Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/Boolean/src/G4UnionSolid.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/Boolean/src/G4UnionSolid.cc (Version 11.3.0) and /geometry/solids/Boolean/src/G4UnionSolid.cc (Version 10.7)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation of methods for the class G4U     26 // Implementation of methods for the class G4UnionSolid
 27 //                                                 27 //
 28 // 23.04.18 E.Tcherniaev: added extended BBox,     28 // 23.04.18 E.Tcherniaev: added extended BBox, yearly return in Inside()
 29 // 17.03.17 E.Tcherniaev: revision of SurfaceN     29 // 17.03.17 E.Tcherniaev: revision of SurfaceNormal()
 30 // 12.09.98 V.Grichine: first implementation       30 // 12.09.98 V.Grichine: first implementation
 31 // -------------------------------------------     31 // --------------------------------------------------------------------
 32                                                    32 
 33 #include <sstream>                                 33 #include <sstream>
 34                                                    34 
 35 #include "G4UnionSolid.hh"                         35 #include "G4UnionSolid.hh"
 36                                                    36 
 37 #include "G4SystemOfUnits.hh"                      37 #include "G4SystemOfUnits.hh"
 38 #include "G4VoxelLimits.hh"                        38 #include "G4VoxelLimits.hh"
 39 #include "G4VPVParameterisation.hh"                39 #include "G4VPVParameterisation.hh"
 40 #include "G4GeometryTolerance.hh"                  40 #include "G4GeometryTolerance.hh"
 41                                                    41 
 42 #include "G4VGraphicsScene.hh"                     42 #include "G4VGraphicsScene.hh"
 43 #include "G4Polyhedron.hh"                         43 #include "G4Polyhedron.hh"
 44 #include "G4PolyhedronArbitrary.hh"            << 
 45 #include "HepPolyhedronProcessor.h"                44 #include "HepPolyhedronProcessor.h"
 46                                                    45 
 47 #include "G4IntersectionSolid.hh"              <<  46 ///////////////////////////////////////////////////////////////////
 48                                                << 
 49 ////////////////////////////////////////////// << 
 50 //                                                 47 //
 51 // Transfer all data members to G4BooleanSolid     48 // Transfer all data members to G4BooleanSolid which is responsible
 52 // for them. pName will be in turn sent to G4V     49 // for them. pName will be in turn sent to G4VSolid
 53                                                    50 
 54 G4UnionSolid:: G4UnionSolid( const G4String& p     51 G4UnionSolid:: G4UnionSolid( const G4String& pName,
 55                                    G4VSolid* p     52                                    G4VSolid* pSolidA ,
 56                                    G4VSolid* p     53                                    G4VSolid* pSolidB )
 57   : G4BooleanSolid(pName,pSolidA,pSolidB)          54   : G4BooleanSolid(pName,pSolidA,pSolidB)
 58 {                                                  55 {
 59   Init();                                      <<  56   G4ThreeVector pdelta(0.5*kCarTolerance,0.5*kCarTolerance,0.5*kCarTolerance);
                                                   >>  57   G4ThreeVector pmin, pmax;
                                                   >>  58   BoundingLimits(pmin, pmax);
                                                   >>  59   fPMin = pmin - pdelta;
                                                   >>  60   fPMax = pmax + pdelta;
 60 }                                                  61 }
 61                                                    62 
 62 ////////////////////////////////////////////// <<  63 /////////////////////////////////////////////////////////////////////
 63 //                                                 64 //
 64 // Constructor                                     65 // Constructor
 65                                                    66  
 66 G4UnionSolid::G4UnionSolid( const G4String& pN     67 G4UnionSolid::G4UnionSolid( const G4String& pName,
 67                                   G4VSolid* pS     68                                   G4VSolid* pSolidA ,
 68                                   G4VSolid* pS     69                                   G4VSolid* pSolidB ,
 69                                   G4RotationMa     70                                   G4RotationMatrix* rotMatrix,
 70                             const G4ThreeVecto     71                             const G4ThreeVector& transVector )
 71   : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa     72   : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector)
 72                                                    73 
 73 {                                                  74 {
 74   Init();                                      <<  75   G4ThreeVector pdelta(0.5*kCarTolerance,0.5*kCarTolerance,0.5*kCarTolerance);
                                                   >>  76   G4ThreeVector pmin, pmax;
                                                   >>  77   BoundingLimits(pmin, pmax);
                                                   >>  78   fPMin = pmin - pdelta;
                                                   >>  79   fPMax = pmax + pdelta;
 75 }                                                  80 }
 76                                                    81 
 77 ////////////////////////////////////////////// <<  82 ///////////////////////////////////////////////////////////
 78 //                                                 83 //
 79 // Constructor                                     84 // Constructor
 80                                                    85  
 81 G4UnionSolid::G4UnionSolid( const G4String& pN     86 G4UnionSolid::G4UnionSolid( const G4String& pName,
 82                                   G4VSolid* pS     87                                   G4VSolid* pSolidA ,
 83                                   G4VSolid* pS     88                                   G4VSolid* pSolidB ,
 84                             const G4Transform3     89                             const G4Transform3D& transform )
 85   : G4BooleanSolid(pName,pSolidA,pSolidB,trans     90   : G4BooleanSolid(pName,pSolidA,pSolidB,transform)
 86 {                                                  91 {
 87   Init();                                      <<  92   G4ThreeVector pdelta(0.5*kCarTolerance,0.5*kCarTolerance,0.5*kCarTolerance);
                                                   >>  93   G4ThreeVector pmin, pmax;
                                                   >>  94   BoundingLimits(pmin, pmax);
                                                   >>  95   fPMin = pmin - pdelta;
                                                   >>  96   fPMax = pmax + pdelta;
 88 }                                                  97 } 
 89                                                    98 
 90 ////////////////////////////////////////////// <<  99 //////////////////////////////////////////////////////////////////
 91 //                                                100 //
 92 // Fake default constructor - sets only member    101 // Fake default constructor - sets only member data and allocates memory
 93 //                            for usage restri    102 //                            for usage restricted to object persistency.
