Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // Implementation of methods for the class G4U << 27 // 23 // 28 // 23.04.18 E.Tcherniaev: added extended BBox, << 24 // $Id: G4UnionSolid.cc,v 1.29 2005/05/09 13:44:58 gcosmo Exp $ 29 // 17.03.17 E.Tcherniaev: revision of SurfaceN << 25 // GEANT4 tag $Name: geant4-07-01-patch-01 $ >> 26 // >> 27 // Implementation of methods for the class G4IntersectionSolid >> 28 // >> 29 // History: >> 30 // 30 // 12.09.98 V.Grichine: first implementation 31 // 12.09.98 V.Grichine: first implementation >> 32 // 28.11.98 V.Grichine: fix while loops in DistToIn/Out >> 33 // 27.07.99 V.Grichine: modifications in DistToOut(p,v,...), while -> do-while >> 34 // 16.03.01 V.Grichine: modifications in CalculateExtent() >> 35 // 31 // ------------------------------------------- 36 // -------------------------------------------------------------------- 32 37 33 #include <sstream> << 34 << 35 #include "G4UnionSolid.hh" 38 #include "G4UnionSolid.hh" 36 39 37 #include "G4SystemOfUnits.hh" << 38 #include "G4VoxelLimits.hh" 40 #include "G4VoxelLimits.hh" 39 #include "G4VPVParameterisation.hh" 41 #include "G4VPVParameterisation.hh" 40 #include "G4GeometryTolerance.hh" << 41 42 42 #include "G4VGraphicsScene.hh" 43 #include "G4VGraphicsScene.hh" 43 #include "G4Polyhedron.hh" 44 #include "G4Polyhedron.hh" 44 #include "G4PolyhedronArbitrary.hh" << 45 #include "G4NURBS.hh" 45 #include "HepPolyhedronProcessor.h" << 46 // #include "G4NURBSbox.hh" 46 << 47 #include "G4IntersectionSolid.hh" << 48 47 49 ////////////////////////////////////////////// << 48 /////////////////////////////////////////////////////////////////// 50 // 49 // 51 // Transfer all data members to G4BooleanSolid 50 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4V 51 // for them. pName will be in turn sent to G4VSolid 53 52 54 G4UnionSolid:: G4UnionSolid( const G4String& p 53 G4UnionSolid:: G4UnionSolid( const G4String& pName, 55 G4VSolid* p 54 G4VSolid* pSolidA , 56 G4VSolid* p 55 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 56 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 57 { 59 Init(); << 60 } 58 } 61 59 62 ////////////////////////////////////////////// << 60 ///////////////////////////////////////////////////////////////////// 63 // 61 // 64 // Constructor 62 // Constructor 65 63 66 G4UnionSolid::G4UnionSolid( const G4String& pN 64 G4UnionSolid::G4UnionSolid( const G4String& pName, 67 G4VSolid* pS 65 G4VSolid* pSolidA , 68 G4VSolid* pS 66 G4VSolid* pSolidB , 69 G4RotationMa 67 G4RotationMatrix* rotMatrix, 70 const G4ThreeVecto 68 const G4ThreeVector& transVector ) 71 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa 69 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 72 70 73 { 71 { 74 Init(); << 75 } 72 } 76 73 77 ////////////////////////////////////////////// << 74 /////////////////////////////////////////////////////////// 78 // 75 // 79 // Constructor 76 // Constructor 80 77 81 G4UnionSolid::G4UnionSolid( const G4String& pN 78 G4UnionSolid::G4UnionSolid( const G4String& pName, 82 G4VSolid* pS 79 G4VSolid* pSolidA , 83 G4VSolid* pS 80 G4VSolid* pSolidB , 84 const G4Transform3 81 const G4Transform3D& transform ) 85 : G4BooleanSolid(pName,pSolidA,pSolidB,trans 82 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 86 { 