Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4IntersectionSolid.cc,v 1.34 2010-10-20 07:31:39 gcosmo Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // 26 // Implementation of methods for the class G4I 30 // Implementation of methods for the class G4IntersectionSolid 27 // 31 // >> 32 // History: >> 33 // >> 34 // 17.02.05 V.Grichine: bug was fixed in DistanceToIn(p,v) based on algorithm >> 35 // proposed by Dino Bazzacco <dino.bazzacco@pd.infn.it> >> 36 // 29.05.01 V.Grichine: bug was fixed in DistanceToIn(p,v) >> 37 // 16.03.01 V.Grichine: modifications in CalculateExtent() and Inside() >> 38 // 29.07.99 V.Grichine: modifications in DistanceToIn(p,v) 28 // 12.09.98 V.Grichine: first implementation 39 // 12.09.98 V.Grichine: first implementation >> 40 // 29 // ------------------------------------------- 41 // -------------------------------------------------------------------- 30 42 31 #include <sstream> << 32 << 33 #include "G4IntersectionSolid.hh" 43 #include "G4IntersectionSolid.hh" 34 44 35 #include "G4SystemOfUnits.hh" << 45 #include <sstream> >> 46 36 #include "G4VoxelLimits.hh" 47 #include "G4VoxelLimits.hh" 37 #include "G4VPVParameterisation.hh" 48 #include "G4VPVParameterisation.hh" 38 49 39 #include "G4VGraphicsScene.hh" 50 #include "G4VGraphicsScene.hh" 40 #include "G4Polyhedron.hh" 51 #include "G4Polyhedron.hh" 41 #include "G4PolyhedronArbitrary.hh" << 42 #include "HepPolyhedronProcessor.h" 52 #include "HepPolyhedronProcessor.h" >> 53 #include "G4NURBS.hh" >> 54 // #include "G4NURBSbox.hh" 43 55 44 ////////////////////////////////////////////// << 56 ///////////////////////////////////////////////////////////////////// 45 // 57 // 46 // Transfer all data members to G4BooleanSolid 58 // Transfer all data members to G4BooleanSolid which is responsible 47 // for them. pName will be in turn sent to G4V 59 // for them. pName will be in turn sent to G4VSolid 48 // 60 // 49 61 50 G4IntersectionSolid::G4IntersectionSolid( cons 62 G4IntersectionSolid::G4IntersectionSolid( const G4String& pName, 51 63 G4VSolid* pSolidA , 52 64 G4VSolid* pSolidB ) 53 : G4BooleanSolid(pName,pSolidA,pSolidB) 65 : G4BooleanSolid(pName,pSolidA,pSolidB) 54 { 66 { 55 } 67 } 56 68 57 ////////////////////////////////////////////// << 69 /////////////////////////////////////////////////////////////////// 58 // 70 // 59 71 60 G4IntersectionSolid::G4IntersectionSolid( cons 72 G4IntersectionSolid::G4IntersectionSolid( const G4String& pName, 61 73 G4VSolid* pSolidA, 62 74 G4VSolid* pSolidB, 63 75 G4RotationMatrix* rotMatrix, 64 cons 76 const G4ThreeVector& transVector ) 65 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa 77 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 66 { 78 { 67 } 79 } 68 80 69 ////////////////////////////////////////////// << 81 ////////////////////////////////////////////////////////////////// 70 // 82 // 71 // 83 // 72 84 73 G4IntersectionSolid::G4IntersectionSolid( cons 85 G4IntersectionSolid::G4IntersectionSolid( const G4String& pName, 74 86 G4VSolid* pSolidA, 75 87 G4VSolid* pSolidB, 76 cons 88 const G4Transform3D& transform ) 77 : G4BooleanSolid(pName,pSolidA,pSolidB,trans 89 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 78 { 90 { 79 } 91 } 80 92 81 ////////////////////////////////////////////// << 93 ////////////////////////////////////////////////////////////////// 82 // 94 // 83 // Fake default constructor - sets only member 95 // Fake default constructor - sets only member data and allocates memory 84 // for usage restri 96 // for usage restricted to object persistency. 