Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4VoxelNavigation.cc,v 1.13 2010-11-04 18:18:00 japost Exp $ >> 28 // GEANT4 tag $Name: geant4-09-04-patch-01 $ >> 29 // >> 30 // 26 // class G4VoxelNavigation Implementation 31 // class G4VoxelNavigation Implementation 27 // 32 // 28 // Author: P.Kent, 1996 33 // Author: P.Kent, 1996 29 // 34 // 30 // ------------------------------------------- 35 // -------------------------------------------------------------------- >> 36 31 #include "G4VoxelNavigation.hh" 37 #include "G4VoxelNavigation.hh" 32 #include "G4GeometryTolerance.hh" 38 #include "G4GeometryTolerance.hh" 33 #include "G4VoxelSafety.hh" 39 #include "G4VoxelSafety.hh" 34 40 35 #include "G4AuxiliaryNavServices.hh" << 36 << 37 #include <cassert> << 38 #include <ostream> << 39 << 40 // ******************************************* 41 // ******************************************************************** 41 // Constructor 42 // Constructor 42 // ******************************************* 43 // ******************************************************************** 43 // 44 // 44 G4VoxelNavigation::G4VoxelNavigation() 45 G4VoxelNavigation::G4VoxelNavigation() 45 : fVoxelAxisStack(kNavigatorVoxelStackMax,kX << 46 : fBList(), fVoxelDepth(-1), >> 47 fVoxelAxisStack(kNavigatorVoxelStackMax,kXAxis), 46 fVoxelNoSlicesStack(kNavigatorVoxelStackMa 48 fVoxelNoSlicesStack(kNavigatorVoxelStackMax,0), 47 fVoxelSliceWidthStack(kNavigatorVoxelStack 49 fVoxelSliceWidthStack(kNavigatorVoxelStackMax,0.), 48 fVoxelNodeNoStack(kNavigatorVoxelStackMax, 50 fVoxelNodeNoStack(kNavigatorVoxelStackMax,0), 49 fVoxelHeaderStack(kNavigatorVoxelStackMax, << 51 fVoxelHeaderStack(kNavigatorVoxelStackMax,(G4SmartVoxelHeader*)0), >> 52 fVoxelNode(0), fpVoxelSafety(0), fCheck(false), fBestSafety(false) 50 { 53 { 51 fLogger= new G4NavigationLogger("G4VoxelNavi << 54 fLogger = new G4NavigationLogger("G4VoxelNavigation"); 52 fpVoxelSafety= new G4VoxelSafety(); << 55 fpVoxelSafety = new G4VoxelSafety (); 53 fHalfTolerance= 0.5*G4GeometryTolerance::Get << 54 << 55 #ifdef G4DEBUG_NAVIGATION << 56 SetVerboseLevel(5); // Reports most about << 57 #endif << 58 } 56 } 59 57 60 // ******************************************* 58 // ******************************************************************** 61 // Destructor 59 // Destructor 62 // ******************************************* 60 // ******************************************************************** 63 // 61 // 64 G4VoxelNavigation::~G4VoxelNavigation() 62 G4VoxelNavigation::~G4VoxelNavigation() 65 { 63 { 66 delete fpVoxelSafety; 64 delete fpVoxelSafety; 67 delete fLogger; 65 delete fLogger; 68 } 66 } 69 67 70 // ------------------------------------------- << 71 // Input: << 72 // exiting: : last step exited << 73 // blockedPhysical : phys volume last exit << 74 // blockedReplicaNo : copy/replica number o << 75 // Output: << 76 // entering : if true, found candid << 77 // blockedPhysical : candidate phys volume << 78 // blockedReplicaNo : copy/replica number << 79 // exiting: : will exit current (mo << 80 // In/Out << 81 // ------------------------------------------- << 82 << 83 // ******************************************* 68 // ******************************************************************** 84 // ComputeStep 69 // ComputeStep 85 // ******************************************* 70 // ******************************************************************** 86 // 71 // 87 G4double 72 G4double 88 G4VoxelNavigation::ComputeStep( const G4ThreeV 73 G4VoxelNavigation::ComputeStep( const G4ThreeVector& localPoint, 89 const G4ThreeV 74 const G4ThreeVector& localDirection, 90 const G4double 75 const G4double currentProposedStepLength, 91 G4double 76 G4double& newSafety, 92 /* const */ G4Naviga << 77 G4NavigationHistory& history, 93 G4bool& 78 G4bool& validExitNormal, 94 G4ThreeV 79 G4ThreeVector& exitNormal, 95 G4bool& 80 G4bool& exiting, 96 G4bool& 81 G4bool& entering, 97 G4VPhysi << 82 G4VPhysicalVolume *(*pBlockedPhysical), 98 G4int& b 83 G4int& blockedReplicaNo ) 99 { 84 { 100 G4VPhysicalVolume *motherPhysical, *samplePh << 85 G4VPhysicalVolume *motherPhysical, *samplePhysical, *blockedExitedVol=0; 101 G4LogicalVolume *motherLogical; 86 G4LogicalVolume *motherLogical; 102 G4VSolid *motherSolid; 87 G4VSolid *motherSolid; 103 G4ThreeVector sampleDirection; 88 G4ThreeVector sampleDirection; 104 G4double ourStep=currentProposedStepLength, << 89 G4double ourStep=currentProposedStepLength, motherSafety, ourSafety; 105 G4double motherSafety, motherStep = DBL_MAX; << 106 G4int localNoDaughters, sampleNo; 90 G4int localNoDaughters, sampleNo; 107 91 108 G4bool initialNode, noStep; 92 G4bool initialNode, noStep; 109 G4SmartVoxelNode *curVoxelNode; 93 G4SmartVoxelNode *curVoxelNode; 110 G4long curNoVolumes, contentNo; << 94 G4int curNoVolumes, contentNo; 111 G4double voxelSafety; 95 G4double voxelSafety; 112 96 113 motherPhysical = history.GetTopVolume(); 97 motherPhysical = history.GetTopVolume(); 114 motherLogical = motherPhysical->GetLogicalVo 98 motherLogical = motherPhysical->GetLogicalVolume(); 115 motherSolid = motherLogical->GetSolid(); 99 motherSolid = motherLogical->GetSolid(); 116 100 117 // 101 // 118 // Compute mother safety 102 // Compute mother safety 119 // 103 // 120 104 121 motherSafety = motherSolid->DistanceToOut(lo 105 motherSafety = motherSolid->DistanceToOut(localPoint); 122 ourSafety = motherSafety; // 106 ourSafety = motherSafety; // Working isotropic safety 123 107 124 #ifdef G4VERBOSE 108 #ifdef G4VERBOSE 125 if ( fCheck ) 109 if ( fCheck ) 126 { 110 { 127 fLogger->PreComputeStepLog (motherPhysical 111 fLogger->PreComputeStepLog (motherPhysical, motherSafety, localPoint); 128 } 112 } 129 #endif 113 #endif 130 114 131 // 115 // 132 // Compute daughter safeties & intersections 116 // Compute daughter safeties & intersections 133 // 117 // 134 118 135 // Exiting normal optimisation 119 // Exiting normal optimisation 136 // 120 // 137 if ( exiting && validExitNormal ) 121 if ( exiting && validExitNormal ) 138 { 122 { 139 if ( localDirection.dot(exitNormal)>=kMinE 123 if ( localDirection.dot(exitNormal)>=kMinExitingNormalCosine ) 140 { 124 { 141 // Block exited daughter volume 125 // Block exited daughter volume 142 // 126 // 143 blockedExitedVol = *pBlockedPhysical; 