83 { 87 Init(); << 88 } 84 } 89 85 90 ////////////////////////////////////////////// << 91 // << 92 // Fake default constructor - sets only member << 93 // for usage restri << 94 << 95 G4UnionSolid::G4UnionSolid( __void__& a ) << 96 : G4BooleanSolid(a) << 97 { << 98 } << 99 86 100 ////////////////////////////////////////////// << 87 /////////////////////////////////////////////////////////// 101 // 88 // 102 // Destructor 89 // Destructor 103 90 104 G4UnionSolid::~G4UnionSolid() 91 G4UnionSolid::~G4UnionSolid() 105 = default; << 106 << 107 ////////////////////////////////////////////// << 108 // << 109 // Copy constructor << 110 << 111 G4UnionSolid::G4UnionSolid(const G4UnionSolid& << 112 : G4BooleanSolid (rhs) << 113 { << 114 fPMin = rhs.fPMin; << 115 fPMax = rhs.fPMax; << 116 halfCarTolerance=0.5*kCarTolerance; << 117 } << 118 << 119 ////////////////////////////////////////////// << 120 // << 121 // Assignment operator << 122 << 123 G4UnionSolid& G4UnionSolid::operator = (const << 124 { << 125 // Check assignment to self << 126 // << 127 if (this == &rhs) { return *this; } << 128 << 129 // Copy base class data << 130 // << 131 G4BooleanSolid::operator=(rhs); << 132 << 133 fPMin = rhs.fPMin; << 134 fPMax = rhs.fPMax; << 135 halfCarTolerance = rhs.halfCarTolerance; << 136 << 137 return *this; << 138 } << 139 << 140 ////////////////////////////////////////////// << 141 // << 142 // Initialisation << 143 << 144 void G4UnionSolid::Init() << 145 { 92 { 146 G4ThreeVector pdelta(kCarTolerance,kCarToler << 147 G4ThreeVector pmin, pmax; << 148 BoundingLimits(pmin, pmax); << 149 fPMin = pmin - pdelta; << 150 fPMax = pmax + pdelta; << 151 halfCarTolerance=0.5*kCarTolerance; << 152 } 93 } 153 94 154 ////////////////////////////////////////////// << 95 /////////////////////////////////////////////////////////////// 155 // 96 // 156 // Get bounding box << 157 << 158 void G4UnionSolid::BoundingLimits(G4ThreeVecto << 159 G4ThreeVecto << 160 { << 161 G4ThreeVector minA,maxA, minB,maxB; << 162 fPtrSolidA->BoundingLimits(minA,maxA); << 163 fPtrSolidB->BoundingLimits(minB,maxB); << 164 << 165 pMin.set(std::min(minA.x(),minB.x()), << 166 std::min(minA.y(),minB.y()), << 167 std::min(minA.z(),minB.z())); << 168 << 169 pMax.set(std::max(maxA.x(),maxB.x()), << 170 std::max(maxA.y(),maxB.y()), << 171 std::max(maxA.z(),maxB.z())); << 172 << 173 // Check correctness of the bounding box << 174 // << 175 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 176 { << 177 std::ostringstream message; << 178 message << "Bad bounding box (min >= max) << 179 << GetName() << " !" << 180 << "\npMin = " << pMin << 181 << "\npMax = " << pMax; << 182 G4Exception("G4UnionSolid::BoundingLimits( << 183 JustWarning, message); << 184 DumpInfo(); << 185 } << 186 } << 187 << 188 ////////////////////////////////////////////// << 189 // 97 // 190 // Calculate extent under transform and specif << 191 98 192 G4bool 99 G4bool 193 G4UnionSolid::CalculateExtent( const EAxis pAx 100 G4UnionSolid::CalculateExtent( const EAxis pAxis, 194 const G4VoxelLi 101 const G4VoxelLimits& pVoxelLimit, 195 const G4AffineT 102 const G4AffineTransform& pTransform, 196 G4double& 103 G4double& pMin, 197 G4double& 104 G4double& pMax ) const 198 { 105 { 199 G4bool touchesA, touchesB, out ; 106 G4bool touchesA, touchesB, out ; 200 G4double minA = kInfinity, minB = kInfinit 107 G4double minA = kInfinity, minB = kInfinity, 201 maxA = -kInfinity, maxB = -kInfinit 108 maxA = -kInfinity, maxB = -kInfinity; 202 109 203 touchesA = fPtrSolidA->CalculateExtent( pAxi 110 touchesA = fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 204 pTra 111 pTransform, minA, maxA); 205 touchesB = fPtrSolidB->CalculateExtent( pAxi << 112 touchesB= fPtrSolidB->CalculateExtent( pAxis, pVoxelLimit, 206 pTra << 113 pTransform, minB, maxB); 207 if( touchesA || touchesB ) 114 if( touchesA || touchesB ) 208 { 115 { 209 pMin = std::min( minA, minB ); 116 pMin = std::min( minA, minB ); 210 pMax = std::max( maxA, maxB ); 117 pMax = std::max( maxA, maxB ); 211 out = true ; 118 out = true ; 212 } 119 } 213 else << 120 else out = false ; 214 { << 215 out = false ; << 216 } << 217 121 218 return out ; // It exists in this slice if 122 return out ; // It exists in this slice if either one does. 219 } 123 } 220 124 221 ////////////////////////////////////////////// << 125 ///////////////////////////////////////////////////// 222 // 126 // 223 // Important comment: When solids A and B touc 127 // Important comment: When solids A and B touch together along flat 224 // surface the surface points will be consider 128 // surface the surface points will be considered as kSurface, while points 225 // located around will correspond to kInside 129 // located around will correspond to kInside 226 130 227 EInside G4UnionSolid::Inside( const G4ThreeVec 131 EInside G4UnionSolid::Inside( const G4ThreeVector& p ) const 228 { 132 { 229 if (std::max(p.z()-fPMax.z(), fPMin.z()-p.z( << 230 << 231 EInside positionA = fPtrSolidA->Inside(p); 133 EInside positionA = fPtrSolidA->Inside(p); 232 if (positionA == kInside) { return position << 233 EInside positionB = fPtrSolidB->Inside(p); 134 EInside positionB = fPtrSolidB->Inside(p); 234 if (positionA == kOutside) { return position << 235 << 236 if (positionB == kInside) { return position << 237 if (positionB == kOutside) { return position << 238 135 239 // Both points are on surface << 136 if( positionA == kInside || positionB == kInside || 240 // << 137 ( positionA == kSurface && positionB == kSurface && 241 static const G4double rtol << 138 ( fPtrSolidA->SurfaceNormal(p) + 242 = 1000*G4GeometryTolerance::GetInstance()- << 139 fPtrSolidB->SurfaceNormal(p) ).mag2() < 243 << 140 1000*kRadTolerance ) ) return kInside; 244 return ((fPtrSolidA->SurfaceNormal(p) + << 141 else 245 fPtrSolidB->SurfaceNormal(p)).mag2( << 142 { >> 143 if( ( positionA != kInside && positionB == kSurface ) || >> 144 ( positionB != kInside && positionA == kSurface ) || >> 145 ( positionA == kSurface && positionB == kSurface ) ) return kSurface; >> 146 else return kOutside; >> 147 } 246 } 148 } 247 149 248 ////////////////////////////////////////////// << 150 ////////////////////////////////////////////////////////////// >> 151 // 249 // 152 // 250 // Get surface normal << 251 153 252 G4ThreeVector 154 G4ThreeVector 253 G4UnionSolid::SurfaceNormal( const G4ThreeVect 155 G4UnionSolid::SurfaceNormal( const G4ThreeVector& p ) const 254 { 156 { 255 EInside positionA = fPtrSolidA->Inside(p); << 157 G4ThreeVector normal; 256 EInside positionB = fPtrSolidB->Inside(p); << 257 << 258 if (positionA == kSurface && << 259 positionB == kOutside) return fPtrSolidA << 260 158 261 if (positionA == kOutside && << 159 #ifdef G4BOOLDEBUG 262 positionB == kSurface) return fPtrSolidB << 160 if( Inside(p) == kOutside ) >> 161 { >> 162 G4cout << "WARNING - Invalid call in " >> 163 << "G4UnionSolid::SurfaceNormal(p)" << G4endl >> 164 << " Point p is outside !" << G4endl; >> 165 G4cout << " p = " << p << G4endl; >> 166 G4cerr << "WARNING - Invalid call in " >> 167 << "G4UnionSolid::SurfaceNormal(p)" << G4endl >> 168 << " Point p is outside !" << G4endl; >> 169 G4cerr << " p = " << p << G4endl; >> 170 } >> 171 #endif 263 172 264 if (positionA == kSurface && << 173 if(fPtrSolidA->Inside(p) == kSurface && fPtrSolidB->Inside(p) != kInside) 265 positionB == kSurface) << 266 { << 267 if (Inside(p) == kSurface) << 268 { 174 { 269 G4ThreeVector normalA = fPtrSolidA->Surf << 175 normal= fPtrSolidA->SurfaceNormal(p) ; 270 G4ThreeVector normalB = fPtrSolidB->Surf << 271 return (normalA + normalB).unit(); << 272 } 176 } 273 } << 177 else if(fPtrSolidB->Inside(p) == kSurface && >> 178 fPtrSolidA->Inside(p) != kInside) >> 179 { >> 180 normal= fPtrSolidB->SurfaceNormal(p) ; >> 181 } >> 182 else >> 183 { >> 184 normal= fPtrSolidA->SurfaceNormal(p) ; 274 #ifdef G4BOOLDEBUG 185 #ifdef G4BOOLDEBUG 275 G4String surf[3] = { "OUTSIDE", "SURFACE", " << 186 if(Inside(p)==kInside) 276 std::ostringstream message; << 187 { 277 G4int oldprc = message.precision(16); << 188 G4cout << "WARNING - Invalid call in " 278 message << "Invalid call of SurfaceNormal(p) << 189 << "G4UnionSolid::SurfaceNormal(p)" << G4endl 279 << GetName() << " !" << 190 << " Point p is inside !" << G4endl; 280 << "\nPoint p" << p << " is " << sur << 191 G4cout << " p = " << p << G4endl; 281 message.precision(oldprc); << 192 G4cerr << "WARNING - Invalid call in " 282 G4Exception("G4UnionSolid::SurfaceNormal()", << 193 << "G4UnionSolid::SurfaceNormal(p)" << G4endl 283 JustWarning, message); << 194 << " Point p is inside !" << G4endl; >> 195 G4cerr << " p = " << p << G4endl; >> 196 } 284 #endif 197 #endif 285 return fPtrSolidA->SurfaceNormal(p); << 198 } >> 199 return normal; 286 } 200 } 287 201 288 ////////////////////////////////////////////// << 202 ///////////////////////////////////////////////////////////// 289 // 203 // 290 // The same algorithm as in DistanceToIn(p) 204 // The same algorithm as in DistanceToIn(p) 291 205 292 G4double 206 G4double 293 G4UnionSolid::DistanceToIn( const G4ThreeVecto 207 G4UnionSolid::DistanceToIn( const G4ThreeVector& p, 294 const G4ThreeVecto << 208 const G4ThreeVector& v ) const 295 { 209 { 296 #ifdef G4BOOLDEBUG 210 #ifdef G4BOOLDEBUG 297 if( Inside(p) == kInside ) 211 if( Inside(p) == kInside ) 298 { 212 { 299 G4cout << "WARNING - Invalid call in " 213 G4cout << "WARNING - Invalid call in " 300 << "G4UnionSolid::DistanceToIn(p,v) 214 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 301 << " Point p is inside !" << G4end 215 << " Point p is inside !" << G4endl; 302 G4cout << " p = " << p << G4endl; 216 G4cout << " p = " << p << G4endl; 303 G4cout << " v = " << v << G4endl; 217 G4cout << " v = " << v << G4endl; 304 G4cerr << "WARNING - Invalid call in " 218 G4cerr << "WARNING - Invalid call in " 305 << "G4UnionSolid::DistanceToIn(p,v) 219 << "G4UnionSolid::DistanceToIn(p,v)" << G4endl 