 94                                                   103 
 95 G4UnionSolid::G4UnionSolid( __void__& a )         104 G4UnionSolid::G4UnionSolid( __void__& a )
 96   : G4BooleanSolid(a)                             105   : G4BooleanSolid(a)
 97 {                                                 106 {
 98 }                                                 107 }
 99                                                   108 
100 ////////////////////////////////////////////// << 109 ///////////////////////////////////////////////////////////
101 //                                                110 //
102 // Destructor                                     111 // Destructor
103                                                   112 
104 G4UnionSolid::~G4UnionSolid()                     113 G4UnionSolid::~G4UnionSolid()
105 = default;                                     << 114 {
                                                   >> 115 }
106                                                   116 
107 ////////////////////////////////////////////// << 117 ///////////////////////////////////////////////////////////////
108 //                                                118 //
109 // Copy constructor                               119 // Copy constructor
110                                                   120 
111 G4UnionSolid::G4UnionSolid(const G4UnionSolid&    121 G4UnionSolid::G4UnionSolid(const G4UnionSolid& rhs)
112   : G4BooleanSolid (rhs)                          122   : G4BooleanSolid (rhs)
113 {                                                 123 {
114   fPMin = rhs.fPMin;                              124   fPMin = rhs.fPMin;
115   fPMax = rhs.fPMax;                              125   fPMax = rhs.fPMax;
116   halfCarTolerance=0.5*kCarTolerance;          << 
117 }                                                 126 }
118                                                   127 
119 ////////////////////////////////////////////// << 128 ///////////////////////////////////////////////////////////////
120 //                                                129 //
121 // Assignment operator                            130 // Assignment operator
122                                                   131 
123 G4UnionSolid& G4UnionSolid::operator = (const     132 G4UnionSolid& G4UnionSolid::operator = (const G4UnionSolid& rhs) 
124 {                                                 133 {
125   // Check assignment to self                     134   // Check assignment to self
126   //                                              135   //
127   if (this == &rhs)  { return *this; }            136   if (this == &rhs)  { return *this; }
128                                                   137 
129   // Copy base class data                         138   // Copy base class data
130   //                                              139   //
131   G4BooleanSolid::operator=(rhs);                 140   G4BooleanSolid::operator=(rhs);
132                                                   141 
133   fPMin = rhs.fPMin;                              142   fPMin = rhs.fPMin;
134   fPMax = rhs.fPMax;                              143   fPMax = rhs.fPMax;
135   halfCarTolerance = rhs.halfCarTolerance;     << 
136                                                << 
137   return *this;                                   144   return *this;
138 }                                                 145 }  
139                                                   146 
140 //////////////////////////////////////////////    147 //////////////////////////////////////////////////////////////////////////
141 //                                                148 //
142 // Initialisation                              << 
143                                                << 
144 void G4UnionSolid::Init()                      << 
145 {                                              << 
146   G4ThreeVector pdelta(kCarTolerance,kCarToler << 
147   G4ThreeVector pmin, pmax;                    << 
148   BoundingLimits(pmin, pmax);                  << 
149   fPMin = pmin - pdelta;                       << 
150   fPMax = pmax + pdelta;                       << 
151   halfCarTolerance=0.5*kCarTolerance;          << 
152 }                                              << 
153                                                << 
154 ////////////////////////////////////////////// << 
155 //                                             << 
156 // Get bounding box                               149 // Get bounding box
157                                                   150 
158 void G4UnionSolid::BoundingLimits(G4ThreeVecto    151 void G4UnionSolid::BoundingLimits(G4ThreeVector& pMin,
159                                   G4ThreeVecto    152                                   G4ThreeVector& pMax) const
160 {                                                 153 {
161   G4ThreeVector minA,maxA, minB,maxB;             154   G4ThreeVector minA,maxA, minB,maxB;
162   fPtrSolidA->BoundingLimits(minA,maxA);          155   fPtrSolidA->BoundingLimits(minA,maxA);