127 blockedExitedVol = *pBlockedPhysical; 144 ourSafety = 0; 128 ourSafety = 0; 145 } 129 } 146 } 130 } 147 exiting = false; 131 exiting = false; 148 entering = false; 132 entering = false; 149 133 150 // For extra checking, get the distance to << 134 localNoDaughters = motherLogical->GetNoDaughters(); 151 G4bool motherValidExitNormal = false; << 152 G4ThreeVector motherExitNormal(0.0, 0.0, 0.0 << 153 << 154 #ifdef G4VERBOSE << 155 if ( fCheck ) << 156 { << 157 // Compute early -- a) for validity << 158 // b) to check against an << 159 motherStep = motherSolid->DistanceToOut(lo << 160 lo << 161 tr << 162 &mo << 163 &mo << 164 } << 165 #endif << 166 << 167 localNoDaughters = (G4int)motherLogical->Get << 168 135 169 fBList.Enlarge(localNoDaughters); 136 fBList.Enlarge(localNoDaughters); 170 fBList.Reset(); 137 fBList.Reset(); 171 138 172 initialNode = true; 139 initialNode = true; 173 noStep = true; 140 noStep = true; 174 141 175 while (noStep) 142 while (noStep) 176 { 143 { 177 curVoxelNode = fVoxelNode; 144 curVoxelNode = fVoxelNode; 178 curNoVolumes = curVoxelNode->GetNoContaine 145 curNoVolumes = curVoxelNode->GetNoContained(); 179 for (contentNo=curNoVolumes-1; contentNo>= 146 for (contentNo=curNoVolumes-1; contentNo>=0; contentNo--) 180 { 147 { 181 sampleNo = curVoxelNode->GetVolume((G4in << 148 sampleNo = curVoxelNode->GetVolume(contentNo); 182 if ( !fBList.IsBlocked(sampleNo) ) 149 if ( !fBList.IsBlocked(sampleNo) ) 183 { 150 { 184 fBList.BlockVolume(sampleNo); 151 fBList.BlockVolume(sampleNo); 185 samplePhysical = motherLogical->GetDau 152 samplePhysical = motherLogical->GetDaughter(sampleNo); 186 if ( samplePhysical!=blockedExitedVol 153 if ( samplePhysical!=blockedExitedVol ) 187 { 154 { 188 G4AffineTransform sampleTf(samplePhy 155 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 189 samplePhy 156 samplePhysical->GetTranslation()); 190 sampleTf.Invert(); 157 sampleTf.Invert(); 191 const G4ThreeVector samplePoint = 158 const G4ThreeVector samplePoint = 192 sampleTf.TransformPoint(l 159 sampleTf.TransformPoint(localPoint); 193 const G4VSolid *sampleSolid = 160 const G4VSolid *sampleSolid = 194 samplePhysical->GetLogica 161 samplePhysical->GetLogicalVolume()->GetSolid(); 195 const G4double sampleSafety = 162 const G4double sampleSafety = 196 sampleSolid->DistanceToIn 163 sampleSolid->DistanceToIn(samplePoint); 197 << 164 #ifdef G4VERBOSE >> 165 if( fCheck ) >> 166 { >> 167 fLogger->PrintDaughterLog(sampleSolid,samplePoint,sampleSafety,0); >> 168 } >> 169 #endif 198 if ( sampleSafety<ourSafety ) 170 if ( sampleSafety<ourSafety ) 199 { 171 { 200 ourSafety = sampleSafety; 172 ourSafety = sampleSafety; 201 } 173 } 202 if ( sampleSafety<=ourStep ) 174 if ( sampleSafety<=ourStep ) 203 { 175 { 204 sampleDirection = sampleTf.Transfo 176 sampleDirection = sampleTf.TransformAxis(localDirection); 205 G4double sampleStep = 177 G4double sampleStep = 206 sampleSolid->DistanceToIn 178 sampleSolid->DistanceToIn(samplePoint, sampleDirection); 207 #ifdef G4VERBOSE 179 #ifdef G4VERBOSE 208 if( fCheck ) 180 if( fCheck ) 209 { 181 { 210 fLogger->PrintDaughterLog(sample 182 fLogger->PrintDaughterLog(sampleSolid, samplePoint, 