306 << " Point p is inside !" << G4end 220 << " Point p is inside !" << G4endl; 307 G4cerr << " p = " << p << G4endl; 221 G4cerr << " p = " << p << G4endl; 308 G4cerr << " v = " << v << G4endl; 222 G4cerr << " v = " << v << G4endl; 309 } 223 } 310 #endif 224 #endif 311 225 312 return std::min(fPtrSolidA->DistanceToIn(p,v 226 return std::min(fPtrSolidA->DistanceToIn(p,v), 313 fPtrSolidB->DistanceToIn(p,v << 227 fPtrSolidB->DistanceToIn(p,v) ) ; 314 } 228 } 315 229 316 ////////////////////////////////////////////// << 230 //////////////////////////////////////////////////////// 317 // 231 // 318 // Approximate nearest distance from the point 232 // Approximate nearest distance from the point p to the union of 319 // two solids 233 // two solids 320 234 321 G4double 235 G4double 322 G4UnionSolid::DistanceToIn( const G4ThreeVecto << 236 G4UnionSolid::DistanceToIn( const G4ThreeVector& p) const 323 { 237 { 324 #ifdef G4BOOLDEBUG 238 #ifdef G4BOOLDEBUG 325 if( Inside(p) == kInside ) 239 if( Inside(p) == kInside ) 326 { 240 { 327 G4cout << "WARNING - Invalid call in " 241 G4cout << "WARNING - Invalid call in " 328 << "G4UnionSolid::DistanceToIn(p)" 242 << "G4UnionSolid::DistanceToIn(p)" << G4endl 329 << " Point p is inside !" << G4end 243 << " Point p is inside !" << G4endl; 330 G4cout << " p = " << p << G4endl; 244 G4cout << " p = " << p << G4endl; 331 G4cerr << "WARNING - Invalid call in " 245 G4cerr << "WARNING - Invalid call in " 332 << "G4UnionSolid::DistanceToIn(p)" 246 << "G4UnionSolid::DistanceToIn(p)" << G4endl 333 << " Point p is inside !" << G4end 247 << " Point p is inside !" << G4endl; 334 G4cerr << " p = " << p << G4endl; 248 G4cerr << " p = " << p << G4endl; 335 } 249 } 336 #endif 250 #endif 337 G4double distA = fPtrSolidA->DistanceToIn(p) 251 G4double distA = fPtrSolidA->DistanceToIn(p) ; 338 G4double distB = fPtrSolidB->DistanceToIn(p) 252 G4double distB = fPtrSolidB->DistanceToIn(p) ; 339 G4double safety = std::min(distA,distB) ; 253 G4double safety = std::min(distA,distB) ; 340 if(safety < 0.0) safety = 0.0 ; 254 if(safety < 0.0) safety = 0.0 ; 341 return safety ; 255 return safety ; 342 } 256 } 343 257 344 ////////////////////////////////////////////// << 258 ////////////////////////////////////////////////////////// 345 // 259 // 346 // The same algorithm as DistanceToOut(p) 260 // The same algorithm as DistanceToOut(p) 347 261 348 G4double 262 G4double 349 G4UnionSolid::DistanceToOut( const G4ThreeVect 263 G4UnionSolid::DistanceToOut( const G4ThreeVector& p, 350 const G4ThreeVect << 264 const G4ThreeVector& v, 351 const G4bool calc << 265 const G4bool calcNorm, 352 G4bool* val << 266 G4bool *validNorm, 353 G4ThreeVect << 267 G4ThreeVector *n ) const 354 { 268 { 355 G4double dist = 0.0, disTmp = 0.0 ; 269 G4double dist = 0.0, disTmp = 0.0 ; 356 G4ThreeVector normTmp; 270 G4ThreeVector normTmp; 357 G4ThreeVector* nTmp = &normTmp; << 271 G4ThreeVector* nTmp= &normTmp; 358 272 359 if( Inside(p) == kOutside ) 273 if( Inside(p) == kOutside ) 360 { 274 { 361 #ifdef G4BOOLDEBUG 275 #ifdef G4BOOLDEBUG 362 G4cout << "Position:" << G4endl << G4en 276 G4cout << "Position:" << G4endl << G4endl; 363 G4cout << "p.x() = " << p.x()/mm << " 277 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 364 G4cout << "p.y() = " << p.y()/mm << " 278 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 365 G4cout << "p.z() = " << p.z()/mm << " 279 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 366 G4cout << "Direction:" << G4endl << G4en 280 G4cout << "Direction:" << G4endl << G4endl; 367 G4cout << "v.x() = " << v.x() << G4end 281 G4cout << "v.x() = " << v.x() << G4endl; 368 G4cout << "v.y() = " << v.y() << G4end 282 G4cout << "v.y() = " << v.y() << G4endl; 369 G4cout << "v.z() = " << v.z() << G4end 283 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 370 G4cout << "WARNING - Invalid call in " 284 G4cout << "WARNING - Invalid call in " 371 << "G4UnionSolid::DistanceToOut(p 285 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 372 << " Point p is outside !" << G4 286 << " Point p is outside !" << G4endl; 373 G4cout << " p = " << p << G4end 287 G4cout << " p = " << p << G4endl; 374 G4cout << " v = " << v << G4end 288 G4cout << " v = " << v << G4endl; 375 G4cerr << "WARNING - Invalid call in " 289 G4cerr << "WARNING - Invalid call in " 376 << "G4UnionSolid::DistanceToOut(p 290 << "G4UnionSolid::DistanceToOut(p,v)" << G4endl 377 << " Point p is outside !" << G4 291 << " Point p is outside !" << G4endl; 378 G4cerr << " p = " << p << G4end 292 G4cerr << " p = " << p << G4endl; 379 G4cerr << " v = " << v << G4end 293 G4cerr << " v = " << v << G4endl; 380 #endif 294 #endif 381 } 295 } 382 else 296 else 383 { 297 { 384 EInside positionA = fPtrSolidA->Inside(p) 298 EInside positionA = fPtrSolidA->Inside(p) ; >> 299 // EInside positionB = fPtrSolidB->Inside(p) ; 385 300 386 if( positionA != kOutside ) 301 if( positionA != kOutside ) 387 { 302 { 388 do // Loop checking, 13.08.2015, G.Cosm << 303 do 389 { 304 { 390 disTmp = fPtrSolidA->DistanceToOut(p+d 305 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 391 val << 306 validNorm,nTmp) ; 392 dist += disTmp ; 307 dist += disTmp ; 393 308 394 if(fPtrSolidB->Inside(p+dist*v) != kOu 309 if(fPtrSolidB->Inside(p+dist*v) != kOutside) 395 { 310 { 396 disTmp = fPtrSolidB->DistanceToOut(p 311 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 397 v << 312 validNorm,nTmp) ; 398 dist += disTmp ; 313 dist += disTmp ; 399 } 314 } 400 } 315 } 401 while( (fPtrSolidA->Inside(p+dist*v) != << 316 // while( Inside(p+dist*v) == kInside ) ; 402 && (disTmp > halfCarTolerance) ); << 317 while( fPtrSolidA->Inside(p+dist*v) != kOutside && >> 318 disTmp > 0.5*kCarTolerance ) ; 403 } 319 } 404 else // if( positionB != kOutside ) 320 else // if( positionB != kOutside ) 405 { 321 { 406 do // Loop checking, 13.08.2015, G.Cosm << 322 do 407 { 323 { 408 disTmp = fPtrSolidB->DistanceToOut(p+d 324 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm, 409 val << 325 validNorm,nTmp) ; 410 dist += disTmp ; 326 dist += disTmp ; 411 327 412 if(fPtrSolidA->Inside(p+dist*v) != kOu 328 if(fPtrSolidA->Inside(p+dist*v) != kOutside) 413 { 329 { 414 disTmp = fPtrSolidA->DistanceToOut(p 330 disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm, 415 v << 331 validNorm,nTmp) ; 416 dist += disTmp ; 332 dist += disTmp ; 417 } 333 } 418 } 334 } 419 while( (fPtrSolidB->Inside(p+dist*v) != << 335 // while( Inside(p+dist*v) == kInside ) ; 420 && (disTmp > halfCarTolerance) ); << 336 while( (fPtrSolidB->Inside(p+dist*v) != kOutside) >> 337 && (disTmp > 