163   fPtrSolidB->BoundingLimits(minB,maxB);          156   fPtrSolidB->BoundingLimits(minB,maxB);
164                                                   157 
165   pMin.set(std::min(minA.x(),minB.x()),           158   pMin.set(std::min(minA.x(),minB.x()),
166            std::min(minA.y(),minB.y()),           159            std::min(minA.y(),minB.y()),
167            std::min(minA.z(),minB.z()));          160            std::min(minA.z(),minB.z()));
168                                                   161 
169   pMax.set(std::max(maxA.x(),maxB.x()),           162   pMax.set(std::max(maxA.x(),maxB.x()),
170            std::max(maxA.y(),maxB.y()),           163            std::max(maxA.y(),maxB.y()),
171            std::max(maxA.z(),maxB.z()));          164            std::max(maxA.z(),maxB.z()));
172                                                   165 
173   // Check correctness of the bounding box        166   // Check correctness of the bounding box
174   //                                              167   //
175   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    168   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
176   {                                               169   {
177     std::ostringstream message;                   170     std::ostringstream message;
178     message << "Bad bounding box (min >= max)     171     message << "Bad bounding box (min >= max) for solid: "
179             << GetName() << " !"                  172             << GetName() << " !"
180             << "\npMin = " << pMin                173             << "\npMin = " << pMin
181             << "\npMax = " << pMax;               174             << "\npMax = " << pMax;
182     G4Exception("G4UnionSolid::BoundingLimits(    175     G4Exception("G4UnionSolid::BoundingLimits()", "GeomMgt0001",
183                 JustWarning, message);            176                 JustWarning, message);
184     DumpInfo();                                   177     DumpInfo();
185   }                                               178   }
186 }                                                 179 }
187                                                   180 
188 //////////////////////////////////////////////    181 //////////////////////////////////////////////////////////////////////////
189 //                                                182 //
190 // Calculate extent under transform and specif    183 // Calculate extent under transform and specified limit
191                                                   184      
192 G4bool                                            185 G4bool 
193 G4UnionSolid::CalculateExtent( const EAxis pAx    186 G4UnionSolid::CalculateExtent( const EAxis pAxis,
194                                const G4VoxelLi    187                                const G4VoxelLimits& pVoxelLimit,
195                                const G4AffineT    188                                const G4AffineTransform& pTransform,
196                                      G4double&    189                                      G4double& pMin,
197                                      G4double&    190                                      G4double& pMax ) const 
198 {                                                 191 {
199   G4bool   touchesA, touchesB, out ;              192   G4bool   touchesA, touchesB, out ;
200   G4double minA =  kInfinity, minB =  kInfinit    193   G4double minA =  kInfinity, minB =  kInfinity, 
201            maxA = -kInfinity, maxB = -kInfinit    194            maxA = -kInfinity, maxB = -kInfinity; 
202                                                   195 
203   touchesA = fPtrSolidA->CalculateExtent( pAxi    196   touchesA = fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 
204                                           pTra    197                                           pTransform, minA, maxA);
205   touchesB = fPtrSolidB->CalculateExtent( pAxi    198   touchesB = fPtrSolidB->CalculateExtent( pAxis, pVoxelLimit, 
206                                           pTra    199                                           pTransform, minB, maxB);
207   if( touchesA || touchesB )                      200   if( touchesA || touchesB )
208   {                                               201   {
209     pMin = std::min( minA, minB );                202     pMin = std::min( minA, minB ); 
210     pMax = std::max( maxA, maxB );                203     pMax = std::max( maxA, maxB );
211     out  = true ;                                 204     out  = true ; 
212   }                                               205   }
213   else                                            206   else
214   {                                               207   {
215     out = false ;                                 208     out = false ;
216   }                                               209   }
217                                                   210 
218   return out ;  // It exists in this slice if     211   return out ;  // It exists in this slice if either one does.