211 sample << 183 sampleSafety, sampleStep); 212 sample << 213 } 184 } 214 #endif 185 #endif 215 if ( sampleStep<=ourStep ) 186 if ( sampleStep<=ourStep ) 216 { 187 { 217 ourStep = sampleStep; 188 ourStep = sampleStep; 218 entering = true; 189 entering = true; 219 exiting = false; 190 exiting = false; 220 *pBlockedPhysical = samplePhysic 191 *pBlockedPhysical = samplePhysical; 221 blockedReplicaNo = -1; 192 blockedReplicaNo = -1; 222 #ifdef G4VERBOSE 193 #ifdef G4VERBOSE 223 // Check to see that the resulti 194 // Check to see that the resulting point is indeed in/on volume. 224 // This could be done only for s << 195 // This check could eventually be made only for successful >> 196 // candidate. >> 197 225 if ( fCheck ) 198 if ( fCheck ) 226 { 199 { 227 fLogger->AlongComputeStepLog ( 200 fLogger->AlongComputeStepLog (sampleSolid, samplePoint, 228 sampleDirection, localDirect 201 sampleDirection, localDirection, sampleSafety, sampleStep); 229 } 202 } 230 #endif 203 #endif 231 } 204 } 232 #ifdef G4VERBOSE << 233 if ( fCheck && ( sampleStep < kInf << 234 && ( sampleStep >= mot << 235 { << 236 // The intersection point with << 237 // point from the mother volume << 238 fLogger->CheckDaughterEntryPoin << 239 << 240 << 241 << 242 << 243 } << 244 #endif << 245 } << 246 #ifdef G4VERBOSE << 247 else // ie if sampleSafety > outStep << 248 { << 249 if( fCheck ) << 250 { << 251 fLogger->PrintDaughterLog(sample << 252 sample << 253 G4Thre << 254 } << 255 } 205 } 256 #endif << 257 } 206 } 258 } 207 } 259 } 208 } 260 if (initialNode) 209 if (initialNode) 261 { 210 { 262 initialNode = false; 211 initialNode = false; 263 voxelSafety = ComputeVoxelSafety(localPo 212 voxelSafety = ComputeVoxelSafety(localPoint); 264 if ( voxelSafety<ourSafety ) 213 if ( voxelSafety<ourSafety ) 265 { 214 { 266 ourSafety = voxelSafety; 215 ourSafety = voxelSafety; 267 } 216 } 268 if ( currentProposedStepLength<ourSafety 217 if ( currentProposedStepLength<ourSafety ) 269 { 218 { 270 // Guaranteed physics limited 219 // Guaranteed physics limited 271 // 220 // 272 noStep = false; 221 noStep = false; 273 entering = false; 222 entering = false; 274 exiting = false; 223 exiting = false; 275 *pBlockedPhysical = nullptr; << 224 *pBlockedPhysical = 0; 276 ourStep = kInfinity; 225 ourStep = kInfinity; 277 } 226 } 278 else 227 else 279 { 228 { 280 // 229 // 281 // Compute mother intersection if requ 230 // Compute mother intersection if required 282 // 231 // 283 if ( motherSafety<=ourStep ) 232 if ( motherSafety<=ourStep ) 284 { 233 { 285 // In case of check mode this is a d << 234 G4double motherStep = 286 motherStep = motherSolid->DistanceTo << 235 motherSolid->DistanceToOut(localPoint, 287 true, &motherVal << 236 localDirection, >> 237 true, &validExitNormal, &exitNormal); 288 #ifdef G4VERBOSE 238 #ifdef G4VERBOSE 289 if ( fCheck ) 239 if ( fCheck ) 290 { 240 { 291 fLogger->PostComputeStepLog(mother 241 fLogger->PostComputeStepLog(motherSolid, localPoint, localDirection, 292 mother 242 motherStep, motherSafety); 293 if( motherValidExitNormal ) << 294 { << 295 fLogger->CheckAndReportBadNormal << 296 << 297 << 298 "From << 299 } << 300 } 243 } 301 #endif 244 #endif 302 if( (motherStep >= kInfinity) || (mo << 303 { << 304 #ifdef G4VERBOSE << 305 if( fCheck ) // Error - indication << 306 { << 307 fLogger->ReportOutsideMother(loc << 308 mot << 309 } << 310 #endif << 311 motherStep = 0.0; << 312 ourStep = 0.0; << 313 exiting = true; << 314 entering = false; << 315 << 316 // validExitNormal= motherValidExi << 317 // exitNormal= motherExitNormal; << 318 // Useful only if the point is ver << 319 // => but it would need to be rota << 320 validExitNormal= false; << 321 << 322 *pBlockedPhysical = nullptr; // or << 323 blockedReplicaNo = 0; // or mothe << 324 << 325 newSafety = 0.0; << 326 return ourStep; << 327 } << 328 << 329 if ( motherStep<=ourStep ) 245 if ( motherStep<=ourStep ) 330 { 246 { 331 ourStep = motherStep; 247 ourStep = motherStep; 332 exiting = true; 248 exiting = true; 333 entering = false; 249 entering = false; 334 << 335 // Exit normal: Natural location t << 336 // << 337 validExitNormal = motherValidExitN << 338 exitNormal = motherExitNormal; << 339 << 340 if ( validExitNormal ) 250 if ( validExitNormal ) 341 { 251 { 342 const G4RotationMatrix *rot = mo 252 const G4RotationMatrix *rot = motherPhysical->GetRotation(); 343 if (rot != nullptr) << 253 if (rot) 344 { 254 { 345 exitNormal *= rot->inverse(); 255 exitNormal *= rot->inverse(); 346 #ifdef G4VERBOSE << 347 if( fCheck ) << 348 { << 349 fLogger->CheckAndReportBadNo << 350 << 351 << 352 << 353 } << 354 #endif << 355 } 256 } 356 } << 257 } 357 } 258 } 358 else 259 else 359 { 260 { 360 validExitNormal = false; 261 validExitNormal = false; 361 } 262 } 362 } 263 } 363 } 264 } 364 newSafety = ourSafety; 265 newSafety = ourSafety; 365 } 266 } 366 if (noStep) 267 if (noStep) 367 { 268 { 368 noStep = LocateNextVoxel(localPoint, loc 269 noStep = LocateNextVoxel(localPoint, localDirection, ourStep); 369 } 270 } 370 } // end -while (noStep)- loop 271 } // end -while (noStep)- loop 371 272 372 return ourStep; 273 return ourStep; 373 } 274 } 374 275 375 // ******************************************* 276 // ******************************************************************** 376 // ComputeVoxelSafety 277 // ComputeVoxelSafety 377 // 278 // 378 // Computes safety from specified point to vox 279 // Computes safety from specified point to voxel boundaries 379 // using already located point 280 // using already located point 380 // o collected boundaries for most derived lev 281 // o collected boundaries for most derived level 381 // o adjacent boundaries for previous levels 282 // o adjacent boundaries for previous levels 382 // ******************************************* 283 // ******************************************************************** 383 // 284 // 384 G4double 285 G4double 385 G4VoxelNavigation::ComputeVoxelSafety(const G4 286 G4VoxelNavigation::ComputeVoxelSafety(const G4ThreeVector& localPoint) const 386 { 287 { 387 G4SmartVoxelHeader *curHeader; 288 G4SmartVoxelHeader *curHeader; 388 G4double voxelSafety, curNodeWidth; 289 G4double voxelSafety, curNodeWidth; 389 G4double curNodeOffset, minCurCommonDelta, m 290 G4double