85 97 86 G4IntersectionSolid::G4IntersectionSolid( __vo 98 G4IntersectionSolid::G4IntersectionSolid( __void__& a ) 87 : G4BooleanSolid(a) 99 : G4BooleanSolid(a) 88 { 100 { 89 } 101 } 90 102 91 ////////////////////////////////////////////// << 103 /////////////////////////////////////////////////////////////// 92 // 104 // 93 // 105 // 94 106 95 G4IntersectionSolid::~G4IntersectionSolid() = << 107 G4IntersectionSolid::~G4IntersectionSolid() >> 108 { >> 109 } 96 110 97 ////////////////////////////////////////////// << 111 /////////////////////////////////////////////////////////////// 98 // 112 // 99 // Copy constructor 113 // Copy constructor 100 114 101 G4IntersectionSolid::G4IntersectionSolid(const << 115 G4IntersectionSolid::G4IntersectionSolid(const G4IntersectionSolid& rhs) >> 116 : G4BooleanSolid (rhs) >> 117 { >> 118 } 102 119 103 ////////////////////////////////////////////// << 120 /////////////////////////////////////////////////////////////// 104 // 121 // 105 // Assignment operator 122 // Assignment operator 106 123 107 G4IntersectionSolid& 124 G4IntersectionSolid& 108 G4IntersectionSolid::operator = (const G4Inter 125 G4IntersectionSolid::operator = (const G4IntersectionSolid& rhs) 109 { 126 { 110 // Check assignment to self 127 // Check assignment to self 111 // 128 // 112 if (this == &rhs) { return *this; } 129 if (this == &rhs) { return *this; } 113 130 114 // Copy base class data 131 // Copy base class data 115 // 132 // 116 G4BooleanSolid::operator=(rhs); 133 G4BooleanSolid::operator=(rhs); 117 134 118 return *this; 135 return *this; 119 } 136 } 120 137 121 ////////////////////////////////////////////// << 138 /////////////////////////////////////////////////////////////// 122 // 139 // 123 // Get bounding box << 124 << 125 void << 126 G4IntersectionSolid::BoundingLimits(G4ThreeVec << 127 G4ThreeVec << 128 { << 129 G4ThreeVector minA,maxA, minB,maxB; << 130 fPtrSolidA->BoundingLimits(minA,maxA); << 131 fPtrSolidB->BoundingLimits(minB,maxB); << 132 << 133 pMin.set(std::max(minA.x(),minB.x()), << 134 std::max(minA.y(),minB.y()), << 135 std::max(minA.z(),minB.z())); << 136 << 137 pMax.set(std::min(maxA.x(),maxB.x()), << 138 std::min(maxA.y(),maxB.y()), << 139 std::min(maxA.z(),maxB.z())); << 140 << 141 // Check correctness of the bounding box << 142 // << 143 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 144 { << 145 std::ostringstream message; << 146 message << "Bad bounding box (min >= max) << 147 << GetName() << " !" << 148 << "\npMin = " << pMin << 149 << "\npMax = " << pMax; << 150 G4Exception("G4IntersectionSolid::Bounding << 151 JustWarning, message); << 152 DumpInfo(); << 153 } << 154 } << 155 << 156 ////////////////////////////////////////////// << 157 // 140 // 158 // Calculate extent under transform and specif << 159 141 160 G4bool 142 G4bool 161 G4IntersectionSolid::CalculateExtent(const EAx 143 G4IntersectionSolid::CalculateExtent(const EAxis pAxis, 162 const G4V 144 const G4VoxelLimits& pVoxelLimit, 163 const G4A 145 const G4AffineTransform& pTransform, 164 G4d 146 G4double& pMin, 165 G4d 147 G4double& pMax) const 166 { 148 { 167 G4bool retA, retB, out; 149 G4bool