219 }                                                 212 }
220                                                   213  
221 ////////////////////////////////////////////// << 214 /////////////////////////////////////////////////////
222 //                                                215 //
223 // Important comment: When solids A and B touc    216 // Important comment: When solids A and B touch together along flat
224 // surface the surface points will be consider    217 // surface the surface points will be considered as kSurface, while points 
225 // located around will correspond to kInside      218 // located around will correspond to kInside
226                                                   219 
227 EInside G4UnionSolid::Inside( const G4ThreeVec    220 EInside G4UnionSolid::Inside( const G4ThreeVector& p ) const
228 {                                                 221 {
229   if (std::max(p.z()-fPMax.z(), fPMin.z()-p.z( << 222   if (std::max(p.z()-fPMax.z(),fPMin.z()-p.z()) > 0) return kOutside;
230                                                   223 
231   EInside positionA = fPtrSolidA->Inside(p);      224   EInside positionA = fPtrSolidA->Inside(p);
232   if (positionA == kInside)  { return position    225   if (positionA == kInside)  { return positionA; } // inside A
233   EInside positionB = fPtrSolidB->Inside(p);      226   EInside positionB = fPtrSolidB->Inside(p);
234   if (positionA == kOutside) { return position    227   if (positionA == kOutside) { return positionB; }
235                                                   228 
236   if (positionB == kInside)  { return position    229   if (positionB == kInside)  { return positionB; } // inside  B
237   if (positionB == kOutside) { return position    230   if (positionB == kOutside) { return positionA; } // surface A
238                                                   231 
239   // Both points are on surface                   232   // Both points are on surface
240   //                                              233   //
241   static const G4double rtol                      234   static const G4double rtol
242     = 1000*G4GeometryTolerance::GetInstance()-    235     = 1000*G4GeometryTolerance::GetInstance()->GetRadialTolerance();
243                                                   236 
244   return ((fPtrSolidA->SurfaceNormal(p) +         237   return ((fPtrSolidA->SurfaceNormal(p) + 
245            fPtrSolidB->SurfaceNormal(p)).mag2(    238            fPtrSolidB->SurfaceNormal(p)).mag2() < rtol) ? kInside : kSurface;
246 }                                                 239 }
247                                                   240 
248 ////////////////////////////////////////////// << 241 //////////////////////////////////////////////////////////////
249 //                                                242 //
250 // Get surface normal                             243 // Get surface normal
251                                                   244 
252 G4ThreeVector                                     245 G4ThreeVector 
253 G4UnionSolid::SurfaceNormal( const G4ThreeVect    246 G4UnionSolid::SurfaceNormal( const G4ThreeVector& p ) const 
254 {                                                 247 {
255   EInside positionA = fPtrSolidA->Inside(p);      248   EInside positionA = fPtrSolidA->Inside(p);
256   EInside positionB = fPtrSolidB->Inside(p);      249   EInside positionB = fPtrSolidB->Inside(p);
257                                                   250 
258   if (positionA == kSurface &&                    251   if (positionA == kSurface &&
259       positionB == kOutside) return fPtrSolidA    252       positionB == kOutside) return fPtrSolidA->SurfaceNormal(p);
260                                                   253 
261   if (positionA == kOutside &&                    254   if (positionA == kOutside &&
262       positionB == kSurface) return fPtrSolidB    255       positionB == kSurface) return fPtrSolidB->SurfaceNormal(p);
263                                                   256 
264   if (positionA == kSurface &&                    257   if (positionA == kSurface &&
265       positionB == kSurface)                      258       positionB == kSurface)
266   {                                               259   {
267     if (Inside(p) == kSurface)                    260     if (Inside(p) == kSurface)
268     {                                             261     {
269       G4ThreeVector normalA = fPtrSolidA->Surf    262       G4ThreeVector normalA = fPtrSolidA->SurfaceNormal(p);
270       G4ThreeVector normalB = fPtrSolidB->Surf    263       G4ThreeVector normalB = fPtrSolidB->SurfaceNormal(p);
271       return (normalA + normalB).unit();          264       return (normalA + normalB).unit(); 
272     }                                             265     }
273   }                                               266   }
274 #ifdef G4BOOLDEBUG                                267 #ifdef G4BOOLDEBUG
275   G4String surf[3] = { "OUTSIDE", "SURFACE", "    268   G4String surf[3] = { "OUTSIDE", "SURFACE", "INSIDE" };
276   std::ostringstream message;                     269   std::ostringstream message;
277   G4int oldprc = message.precision(16);           270   G4int oldprc = message.precision(16);
278   message << "Invalid call of SurfaceNormal(p)    271   message << "Invalid call of SurfaceNormal(p) for union solid: "
279           << GetName() << " !"                    272           << GetName() << " !"