0.5*kCarTolerance) ) ; 421 } 338 } 422 } 339 } 423 if( calcNorm ) 340 if( calcNorm ) 424 { 341 { 425 *validNorm = false ; 342 *validNorm = false ; 426 *n = *nTmp ; 343 *n = *nTmp ; 427 } 344 } 428 return dist ; 345 return dist ; 429 } 346 } 430 347 431 ////////////////////////////////////////////// << 348 ////////////////////////////////////////////////////////////// 432 // 349 // 433 // Inverted algorithm of DistanceToIn(p) 350 // Inverted algorithm of DistanceToIn(p) 434 351 435 G4double 352 G4double 436 G4UnionSolid::DistanceToOut( const G4ThreeVect 353 G4UnionSolid::DistanceToOut( const G4ThreeVector& p ) const 437 { 354 { 438 G4double distout = 0.0; 355 G4double distout = 0.0; 439 if( Inside(p) == kOutside ) 356 if( Inside(p) == kOutside ) 440 { 357 { 441 #ifdef G4BOOLDEBUG 358 #ifdef G4BOOLDEBUG 442 G4cout << "WARNING - Invalid call in " 359 G4cout << "WARNING - Invalid call in " 443 << "G4UnionSolid::DistanceToOut(p)" 360 << "G4UnionSolid::DistanceToOut(p)" << G4endl 444 << " Point p is outside !" << G4en 361 << " Point p is outside !" << G4endl; 445 G4cout << " p = " << p << G4endl; 362 G4cout << " p = " << p << G4endl; 446 G4cerr << "WARNING - Invalid call in " 363 G4cerr << "WARNING - Invalid call in " 447 << "G4UnionSolid::DistanceToOut(p)" 364 << "G4UnionSolid::DistanceToOut(p)" << G4endl 448 << " Point p is outside !" << G4en 365 << " Point p is outside !" << G4endl; 449 G4cerr << " p = " << p << G4endl; 366 G4cerr << " p = " << p << G4endl; 450 #endif 367 #endif 451 } 368 } 452 else 369 else 453 { 370 { 454 EInside positionA = fPtrSolidA->Inside(p) 371 EInside positionA = fPtrSolidA->Inside(p) ; 455 EInside positionB = fPtrSolidB->Inside(p) 372 EInside positionB = fPtrSolidB->Inside(p) ; 456 373 457 // Is this equivalent ?? 374 // Is this equivalent ?? 458 // if( ! ( (positionA == kOutside)) && 375 // if( ! ( (positionA == kOutside)) && 459 // (positionB == kOutside)) ) 376 // (positionB == kOutside)) ) 460 if((positionA == kInside && positionB == 377 if((positionA == kInside && positionB == kInside ) || 461 (positionA == kInside && positionB == 378 (positionA == kInside && positionB == kSurface ) || 462 (positionA == kSurface && positionB == 379 (positionA == kSurface && positionB == kInside ) ) 463 { 380 { 464 distout= std::max(fPtrSolidA->DistanceTo 381 distout= std::max(fPtrSolidA->DistanceToOut(p), 465 fPtrSolidB->DistanceTo << 382 fPtrSolidB->DistanceToOut(p) ) ; 466 } 383 } 467 else 384 else 468 { 385 { 469 if(positionA == kOutside) 386 if(positionA == kOutside) 470 { 387 { 471 distout= fPtrSolidB->DistanceToOut(p) 388 distout= fPtrSolidB->DistanceToOut(p) ; 472 } 389 } 473 else 390 else 474 { 391 { 475 distout= fPtrSolidA->DistanceToOut(p) 392 distout= fPtrSolidA->DistanceToOut(p) ; 476 } 393 } 477 } 394 } 478 } 395 } 479 return distout; 396 return distout; 480 } 397 } 481 398 482 ////////////////////////////////////////////// << 399 ////////////////////////////////////////////////////////////// >> 400 // 483 // 401 // 484 // GetEntityType << 485 402 486 G4GeometryType G4UnionSolid::GetEntityType() c 403 G4GeometryType G4UnionSolid::GetEntityType() const 487 { 404 { 488 return {"G4UnionSolid"}; << 405 return G4String("G4UnionSolid"); 489 } 406 } 490 407 491 ////////////////////////////////////////////// << 408 ////////////////////////////////////////////////////////////// 492 // 409 // 493 // Make a clone of the object << 494 << 495 G4VSolid* G4UnionSolid::Clone() const << 496 { << 497 return new G4UnionSolid(*this); << 498 } << 499 << 500 ////////////////////////////////////////////// << 501 // 410 // 502 // ComputeDimensions << 503 411 504 void 412 void 505 G4UnionSolid::ComputeDimensions( G4VPVPa 413 G4UnionSolid::ComputeDimensions( G4VPVParameterisation*, 506 const G4int, 414 const G4int, 507 const G4VPhys 415 const G4VPhysicalVolume* ) 508 { 416 { 509 } 417 } 510 418 511 ////////////////////////////////////////////// << 419 ///////////////////////////////////////////////// 512 // 420 // 513 // DescribeYourselfTo << 421 // 514 422 515 void 423 void 516 G4UnionSolid::DescribeYourselfTo ( G4VGraphics 424 G4UnionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 517 { 425 { 518 scene.AddSolid (*this); 426 scene.AddSolid (*this); 519 } 427 } 520 428 521 ////////////////////////////////////////////// << 429 //////////////////////////////////////////////////// >> 430 // 522 // 431 // 523 // CreatePolyhedron << 524 432 525 G4Polyhedron* 433 G4Polyhedron* 526 G4UnionSolid::CreatePolyhedron () const << 434 G4UnionSolid::CreatePolyhedron () const 527 { 435 { 528 if (fExternalBoolProcessor == nullptr) << 436 G4Polyhedron* pA = fPtrSolidA->GetPolyhedron(); 529 { << 437 G4Polyhedron* pB = fPtrSolidB->GetPolyhedron(); 530 HepPolyhedronProcessor processor; << 438 G4Polyhedron* resultant = new G4Polyhedron (pA->add(*pB)); 531 // Stack components and components of comp << 439 return resultant; 532 // See G4BooleanSolid::StackPolyhedron << 533 G4Polyhedron* top = StackPolyhedron(proces << 534 auto result = new G4Polyhedron(*top); << 535 if (processor.execute(*result)) << 536 { << 537 return result; << 538 } << 539 else << 540 { << 541 return nullptr; << 542 } << 543 } << 544 else << 545 { << 546 return fExternalBoolProcessor->Process(thi << 547 } << 548 } 440 } 549 441 550 ////////////////////////////////////////////// << 442 ///////////////////////////////////////////////////////// >> 443 // 551 // 444 // 552 // GetCubicVolume << 553 445 554 G4double G4UnionSolid::GetCubicVolume() << 446 G4NURBS* >> 447 G4UnionSolid::CreateNURBS () const 555 { 448 { 556 if( fCubicVolume >= 0. ) << 449 // Take into account boolean operation - see CreatePolyhedron. 557 { << 450 // return new G4NURBSbox (1.0, 1.0, 1.0); 558 return fCubicVolume; << 451 return 0; 559 } << 560 G4ThreeVector bminA, bmaxA, bminB, bmaxB; << 561 fPtrSolidA->BoundingLimits(bminA, bmaxA); << 562 fPtrSolidB->BoundingLimits(bminB, bmaxB); << 563 G4bool noIntersection = << 564 bminA.x() >= bmaxB.x() || bminA.y() >= bm << 565 bminB.x() >= bmaxA.x() || bminB.y() >= bm << 566 << 567 if (noIntersection) << 568 { << 569 fCubicVolume = fPtrSolidA->GetCubicVolume( << 570 } << 571 else << 572 { << 573 if (GetNumOfConstituents() > 10) << 574 { << 575 fCubicVolume = G4BooleanSolid::GetCubicV << 576 } << 577 else << 578 { << 579 G4IntersectionSolid intersectVol("Tempor << 580 fPtrSol << 581 intersectVol.SetCubVolStatistics(GetCubV << 582 intersectVol.SetCubVolEpsilon(GetCubVolE << 583 << 584 fCubicVolume = fPtrSolidA->GetCubicVolum << 585 - intersectVol.GetCubicVolume(); << 586 } << 587 } << 588 return fCubicVolume; << 589 } 452 } 590 453