curNodeOffset, minCurCommonDelta, maxCurCommonDelta; 390 G4int minCurNodeNoDelta, maxCurNodeNoDelta; 291 G4int minCurNodeNoDelta, maxCurNodeNoDelta; 391 G4int localVoxelDepth, curNodeNo; 292 G4int localVoxelDepth, curNodeNo; 392 EAxis curHeaderAxis; 293 EAxis curHeaderAxis; 393 294 394 localVoxelDepth = fVoxelDepth; 295 localVoxelDepth = fVoxelDepth; 395 296 396 curHeader = fVoxelHeaderStack[localVoxelDept 297 curHeader = fVoxelHeaderStack[localVoxelDepth]; 397 curHeaderAxis = fVoxelAxisStack[localVoxelDe 298 curHeaderAxis = fVoxelAxisStack[localVoxelDepth]; 398 curNodeNo = fVoxelNodeNoStack[localVoxelDept 299 curNodeNo = fVoxelNodeNoStack[localVoxelDepth]; 399 curNodeWidth = fVoxelSliceWidthStack[localVo 300 curNodeWidth = fVoxelSliceWidthStack[localVoxelDepth]; 400 301 401 // Compute linear intersection distance to b 302 // Compute linear intersection distance to boundaries of max/min 402 // to collected nodes at current level 303 // to collected nodes at current level 403 // 304 // 404 curNodeOffset = curNodeNo*curNodeWidth; 305 curNodeOffset = curNodeNo*curNodeWidth; 405 maxCurNodeNoDelta = fVoxelNode->GetMaxEquiva 306 maxCurNodeNoDelta = fVoxelNode->GetMaxEquivalentSliceNo()-curNodeNo; 406 minCurNodeNoDelta = curNodeNo-fVoxelNode->Ge 307 minCurNodeNoDelta = curNodeNo-fVoxelNode->GetMinEquivalentSliceNo(); 407 minCurCommonDelta = localPoint(curHeaderAxis 308 minCurCommonDelta = localPoint(curHeaderAxis) 408 - curHeader->GetMinExten 309 - curHeader->GetMinExtent() - curNodeOffset; 409 maxCurCommonDelta = curNodeWidth-minCurCommo 310 maxCurCommonDelta = curNodeWidth-minCurCommonDelta; 410 311 411 if ( minCurNodeNoDelta<maxCurNodeNoDelta ) 312 if ( minCurNodeNoDelta<maxCurNodeNoDelta ) 412 { 313 { 413 voxelSafety = minCurNodeNoDelta*curNodeWid 314 voxelSafety = minCurNodeNoDelta*curNodeWidth; 414 voxelSafety += minCurCommonDelta; 315 voxelSafety += minCurCommonDelta; 415 } 316 } 416 else if (maxCurNodeNoDelta < minCurNodeNoDel 317 else if (maxCurNodeNoDelta < minCurNodeNoDelta) 417 { 318 { 418 voxelSafety = maxCurNodeNoDelta*curNodeWid 319 voxelSafety = maxCurNodeNoDelta*curNodeWidth; 419 voxelSafety += maxCurCommonDelta; 320 voxelSafety += maxCurCommonDelta; 420 } 321 } 421 else // (maxCurNodeNoDelta == minCurNodeN 322 else // (maxCurNodeNoDelta == minCurNodeNoDelta) 422 { 323 { 423 voxelSafety = minCurNodeNoDelta*curNodeWid 324 voxelSafety = minCurNodeNoDelta*curNodeWidth; 424 voxelSafety += std::min(minCurCommonDelta, 325 voxelSafety += std::min(minCurCommonDelta,maxCurCommonDelta); 425 } 326 } 426 327 427 // Compute isotropic safety to boundaries of 328 // Compute isotropic safety to boundaries of previous levels 428 // [NOT to collected boundaries] 329 // [NOT to collected boundaries] 429 << 330 // 430 // Loop checking, 07.10.2016, JA << 431 while ( (localVoxelDepth>0) && (voxelSafety> 331 while ( (localVoxelDepth>0) && (voxelSafety>0) ) 432 { 332 { 433 localVoxelDepth--; 333 localVoxelDepth--; 434 curHeader = fVoxelHeaderStack[localVoxelDe 334 curHeader = fVoxelHeaderStack[localVoxelDepth]; 435 curHeaderAxis = fVoxelAxisStack[localVoxel 335 curHeaderAxis = fVoxelAxisStack[localVoxelDepth]; 436 curNodeNo = fVoxelNodeNoStack[localVoxelDe 336 curNodeNo = fVoxelNodeNoStack[localVoxelDepth]; 437 curNodeWidth = fVoxelSliceWidthStack[local 337 curNodeWidth = fVoxelSliceWidthStack[localVoxelDepth]; 438 curNodeOffset = curNodeNo*curNodeWidth; 338 curNodeOffset = curNodeNo*curNodeWidth; 439 minCurCommonDelta = localPoint(curHeaderAx 339 minCurCommonDelta = localPoint(curHeaderAxis) 440 - curHeader->GetMinExt 340 - curHeader->GetMinExtent() - curNodeOffset; 441 maxCurCommonDelta = curNodeWidth-minCurCom 341 maxCurCommonDelta = curNodeWidth-minCurCommonDelta; 442 342 443 if ( minCurCommonDelta<voxelSafety ) 343 if ( minCurCommonDelta<voxelSafety ) 444 { 344 { 445 voxelSafety = minCurCommonDelta; 345 voxelSafety = minCurCommonDelta; 446 } 346 } 447 if ( maxCurCommonDelta<voxelSafety ) 347 if ( maxCurCommonDelta<voxelSafety ) 448 { 348 { 449 voxelSafety = maxCurCommonDelta; 349 voxelSafety = maxCurCommonDelta; 450 } 350 } 451 } 351 } 452 if ( voxelSafety<0 ) 352 if ( voxelSafety<0 ) 453 { 353 { 454 voxelSafety = 0; 354 voxelSafety = 0; 455 } 355 } 456 356 457 return voxelSafety; 357 return voxelSafety; 458 } 358 } 459 359 460 // ******************************************* 360 // ******************************************************************** 461 // LocateNextVoxel 361 // LocateNextVoxel 462 // 362 // 463 // Finds the next voxel from the current voxel 363 // Finds the next voxel from the current voxel and point 464 // in the specified direction 364 // in the specified direction 465 // 365 // 466 // Returns false if all voxels considered 366 // Returns false if all voxels considered 467 // [current Step ends inside same 367 // [current Step ends inside same voxel or leaves all voxels] 468 // true otherwise 368 // true otherwise 469 // [the information on the next v 369 // [the information on the next voxel is put into the set of 470 // fVoxel* variables & "stacks"] 370 // fVoxel* variables & "stacks"] 471 // ******************************************* 371 // ******************************************************************** 472 // 372 // 473 G4bool 373 G4bool 474 G4VoxelNavigation::LocateNextVoxel(const G4Thr 374 G4VoxelNavigation::LocateNextVoxel(const G4ThreeVector& localPoint, 475 const G4Thr 375 const G4ThreeVector& localDirection, 476 const G4dou 376 const G4double currentStep) 477 { 377 { 478 G4SmartVoxelHeader *workHeader=nullptr, *new << 378 G4SmartVoxelHeader *workHeader=0, *newHeader=0; 479 G4SmartVoxelProxy *newProxy=nullptr; << 379 G4SmartVoxelProxy *newProxy=0; 480 G4SmartVoxelNode *newVoxelNode=nullptr; << 380 G4SmartVoxelNode *newVoxelNode=0; 481 G4ThreeVector targetPoint, voxelPoint; 381 G4ThreeVector targetPoint, voxelPoint; 482 G4double workNodeWidth, workMinExtent, workC 382 G4double workNodeWidth, workMinExtent, workCoord; 483 G4double minVal, maxVal, newDistance=0.; 383 G4double minVal, maxVal, newDistance=0.; 484 G4double newHeaderMin, newHeaderNodeWidth; 384 G4double newHeaderMin, newHeaderNodeWidth; 485 G4int depth=0, newDepth=0, workNodeNo=0, new 385 G4int depth=0, newDepth=0, workNodeNo=0, newNodeNo=0, newHeaderNoSlices=0; 486 EAxis workHeaderAxis, newHeaderAxis; 386 EAxis