280           << "\nPoint p" << p << " is " << sur    273           << "\nPoint p" << p << " is " << surf[Inside(p)] << " !!!"; 
281   message.precision(oldprc);                      274   message.precision(oldprc);
282   G4Exception("G4UnionSolid::SurfaceNormal()",    275   G4Exception("G4UnionSolid::SurfaceNormal()", "GeomMgt0001",
283               JustWarning, message);              276               JustWarning, message);
284 #endif                                            277 #endif
285   return fPtrSolidA->SurfaceNormal(p);            278   return fPtrSolidA->SurfaceNormal(p);
286 }                                                 279 }
287                                                   280 
288 ////////////////////////////////////////////// << 281 /////////////////////////////////////////////////////////////
289 //                                                282 //
290 // The same algorithm as in DistanceToIn(p)       283 // The same algorithm as in DistanceToIn(p)
291                                                   284 
292 G4double                                          285 G4double 
293 G4UnionSolid::DistanceToIn( const G4ThreeVecto    286 G4UnionSolid::DistanceToIn( const G4ThreeVector& p,
294                             const G4ThreeVecto << 287                                    const G4ThreeVector& v  ) const 
295 {                                                 288 {
296 #ifdef G4BOOLDEBUG                                289 #ifdef G4BOOLDEBUG
297   if( Inside(p) == kInside )                      290   if( Inside(p) == kInside )
298   {                                               291   {
299     G4cout << "WARNING - Invalid call in "        292     G4cout << "WARNING - Invalid call in "
300            << "G4UnionSolid::DistanceToIn(p,v)    293            << "G4UnionSolid::DistanceToIn(p,v)" << G4endl
301            << "  Point p is inside !" << G4end    294            << "  Point p is inside !" << G4endl;
302     G4cout << "          p = " << p << G4endl;    295     G4cout << "          p = " << p << G4endl;
303     G4cout << "          v = " << v << G4endl;    296     G4cout << "          v = " << v << G4endl;
304     G4cerr << "WARNING - Invalid call in "        297     G4cerr << "WARNING - Invalid call in "
305            << "G4UnionSolid::DistanceToIn(p,v)    298            << "G4UnionSolid::DistanceToIn(p,v)" << G4endl
306            << "  Point p is inside !" << G4end    299            << "  Point p is inside !" << G4endl;
307     G4cerr << "          p = " << p << G4endl;    300     G4cerr << "          p = " << p << G4endl;
308     G4cerr << "          v = " << v << G4endl;    301     G4cerr << "          v = " << v << G4endl;
309   }                                               302   }
310 #endif                                            303 #endif
311                                                   304 
312   return std::min(fPtrSolidA->DistanceToIn(p,v    305   return std::min(fPtrSolidA->DistanceToIn(p,v),
313                   fPtrSolidB->DistanceToIn(p,v << 306                     fPtrSolidB->DistanceToIn(p,v) ) ;
314 }                                                 307 }
315                                                   308 
316 ////////////////////////////////////////////// << 309 ////////////////////////////////////////////////////////
317 //                                                310 //
318 // Approximate nearest distance from the point    311 // Approximate nearest distance from the point p to the union of
319 // two solids                                     312 // two solids
320                                                   313 
321 G4double                                          314 G4double 
322 G4UnionSolid::DistanceToIn( const G4ThreeVecto << 315 G4UnionSolid::DistanceToIn( const G4ThreeVector& p) const 
323 {                                                 316 {
324 #ifdef G4BOOLDEBUG                                317 #ifdef G4BOOLDEBUG
325   if( Inside(p) == kInside )                      318   if( Inside(p) == kInside )
326   {                                               319   {
327     G4cout << "WARNING - Invalid call in "        320     G4cout << "WARNING - Invalid call in "
328            << "G4UnionSolid::DistanceToIn(p)"     321            << "G4UnionSolid::DistanceToIn(p)" << G4endl
329            << "  Point p is inside !" << G4end    322            << "  Point p is inside !" << G4endl;
330     G4cout << "          p = " << p << G4endl;    323     G4cout << "          p = " << p << G4endl;
331     G4cerr << "WARNING - Invalid call in "        324     G4cerr << "WARNING - Invalid call in "
332            << "G4UnionSolid::DistanceToIn(p)"     325            << "G4UnionSolid::DistanceToIn(p)" << G4endl
333            << "  Point p is inside !" << G4end    326            << "  Point p is inside !" << G4endl;
334     G4cerr << "          p = " << p << G4endl;    327     G4cerr << "          p = " << p << G4endl;
335   }                                               328   }
336 #endif                                            329 #endif
337   G4double distA = fPtrSolidA->DistanceToIn(p)    330   G4double distA = fPtrSolidA->DistanceToIn(p) ;
338   G4double distB = fPtrSolidB->DistanceToIn(p)    331   G4double distB = fPtrSolidB->DistanceToIn(p) ;
339   G4double safety = std::min(distA,distB) ;       332   G4double safety = std::min(distA,distB) ;
340   if(safety < 0.0) safety = 0.0 ;                 333   if(safety < 0.0) safety = 0.0 ;
341   return safety ;                                 334   return safety ;
342 }                                                 335 }
343                                                   336 
344 ////////////////////////////////////////////// << 337 //////////////////////////////////////////////////////////
345 //                                                338 //
346 // The same algorithm as DistanceToOut(p)         339 // The same algorithm as DistanceToOut(p)
347                                                   340 
348 G4double                                          341 G4double 
349 G4UnionSolid::DistanceToOut( const G4ThreeVect    342 G4UnionSolid::DistanceToOut( const G4ThreeVector& p,
350                              const G4ThreeVect << 343            const G4ThreeVector& v,