retA, retB, out; 168 G4double minA, minB, maxA, maxB; 150 G4double minA, minB, maxA, maxB; 169 151 170 retA = fPtrSolidA 152 retA = fPtrSolidA 171 ->CalculateExtent( pAxis, pVoxelLimi 153 ->CalculateExtent( pAxis, pVoxelLimit, pTransform, minA, maxA); 172 retB = fPtrSolidB 154 retB = fPtrSolidB 173 ->CalculateExtent( pAxis, pVoxelLimi 155 ->CalculateExtent( pAxis, pVoxelLimit, pTransform, minB, maxB); 174 156 175 if( retA && retB ) 157 if( retA && retB ) 176 { 158 { 177 pMin = std::max( minA, minB ); 159 pMin = std::max( minA, minB ); 178 pMax = std::min( maxA, maxB ); 160 pMax = std::min( maxA, maxB ); 179 out = (pMax > pMin); // true; 161 out = (pMax > pMin); // true; >> 162 #ifdef G4BOOLDEBUG >> 163 // G4cout.precision(16); >> 164 // G4cout<<"pMin = "<<pMin<<"; pMax = "<<pMax<<G4endl; >> 165 #endif 180 } 166 } 181 else << 167 else out = false; 182 { << 183 out = false; << 184 } << 185 168 186 return out; // It exists in this slice only 169 return out; // It exists in this slice only if both exist in it. 187 } 170 } 188 171 189 ////////////////////////////////////////////// << 172 ///////////////////////////////////////////////////// 190 // 173 // 191 // Touching ? Empty intersection ? 174 // Touching ? Empty intersection ? 192 175 193 EInside G4IntersectionSolid::Inside(const G4Th 176 EInside G4IntersectionSolid::Inside(const G4ThreeVector& p) const 194 { 177 { 195 EInside positionA = fPtrSolidA->Inside(p); << 178 EInside positionA = fPtrSolidA->Inside(p) ; 196 if(positionA == kOutside) return positionA; << 197 179 198 EInside positionB = fPtrSolidB->Inside(p); << 180 if( positionA == kOutside ) return kOutside ; 199 if(positionA == kInside) return positionB; << 200 181 201 if(positionB == kOutside) return positionB; << 182 EInside positionB = fPtrSolidB->Inside(p) ; 202 return kSurface; << 183 >> 184 if(positionA == kInside && positionB == kInside) >> 185 { >> 186 return kInside ; >> 187 } >> 188 else >> 189 { >> 190 if((positionA == kInside && positionB == kSurface) || >> 191 (positionB == kInside && positionA == kSurface) || >> 192 (positionA == kSurface && positionB == kSurface) ) >> 193 { >> 194 return kSurface ; >> 195 } >> 196 else >> 197 { >> 198 return kOutside ; >> 199 } >> 200 } 203 } 201 } 204 202 205 ////////////////////////////////////////////// << 203 ////////////////////////////////////////////////////////////// 206 // 204 // 207 205 208 G4ThreeVector 206 G4ThreeVector 209 G4IntersectionSolid::SurfaceNormal( const G4Th 207 G4IntersectionSolid::SurfaceNormal( const G4ThreeVector& p ) const 210 { 208 { 211 G4ThreeVector normal; 209 G4ThreeVector normal; 212 EInside insideA, insideB; 210 EInside insideA, insideB; 213 211 214 insideA = fPtrSolidA->Inside(p); << 212 insideA= fPtrSolidA->Inside(p); 215 insideB = fPtrSolidB->Inside(p); << 213 insideB= fPtrSolidB->Inside(p); 216 214 217 #ifdef G4BOOLDEBUG 215 #ifdef G4BOOLDEBUG 218 if( (insideA == kOutside) || (insideB == kOu 216 if( (insideA == kOutside) || (insideB == kOutside) ) 219 { 217 { 220 G4cout << "WARNING - Invalid call in " 218 G4cout << "WARNING - Invalid call in " 221 << "G4IntersectionSolid::SurfaceNor 219 << "G4IntersectionSolid::SurfaceNormal(p)" << G4endl 222 << " Point p is outside !" << G4en 220 << " Point p is outside !" << G4endl; 223 G4cout << " p = " << p << G4endl; 221 G4cout << " p = " << p << G4endl; 224 G4cerr << "WARNING - Invalid call in " 222 G4cerr << "WARNING - Invalid call in " 225 << "G4IntersectionSolid::SurfaceNor 223 << "G4IntersectionSolid::SurfaceNormal(p)" << G4endl 226 << " Point p is outside !" << G4en 224 << " Point p is outside !" << G4endl; 227 G4cerr << " p = " << p << G4endl; 225 G4cerr << " p = " << p << G4endl; 228 } 226 } 229 #endif 227 #endif 230 228 >> 229 // OLD: if(fPtrSolidA->DistanceToOut(p) <= fPtrSolidB->DistanceToOut(p) ) >> 230 231 // On the surface of both is difficult ... t 231 // On the surface of both is difficult ... treat it like on A now! 232 // 232 // >> 233 // if( (insideA == kSurface) && (insideB == kSurface) ) >> 234 // normal= fPtrSolidA->SurfaceNormal(p) ; >> 235 // else 233 if( insideA == kSurface ) 236 if( insideA == kSurface ) 234 { << 235 normal = fPtrSolidA->SurfaceNormal(p) ; << 236 } << 237 else if( insideB == kSurface ) << 238 { << 239 normal = fPtrSolidB->SurfaceNormal(p) ; << 240 } << 241 else // We are on neither surface, so we sh << 242 { << 243 if(fPtrSolidA->DistanceToOut(p) <= fPtrSol << 244 { << 245 normal= fPtrSolidA->SurfaceNormal(p) ; << 246 } << 247 else << 248 { 237 { 249 normal= fPtrSolidB->SurfaceNormal(p) ; << 238 normal= fPtrSolidA->SurfaceNormal(p) ; 250 } 239 } >> 240 else if( insideB == kSurface ) >> 241 { >> 242 normal= fPtrSolidB->SurfaceNormal(p) ; >> 243 } >> 244 // We are on neither surface, so we should generate an exception >> 245 else >> 246 { >> 247 if(fPtrSolidA->DistanceToOut(p) <= fPtrSolidB->DistanceToOut(p) ) >> 248 normal= fPtrSolidA->SurfaceNormal(p) ; >> 249 else >> 250 normal= fPtrSolidB->SurfaceNormal(p) ; 251 #ifdef G4BOOLDEBUG 251 #ifdef G4BOOLDEBUG 252 G4cout << "WARNING - Invalid call in " << 252 G4cout << "WARNING - Invalid call in " 253 << "G4IntersectionSolid::SurfaceNor << 253 << "G4IntersectionSolid::SurfaceNormal(p)" << G4endl 254 << " Point p is out of surface !" << 254 << " Point p is out of surface !" << G4endl; 255 G4cout << " p = " << p << G4endl; << 255 G4cout << " p = " << p << G4endl; 256 G4cerr << "WARNING - Invalid call in " << 256 G4cerr << "WARNING - Invalid call in " 257 << "G4IntersectionSolid::SurfaceNor << 257 << "G4IntersectionSolid::SurfaceNormal(p)" << G4endl 258 << " Point p is out of surface !" << 258 << " Point p is out of surface !" << G4endl; 259 G4cerr << " p = " << p << G4endl; << 259 G4cerr << " p = " << p << G4endl; 260 #endif 260 #endif 261 } 261 } 262 262 263 return normal; 263 return normal; 264 } 264 } 265 265 266 ////////////////////////////////////////////// << 266 ///////////////////////////////////////////////////////////// 267 // 267 // 268 // The same algorithm as in DistanceToIn(p) 268 // The same algorithm as in DistanceToIn(p) 269 269 270 G4double 270 G4double 271 G4IntersectionSolid::DistanceToIn( const G4Thr 271 G4IntersectionSolid::DistanceToIn( const G4ThreeVector& p, 272 const G4Thr 272 const G4ThreeVector& v ) const 273 { 273 { 274 G4double dist = 0.0; 274 G4double dist = 0.0; 275 if( Inside(p) == kInside ) 275 if( Inside(p) == kInside ) 276 { 276 { 277 #ifdef G4BOOLDEBUG 277 #ifdef G4BOOLDEBUG 278 G4cout << "WARNING - Invalid call in " 278 G4cout << "WARNING - Invalid call in " 279 << "G4IntersectionSolid::DistanceTo 279 << "G4IntersectionSolid::DistanceToIn(p,v)" << G4endl 280 << " Point p is inside !" << G4end 280 << " Point p is inside !" << G4endl; 281 G4cout << " p = " << p << G4endl; 281 G4cout << " p = " << p << G4endl; 282 G4cout << " v = " << v << G4endl; 282 G4cout << " v = " << v << G4endl; 283 G4cerr << "WARNING - Invalid call in " 283 G4cerr << "WARNING - Invalid call in " 284 << "G4IntersectionSolid::DistanceTo 284 << "G4IntersectionSolid::DistanceToIn(p,v)" << G4endl 285 << " Point p is inside !" << G4end 285 << " Point p is inside !" << G4endl; 286 G4cerr << " p = " << p << G4endl; 286 G4cerr << " p = " << p << G4endl; 287 G4cerr << " v = " << v << G4endl; 287 G4cerr << " v = " << v << G4endl; 288 #endif 288 #endif 289 } 289 } 290 else // if( Inside(p) == kSurface ) 290 else // if( Inside(p) == kSurface ) 291 { 291 { 292 EInside wA = fPtrSolidA->Inside(p); 292 EInside wA = fPtrSolidA->Inside(p); 293 EInside wB = fPtrSolidB->Inside(p); 293 EInside wB = fPtrSolidB->Inside(p); 294 294 295 G4ThreeVector pA = p, pB = p; 295 G4ThreeVector pA = p, pB = p; 296 G4double dA = 0., dA1=0., dA2=0.; 296 G4double dA = 0., dA1=0., dA2=0.; 297 G4double dB = 0., dB1=0., dB2=0.; 297 G4double dB = 0., dB1=0., dB2=0.; 298 G4bool doA = true, doB = true; 298 G4bool doA = true, doB = true; 299 299 300 static const std::size_t max_trials=10000; << 300 while(true) 301 for (std::size_t trial=0; trial<max_trials << 302 { 301 { 303 if(doA) 302 if(doA) 304 { 303 { 305 // find next valid range for A 304 // find next valid range for A 306 305 307 dA1 = 0.; 306 dA1 = 0.; 308 307 309 if( wA != kInside ) 308 if( wA != kInside ) 310 { 309 { 311 dA1 = fPtrSolidA->DistanceToIn(pA, v 310 dA1 = fPtrSolidA->DistanceToIn(pA, v); 312 311 313 if( dA1 == kInfinity ) return kInf 312 if( dA1 == kInfinity ) return kInfinity; 314 313 315 pA += dA1*v; 314 pA += dA1*v; 316 } 315 } 317 dA2 = dA1 + fPtrSolidA->DistanceToOut( 316 dA2 = dA1 + fPtrSolidA->DistanceToOut(pA, v); 318 } 317 } 319 dA1 += dA; 318 dA1 += dA; 320 dA2 += dA; 319 dA2 += dA; 321 320 322 if(doB) 321 if(doB) 323 { 322 { 324 // find next valid range for B 323 // find next valid range for B 325 324 326 dB1 = 0.; 325 dB1 = 0.; 327 if(wB != kInside) 326 if(wB != kInside) 328 { 327 { 329 dB1 = fPtrSolidB->DistanceToIn(pB, v 328 dB1 = fPtrSolidB->DistanceToIn(pB, v); 330 329 331 if(dB1 == kInfinity) return kInfin 330 if(dB1 == kInfinity) return kInfinity; 332 331 333 pB += dB1*v; 332 pB += dB1*v; 334 } 333 } 335 dB2 = dB1 + fPtrSolidB->DistanceToOut( 334 dB2 = dB1 + fPtrSolidB->DistanceToOut(pB, v); 336 } 335 } 337 dB1 += dB; 336 dB1 += dB; 338 dB2 += dB; 337 dB2 += dB; 339 338 340 // check if they overlap 339 // check if they overlap 341 340 342 if( dA1 < dB1 ) 341 if( dA1 < dB1 ) 343 { 342 { 344 if( dB1 < dA2 ) return dB1; 343 if( dB1 < dA2 ) return dB1; 345 344 346 dA = dA2; 345 dA = dA2; 347 pA = p + dA*v; // continue from her 346 pA = p + dA*v; // continue from here 348 wA = kSurface; 347 wA = kSurface; 349 doA = true; 348 doA = true; 350 doB = false; 349 doB = false; 351 } 350 } 352 else 351 else 353 { 352 { 354 if( dA1 < dB2 ) return dA1; 353 if( dA1 < dB2 ) return dA1; 355 354 356 dB = dB2; 355 dB = dB2; 357 pB = p + dB*v; // continue from her 356 pB = p + dB*v; // continue from here 358 wB = kSurface; 357 wB = kSurface; 359 doB = true; 358 doB = true; 360 doA = false; 359 doA = false; 361 } 360 } 362 } 361 } 363 } 362 } 364 #ifdef G4BOOLDEBUG << 365 G4Exception("G4IntersectionSolid::DistanceTo << 366 "GeomSolids0001", JustWarning, << 