458 if (pA && pB) { 531 // Stack components and components of comp << 459 G4Polyhedron* resultant = new G4Polyhedron (pA->add(*pB)); 532 // See G4BooleanSolid::StackPolyhedron << 460 return resultant; 533 G4Polyhedron* top = StackPolyhedron(proces << 461 } else { 534 auto result = new G4Polyhedron(*top); << 462 std::ostringstream oss; 535 if (processor.execute(*result)) << 463 oss << GetName() << 536 { << 464 ": one of the Boolean components has no corresponding polyhedron."; 537 return result; << 465 G4Exception("G4UnionSolid::CreatePolyhedron", 538 } << 466 "", JustWarning, oss.str().c_str()); 539 else << 467 return 0; 540 { << 541 return nullptr; << 542 } << 543 } << 544 else << 545 { << 546 return fExternalBoolProcessor->Process(thi << 547 } 468 } 548 } 469 } 549 470 550 ////////////////////////////////////////////// << 471 ///////////////////////////////////////////////////////// >> 472 // 551 // 473 // 552 // GetCubicVolume << 553 474 554 G4double G4UnionSolid::GetCubicVolume() << 475 G4NURBS* >> 476 G4UnionSolid::CreateNURBS () const 555 { 477 { 556 if( fCubicVolume >= 0. ) << 478 // Take into account boolean operation - see CreatePolyhedron. 557 { << 479 // return new G4NURBSbox (1.0, 1.0, 1.0); 558 return fCubicVolume; << 480 return 0; 559 } << 560 G4ThreeVector bminA, bmaxA, bminB, bmaxB; << 561 fPtrSolidA->BoundingLimits(bminA, bmaxA); << 562 fPtrSolidB->BoundingLimits(bminB, bmaxB); << 563 G4bool noIntersection = << 564 bminA.x() >= bmaxB.x() || bminA.y() >= bm << 565 bminB.x() >= bmaxA.x() || bminB.y() >= bm << 566 << 567 if (noIntersection) << 568 { << 569 fCubicVolume = fPtrSolidA->GetCubicVolume( << 570 } << 571 else << 572 { << 573 if (GetNumOfConstituents() > 10) << 574 { << 575 fCubicVolume = G4BooleanSolid::GetCubicV << 576 } << 577 else << 578 { << 579 G4IntersectionSolid intersectVol("Tempor << 580 fPtrSol << 581 intersectVol.SetCubVolStatistics(GetCubV << 582 intersectVol.SetCubVolEpsilon(GetCubVolE << 583 << 584 fCubicVolume = fPtrSolidA->GetCubicVolum << 585 - intersectVol.GetCubicVolume(); << 586 } << 587 } << 588 return fCubicVolume; << 589 } 481 } 590 482