351                              const G4bool calc << 344            const G4bool calcNorm,
352                                    G4bool* val << 345                  G4bool *validNorm,
353                                    G4ThreeVect << 346                  G4ThreeVector *n      ) const 
354 {                                                 347 {
355   G4double  dist = 0.0, disTmp = 0.0 ;            348   G4double  dist = 0.0, disTmp = 0.0 ;
356   G4ThreeVector normTmp;                          349   G4ThreeVector normTmp;
357   G4ThreeVector* nTmp = &normTmp;                 350   G4ThreeVector* nTmp = &normTmp;
358                                                   351 
359   if( Inside(p) == kOutside )                     352   if( Inside(p) == kOutside )
360   {                                               353   {
361 #ifdef G4BOOLDEBUG                                354 #ifdef G4BOOLDEBUG
362       G4cout << "Position:"  << G4endl << G4en    355       G4cout << "Position:"  << G4endl << G4endl;
363       G4cout << "p.x() = "   << p.x()/mm << "     356       G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
364       G4cout << "p.y() = "   << p.y()/mm << "     357       G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
365       G4cout << "p.z() = "   << p.z()/mm << "     358       G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
366       G4cout << "Direction:" << G4endl << G4en    359       G4cout << "Direction:" << G4endl << G4endl;
367       G4cout << "v.x() = "   << v.x() << G4end    360       G4cout << "v.x() = "   << v.x() << G4endl;
368       G4cout << "v.y() = "   << v.y() << G4end    361       G4cout << "v.y() = "   << v.y() << G4endl;
369       G4cout << "v.z() = "   << v.z() << G4end    362       G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
370       G4cout << "WARNING - Invalid call in "      363       G4cout << "WARNING - Invalid call in "
371              << "G4UnionSolid::DistanceToOut(p    364              << "G4UnionSolid::DistanceToOut(p,v)" << G4endl
372              << "  Point p is outside !" << G4    365              << "  Point p is outside !" << G4endl;
373       G4cout << "          p = " << p << G4end    366       G4cout << "          p = " << p << G4endl;
374       G4cout << "          v = " << v << G4end    367       G4cout << "          v = " << v << G4endl;
375       G4cerr << "WARNING - Invalid call in "      368       G4cerr << "WARNING - Invalid call in "
376              << "G4UnionSolid::DistanceToOut(p    369              << "G4UnionSolid::DistanceToOut(p,v)" << G4endl
377              << "  Point p is outside !" << G4    370              << "  Point p is outside !" << G4endl;
378       G4cerr << "          p = " << p << G4end    371       G4cerr << "          p = " << p << G4endl;
379       G4cerr << "          v = " << v << G4end    372       G4cerr << "          v = " << v << G4endl;
380 #endif                                            373 #endif
381   }                                               374   }
382   else                                            375   else
383   {                                               376   {
384     EInside positionA = fPtrSolidA->Inside(p)     377     EInside positionA = fPtrSolidA->Inside(p) ;
385                                                   378 
386     if( positionA != kOutside )                   379     if( positionA != kOutside )
387     {                                             380     { 
388       do  // Loop checking, 13.08.2015, G.Cosm    381       do  // Loop checking, 13.08.2015, G.Cosmo
389       {                                           382       {
390         disTmp = fPtrSolidA->DistanceToOut(p+d    383         disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm,
391                                            val    384                                            validNorm,nTmp);
392         dist += disTmp ;                          385         dist += disTmp ;
393                                                   386 
394         if(fPtrSolidB->Inside(p+dist*v) != kOu    387         if(fPtrSolidB->Inside(p+dist*v) != kOutside)
395         {                                         388         { 
396           disTmp = fPtrSolidB->DistanceToOut(p    389           disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm,
397                                              v    390                                              validNorm,nTmp);
398           dist += disTmp ;                        391           dist += disTmp ;
399         }                                         392         }
400       }                                           393       }
401       while( (fPtrSolidA->Inside(p+dist*v) !=     394       while( (fPtrSolidA->Inside(p+dist*v) != kOutside)
402           && (disTmp > halfCarTolerance) );    << 395           && (disTmp > 0.5*kCarTolerance) );
403     }                                             396     }
404     else // if( positionB != kOutside )           397     else // if( positionB != kOutside )
405     {                                             398     {
406       do  // Loop checking, 13.08.2015, G.Cosm    399       do  // Loop checking, 13.08.2015, G.Cosmo
407       {                                           400       {
408         disTmp = fPtrSolidB->DistanceToOut(p+d    401         disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v,calcNorm,
409                                            val    402                                            validNorm,nTmp); 
410         dist += disTmp ;                          403         dist += disTmp ;
411                                                   404 
412         if(fPtrSolidA->Inside(p+dist*v) != kOu    405         if(fPtrSolidA->Inside(p+dist*v) != kOutside)
413         {                                         406         { 
414           disTmp = fPtrSolidA->DistanceToOut(p    407           disTmp = fPtrSolidA->DistanceToOut(p+dist*v,v,calcNorm,
415                                              v    408                                              validNorm,nTmp);
416           dist += disTmp ;                        409           dist += disTmp ;
417         }                                         410         }
418       }                                           411       }