367 "Reached maximum number of itera << 368 #endif << 369 return dist ; 363 return dist ; 370 } 364 } 371 365 372 ////////////////////////////////////////////// << 366 //////////////////////////////////////////////////////// 373 // 367 // 374 // Approximate nearest distance from the point 368 // Approximate nearest distance from the point p to the intersection of 375 // two solids 369 // two solids 376 370 377 G4double 371 G4double 378 G4IntersectionSolid::DistanceToIn( const G4Thr 372 G4IntersectionSolid::DistanceToIn( const G4ThreeVector& p) const 379 { 373 { 380 #ifdef G4BOOLDEBUG 374 #ifdef G4BOOLDEBUG 381 if( Inside(p) == kInside ) 375 if( Inside(p) == kInside ) 382 { 376 { 383 G4cout << "WARNING - Invalid call in " 377 G4cout << "WARNING - Invalid call in " 384 << "G4IntersectionSolid::DistanceTo 378 << "G4IntersectionSolid::DistanceToIn(p)" << G4endl 385 << " Point p is inside !" << G4end 379 << " Point p is inside !" << G4endl; 386 G4cout << " p = " << p << G4endl; 380 G4cout << " p = " << p << G4endl; 387 G4cerr << "WARNING - Invalid call in " 381 G4cerr << "WARNING - Invalid call in " 388 << "G4IntersectionSolid::DistanceTo 382 << "G4IntersectionSolid::DistanceToIn(p)" << G4endl 389 << " Point p is inside !" << G4end 383 << " Point p is inside !" << G4endl; 390 G4cerr << " p = " << p << G4endl; 384 G4cerr << " p = " << p << G4endl; 391 } 385 } 392 #endif 386 #endif 393 EInside sideA = fPtrSolidA->Inside(p) ; 387 EInside sideA = fPtrSolidA->Inside(p) ; 394 EInside sideB = fPtrSolidB->Inside(p) ; 388 EInside sideB = fPtrSolidB->Inside(p) ; 395 G4double dist=0.0 ; 389 G4double dist=0.0 ; 396 390 397 if( sideA != kInside && sideB != kOutside ) << 391 if( sideA != kInside && sideB != kOutside ) 398 { 392 { 399 dist = fPtrSolidA->DistanceToIn(p) ; 393 dist = fPtrSolidA->DistanceToIn(p) ; 400 } 394 } 401 else 395 else 402 { 396 { 403 if( sideB != kInside && sideA != kOutside << 397 if( sideB != kInside && sideA != kOutside ) 404 { 398 { 405 dist = fPtrSolidB->DistanceToIn(p) ; 399 dist = fPtrSolidB->DistanceToIn(p) ; 406 } 400 } 407 else 401 else 408 { 402 { 409 dist = std::min(fPtrSolidA->DistanceToI 403 dist = std::min(fPtrSolidA->DistanceToIn(p), 410 fPtrSolidB->DistanceToI << 404 fPtrSolidB->DistanceToIn(p) ) ; 411 } 405 } 412 } 406 } 413 return dist ; 407 return dist ; 414 } 408 } 415 409 416 ////////////////////////////////////////////// << 410 ////////////////////////////////////////////////////////// 417 // 411 // 418 // The same algorithm as DistanceToOut(p) 412 // The same algorithm as DistanceToOut(p) 419 413 420 G4double 414 G4double 421 G4IntersectionSolid::DistanceToOut( const G4Th 415 G4IntersectionSolid::DistanceToOut( const G4ThreeVector& p, 422 const G4Th 416 const G4ThreeVector& v, 423 const G4bo 417 const G4bool calcNorm, 424 G4bo << 418 G4bool *validNorm, 425 G4Th << 419 G4ThreeVector *n ) const 426 { 420 { 427 G4bool validNormA, validNormB; 421 G4bool validNormA, validNormB; 428 G4ThreeVector nA, nB; 422 G4ThreeVector nA, nB; 429 423 430 #ifdef G4BOOLDEBUG 424 #ifdef G4BOOLDEBUG 431 if( Inside(p) == kOutside ) 425 if( Inside(p) == kOutside ) 432 { 426 { 433 G4cout << "Position:" << G4endl << G4endl 427 G4cout << "Position:" << G4endl << G4endl; 434 G4cout << "p.x() = " << p.x()/mm << " mm 428 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 435 G4cout << "p.y() = " << p.y()/mm << " mm 429 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 436 G4cout << "p.z() = " << p.z()/mm << " mm 430 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 437 G4cout << "Direction:" << G4endl << G4endl 431 G4cout << "Direction:" << G4endl << G4endl; 438 G4cout << "v.x() = " << v.x() << G4endl; 432 G4cout << "v.x() = " << v.x() << G4endl; 439 G4cout << "v.y() = " << v.y() << G4endl; 433 G4cout << "v.y() = " << v.y() << G4endl; 440 G4cout << "v.z() = " << v.z() << G4endl 434 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 441 G4cout << "WARNING - Invalid call in " 435 G4cout << "WARNING - Invalid call in " 442 << "G4IntersectionSolid::DistanceTo 436 << "G4IntersectionSolid::DistanceToOut(p,v)" << G4endl 443 << " Point p is outside !" << G4en 437 << " Point p is outside !" << G4endl; 444 G4cout << " p = " << p << G4endl; 438 G4cout << " p = " << p << G4endl; 445 G4cout << " v = " << v << G4endl; 439 G4cout << " v = " << v << G4endl; 446 G4cerr << "WARNING - Invalid call in " 440 G4cerr << "WARNING - Invalid call in " 447 << "G4IntersectionSolid::DistanceTo 441 << "G4IntersectionSolid::DistanceToOut(p,v)" << G4endl 448 << " Point p is outside !" << G4en 442 << " Point p is outside !" << G4endl; 449 G4cerr << " p = " << p << G4endl; 443 G4cerr << " p = " << p << G4endl; 450 G4cerr << " v = " << v << G4endl; 444 G4cerr << " v = " << v << G4endl; 451 } 445 } 452 #endif 446 #endif 453 G4double distA = fPtrSolidA->DistanceToOut(p 447 G4double distA = fPtrSolidA->DistanceToOut(p,v,calcNorm,&validNormA,&nA) ; 454 G4double distB = fPtrSolidB->DistanceToOut(p 448 G4double distB = fPtrSolidB->DistanceToOut(p,v,calcNorm,&validNormB,&nB) ; 455 449 456 G4double dist = std::min(distA,distB) ; 450 G4double dist = std::min(distA,distB) ; 457 451 458 if( calcNorm ) 452 if( calcNorm ) 459 { 453 { 460 if ( distA < distB ) 454 if ( distA < distB ) 461 { 455 { 462 *validNorm = validNormA; 456 *validNorm = validNormA; 463 *n = nA; 457 *n = nA; 464 } 458 } 465 else 459 else 466 { 460 { 467 *validNorm = validNormB; 461 *validNorm = validNormB; 468 *n = nB; 462 *n = nB; 469 } 463 } 470 } 464 } 471 465 472 return dist ; 466 return dist ; 473 } 467 } 474 468 475 ////////////////////////////////////////////// << 469 ////////////////////////////////////////////////////////////// 476 // 470 // 477 // Inverted algorithm of DistanceToIn(p) 471 // Inverted algorithm of DistanceToIn(p) 478 472 479 G4double 473 G4double 480 G4IntersectionSolid::DistanceToOut( const G4Th 474 G4IntersectionSolid::DistanceToOut( const G4ThreeVector& p ) const 481 { 475 { 482 #ifdef G4BOOLDEBUG 476 #ifdef G4BOOLDEBUG 483 if( Inside(p) == kOutside ) 477 if( Inside(p) == kOutside ) 484 { 478 { 485 G4cout << "WARNING - Invalid call in " 479 G4cout << "WARNING - Invalid call in " 486 << "G4IntersectionSolid::DistanceTo 480 << "G4IntersectionSolid::DistanceToOut(p)" << G4endl 487 << " Point p is outside !" << G4en 481 << " Point p is outside !" << G4endl; 488 G4cout << " p = " << p << G4endl; 482 G4cout << " p = " << p << G4endl; 489 G4cerr << "WARNING - Invalid call in " 483 G4cerr << "WARNING - Invalid call in " 490 << "G4IntersectionSolid::DistanceTo 484 << "G4IntersectionSolid::DistanceToOut(p)" << G4endl 491 << " Point p is outside !" << G4en 485 << " Point p is outside !" << G4endl; 492 G4cerr << " p = " << p << G4endl; 486 G4cerr << " p = " << p << G4endl; 493 } 487 } 494 #endif 488 #endif 495 489 496 return std::min(fPtrSolidA->DistanceToOut(p) 490 return std::min(fPtrSolidA->DistanceToOut(p), 497 fPtrSolidB->DistanceToOut(p) 491 fPtrSolidB->DistanceToOut(p) ) ; 498 492 499 } 493 } 500 494 501 ////////////////////////////////////////////// << 495 ////////////////////////////////////////////////////////////// >> 496 // 502 // 497 // 503 // ComputeDimensions << 504 498 505 void 499 void 506 G4IntersectionSolid::ComputeDimensions( G4VPVP 500 G4IntersectionSolid::ComputeDimensions( G4VPVParameterisation*, 507 const << 501 const G4int, 508 const 502 const G4VPhysicalVolume* ) 509 { 503 { 510 } 504 } 511 505 512 ////////////////////////////////////////////// << 506 ///////////////////////////////////////////////// 513 // 507 // 514 // GetEntityType << 508 // 515 509 516 G4GeometryType G4IntersectionSolid::GetEntityT 510 G4GeometryType G4IntersectionSolid::GetEntityType() const 517 { 511 { 518 return {"G4IntersectionSolid"}; << 512 return G4String("G4IntersectionSolid"); 519 } 513 } 520 514 521 ////////////////////////////////////////////// 515 ////////////////////////////////////////////////////////////////////////// 522 // 516 // 523 // Make a clone of the object 517 // Make a clone of the object 524 518 525 G4VSolid* G4IntersectionSolid::Clone() const 519 G4VSolid* G4IntersectionSolid::Clone() const 526 { 520 { 527 return new G4IntersectionSolid(*this); 521 return new G4IntersectionSolid(*this); 528 } 522 } 529 523 530 ////////////////////////////////////////////// << 524 ///////////////////////////////////////////////// 531 // 525 // 532 // DescribeYourselfTo << 526 // 533 527 534 void 528 void 535 G4IntersectionSolid::DescribeYourselfTo ( G4VG 529 G4IntersectionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 536 { 530 { 537 scene.AddSolid (*this); 531 scene.AddSolid (*this); 538 } 532 } 539 533 540 ////////////////////////////////////////////// << 534 //////////////////////////////////////////////////// >> 535 // 541 // 536 // 542 // CreatePolyhedron << 543 537 544 G4Polyhedron* 538 G4Polyhedron* 545 G4IntersectionSolid::CreatePolyhedron () const 539 G4IntersectionSolid::CreatePolyhedron () const 546 { 540 { 547 if (fExternalBoolProcessor == nullptr) << 541 HepPolyhedronProcessor processor; 548 { << 542 // Stack components and components of components recursively 549 HepPolyhedronProcessor processor; << 543 // See G4BooleanSolid::StackPolyhedron 550 // Stack components and components of comp << 544 G4Polyhedron* top = StackPolyhedron(processor, this); 551 // See G4BooleanSolid::StackPolyhedron << 545 G4Polyhedron* result = new G4Polyhedron(*top); 552 G4Polyhedron* top = StackPolyhedron(proces << 546 if (processor.execute(*result)) { return result; } 553 auto result = new G4Polyhedron(*top); << 547 else { return 0; } 554 if (processor.execute(*result)) << 548 } 555 { << 549 556 return result; << 550 ///////////////////////////////////////////////////////// 557 } << 551 // 558 else << 552 // 559 { << 553 560 return nullptr; << 554 G4NURBS* 561 } << 555 G4IntersectionSolid::CreateNURBS () const 562 } << 556 { 563 else << 557 // Take into account boolean operation - see CreatePolyhedron. 564 { << 558 // return new G4NURBSbox (1.0, 1.0, 1.0); 565 return fExternalBoolProcessor->Process(thi << 559 return 0; 566 } << 567 } 560 } 568 561