419       while( (fPtrSolidB->Inside(p+dist*v) !=     412       while( (fPtrSolidB->Inside(p+dist*v) != kOutside)
420           && (disTmp > halfCarTolerance) );    << 413           && (disTmp > 0.5*kCarTolerance) );
421     }                                             414     }
422   }                                               415   }
423   if( calcNorm )                                  416   if( calcNorm )
424   {                                               417   { 
425      *validNorm = false ;                         418      *validNorm = false ;
426      *n         = *nTmp ;                         419      *n         = *nTmp ;   
427   }                                               420   }
428   return dist ;                                   421   return dist ;
429 }                                                 422 }
430                                                   423 
431 ////////////////////////////////////////////// << 424 //////////////////////////////////////////////////////////////
432 //                                                425 //
433 // Inverted algorithm of DistanceToIn(p)          426 // Inverted algorithm of DistanceToIn(p)
434                                                   427 
435 G4double                                          428 G4double 
436 G4UnionSolid::DistanceToOut( const G4ThreeVect    429 G4UnionSolid::DistanceToOut( const G4ThreeVector& p ) const 
437 {                                                 430 {
438   G4double distout = 0.0;                         431   G4double distout = 0.0;
439   if( Inside(p) == kOutside )                     432   if( Inside(p) == kOutside )
440   {                                               433   {
441 #ifdef G4BOOLDEBUG                                434 #ifdef G4BOOLDEBUG
442     G4cout << "WARNING - Invalid call in "        435     G4cout << "WARNING - Invalid call in "
443            << "G4UnionSolid::DistanceToOut(p)"    436            << "G4UnionSolid::DistanceToOut(p)" << G4endl
444            << "  Point p is outside !" << G4en    437            << "  Point p is outside !" << G4endl;
445     G4cout << "          p = " << p << G4endl;    438     G4cout << "          p = " << p << G4endl;
446     G4cerr << "WARNING - Invalid call in "        439     G4cerr << "WARNING - Invalid call in "
447            << "G4UnionSolid::DistanceToOut(p)"    440            << "G4UnionSolid::DistanceToOut(p)" << G4endl
448            << "  Point p is outside !" << G4en    441            << "  Point p is outside !" << G4endl;
449     G4cerr << "          p = " << p << G4endl;    442     G4cerr << "          p = " << p << G4endl;
450 #endif                                            443 #endif
451   }                                               444   }
452   else                                            445   else
453   {                                               446   {
454     EInside positionA = fPtrSolidA->Inside(p)     447     EInside positionA = fPtrSolidA->Inside(p) ;
455     EInside positionB = fPtrSolidB->Inside(p)     448     EInside positionB = fPtrSolidB->Inside(p) ;
456                                                   449   
457     //  Is this equivalent ??                     450     //  Is this equivalent ??
458     //    if( ! (  (positionA == kOutside)) &&    451     //    if( ! (  (positionA == kOutside)) && 
459     //             (positionB == kOutside))  )    452     //             (positionB == kOutside))  ) 
460     if((positionA == kInside  && positionB ==     453     if((positionA == kInside  && positionB == kInside  ) ||
461        (positionA == kInside  && positionB ==     454        (positionA == kInside  && positionB == kSurface ) ||
462        (positionA == kSurface && positionB ==     455        (positionA == kSurface && positionB == kInside  )     )
463     {                                             456     {     
464       distout= std::max(fPtrSolidA->DistanceTo    457       distout= std::max(fPtrSolidA->DistanceToOut(p),
465                         fPtrSolidB->DistanceTo << 458                           fPtrSolidB->DistanceToOut(p) ) ;
466     }                                             459     }
467     else                                          460     else
468     {                                             461     {
469       if(positionA == kOutside)                   462       if(positionA == kOutside)
470       {                                           463       {
471         distout= fPtrSolidB->DistanceToOut(p)     464         distout= fPtrSolidB->DistanceToOut(p) ;
472       }                                           465       }
473       else                                        466       else
474       {                                           467       {
475         distout= fPtrSolidA->DistanceToOut(p)     468         distout= fPtrSolidA->DistanceToOut(p) ;
476       }                                           469       }
477     }                                             470     }
478   }                                               471   }
479   return distout;                                 472   return distout;
480 }                                                 473 }
481                                                   474 
482 ////////////////////////////////////////////// << 475 //////////////////////////////////////////////////////////////
483 //                                                476 //
484 // GetEntityType                                  477 // GetEntityType
485                                                   478 
486 G4GeometryType G4UnionSolid::GetEntityType() c    479 G4GeometryType G4UnionSolid::GetEntityType() const 
487 {                                                 480 {
488   return {"G4UnionSolid"};                     << 481   return G4String("G4UnionSolid");
489 }                                                 482 }
490                                                   483 
491 //////////////////////////////////////////////    484 //////////////////////////////////////////////////////////////////////////
492 //                                                485 //
493 // Make a clone of the object                     486 // Make a clone of the object
494                                                   487 
495 G4VSolid* G4UnionSolid::Clone() const             488 G4VSolid* G4UnionSolid::Clone() const
496 {                                                 489 {
497   return new G4UnionSolid(*this);                 490   return new G4UnionSolid(*this);
498 }                                                 491 }
499                                                   492 
500 ////////////////////////////////////////////// << 493 //////////////////////////////////////////////////////////////
501 //                                                494 //
502 // ComputeDimensions                              495 // ComputeDimensions
503                                                   496 
504 void                                              497 void 
505 G4UnionSolid::ComputeDimensions(       G4VPVPa    498 G4UnionSolid::ComputeDimensions(       G4VPVParameterisation*,
506                                  const G4int,     499                                  const G4int,
507                                  const G4VPhys    500                                  const G4VPhysicalVolume* ) 
508 {                                                 501 {
509 }                                                 502 }
510                                                   503 
511 ////////////////////////////////////////////// << 504 /////////////////////////////////////////////////
512 //                                                505 //
513 // DescribeYourselfTo                             506 // DescribeYourselfTo
514                                                   507 
515 void                                              508 void 
516 G4UnionSolid::DescribeYourselfTo ( G4VGraphics    509 G4UnionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
517 {                                                 510 {
518   scene.AddSolid (*this);                         511   scene.AddSolid (*this);
519 }                                                 512 }
520                                                   513 
521 ////////////////////////////////////////////// << 514 ////////////////////////////////////////////////////
522 //                                                515 //
523 // CreatePolyhedron                               516 // CreatePolyhedron
524                                                   517 
525 G4Polyhedron*                                     518 G4Polyhedron* 
526 G4UnionSolid::CreatePolyhedron () const        << 519 G4UnionSolid::CreatePolyhedron () const 
527 {                                              << 
528   if (fExternalBoolProcessor == nullptr)       << 
529   {                                            << 
530     HepPolyhedronProcessor processor;          << 
531     // Stack components and components of comp << 
532     // See G4BooleanSolid::StackPolyhedron     << 
533     G4Polyhedron* top = StackPolyhedron(proces << 
534     auto result = new G4Polyhedron(*top);      << 
535     if (processor.execute(*result))            << 
536     {                                          << 
537       return result;                           << 
538     }                                          << 
539     else                                       << 
540     {                                          << 
541       return nullptr;                          << 
542     }                                          << 
543   }                                            << 
544   else                                         << 
545   {                                            << 
546     return fExternalBoolProcessor->Process(thi << 
547   }                                            << 
548 }                                              << 
549                                                << 
550 ////////////////////////////////////////////// << 
551 //                                             << 
552 // GetCubicVolume                              << 
553                                                << 
554 G4double G4UnionSolid::GetCubicVolume()        << 
555 {                                                 520 {
556   if( fCubicVolume >= 0. )                     << 521   HepPolyhedronProcessor processor;
557   {                                            << 522   // Stack components and components of components recursively
558     return fCubicVolume;                       << 523   // See G4BooleanSolid::StackPolyhedron
559   }                                            << 524   G4Polyhedron* top = StackPolyhedron(processor, this);
560   G4ThreeVector bminA, bmaxA, bminB, bmaxB;    << 525   G4Polyhedron* result = new G4Polyhedron(*top);
561   fPtrSolidA->BoundingLimits(bminA, bmaxA);    << 526   if (processor.execute(*result)) { return result; }
562   fPtrSolidB->BoundingLimits(bminB, bmaxB);    << 527   else { return nullptr; }
563   G4bool noIntersection =                      << 
564      bminA.x() >= bmaxB.x() || bminA.y() >= bm << 
565      bminB.x() >= bmaxA.x() || bminB.y() >= bm << 
566                                                << 
567   if (noIntersection)                          << 
568   {                                            << 
569     fCubicVolume = fPtrSolidA->GetCubicVolume( << 
570   }                                            << 
571   else                                         << 
572   {                                            << 
573     if (GetNumOfConstituents() > 10)           << 
574     {                                          << 
575       fCubicVolume = G4BooleanSolid::GetCubicV << 
576     }                                          << 
577     else                                       << 
578     {                                          << 
579       G4IntersectionSolid intersectVol("Tempor << 
580                                        fPtrSol << 
581       intersectVol.SetCubVolStatistics(GetCubV << 
582       intersectVol.SetCubVolEpsilon(GetCubVolE << 
583                                                << 
584       fCubicVolume = fPtrSolidA->GetCubicVolum << 
585         - intersectVol.GetCubicVolume();       << 
586     }                                          << 
587   }                                            << 
588   return fCubicVolume;                         << 
589 }                                                 528 }
590                                                   529