workHeaderAxis, newHeaderAxis; 487 G4bool isNewVoxel = false; << 387 G4bool isNewVoxel=false; 488 388 489 G4double currentDistance = currentStep; 389 G4double currentDistance = currentStep; >> 390 static const G4double sigma = 0.5*G4GeometryTolerance::GetInstance() >> 391 ->GetSurfaceTolerance(); 490 392 491 // Determine if end of Step within current v 393 // Determine if end of Step within current voxel 492 // 394 // 493 for (depth=0; depth<fVoxelDepth; ++depth) << 395 for (depth=0; depth<fVoxelDepth; depth++) 494 { 396 { 495 targetPoint = localPoint+localDirection*cu 397 targetPoint = localPoint+localDirection*currentDistance; 496 newDistance = currentDistance; 398 newDistance = currentDistance; 497 workHeader = fVoxelHeaderStack[depth]; 399 workHeader = fVoxelHeaderStack[depth]; 498 workHeaderAxis = fVoxelAxisStack[depth]; 400 workHeaderAxis = fVoxelAxisStack[depth]; 499 workNodeNo = fVoxelNodeNoStack[depth]; 401 workNodeNo = fVoxelNodeNoStack[depth]; 500 workNodeWidth = fVoxelSliceWidthStack[dept 402 workNodeWidth = fVoxelSliceWidthStack[depth]; 501 workMinExtent = workHeader->GetMinExtent() 403 workMinExtent = workHeader->GetMinExtent(); 502 workCoord = targetPoint(workHeaderAxis); 404 workCoord = targetPoint(workHeaderAxis); 503 minVal = workMinExtent+workNodeNo*workNode 405 minVal = workMinExtent+workNodeNo*workNodeWidth; 504 406 505 if ( minVal<=workCoord+fHalfTolerance ) << 407 if ( minVal<=workCoord+sigma ) 506 { 408 { 507 maxVal = minVal+workNodeWidth; 409 maxVal = minVal+workNodeWidth; 508 if ( maxVal<=workCoord-fHalfTolerance ) << 410 if ( maxVal<=workCoord-sigma ) 509 { 411 { 510 // Must consider next voxel 412 // Must consider next voxel 511 // 413 // 512 newNodeNo = workNodeNo+1; 414 newNodeNo = workNodeNo+1; 513 newHeader = workHeader; 415 newHeader = workHeader; 514 newDistance = (maxVal-localPoint(workH 416 newDistance = (maxVal-localPoint(workHeaderAxis)) 515 / localDirection(workHeade 417 / localDirection(workHeaderAxis); 516 isNewVoxel = true; 418 isNewVoxel = true; 517 newDepth = depth; 419 newDepth = depth; 518 } 420 } 519 } 421 } 520 else 422 else 521 { 423 { 522 newNodeNo = workNodeNo-1; 424 newNodeNo = workNodeNo-1; 523 newHeader = workHeader; 425 newHeader = workHeader; 524 newDistance = (minVal-localPoint(workHea 426 newDistance = (minVal-localPoint(workHeaderAxis)) 525 / localDirection(workHeaderA 427 / localDirection(workHeaderAxis); 526 isNewVoxel = true; 428 isNewVoxel = true; 527 newDepth = depth; 429 newDepth = depth; 528 } 430 } 529 currentDistance = newDistance; 431 currentDistance = newDistance; 530 } 432 } 531 targetPoint = localPoint+localDirection*curr 433 targetPoint = localPoint+localDirection*currentDistance; 532 434 533 // Check if end of Step within collected bou 435 // Check if end of Step within collected boundaries of current voxel 534 // 436 // 535 depth = fVoxelDepth; 437 depth = fVoxelDepth; 536 { 438 { 537 workHeader = fVoxelHeaderStack[depth]; 439 workHeader = fVoxelHeaderStack[depth]; 538 workHeaderAxis = fVoxelAxisStack[depth]; 440 workHeaderAxis = fVoxelAxisStack[depth]; 539 workNodeNo = fVoxelNodeNoStack[depth]; 441 workNodeNo = fVoxelNodeNoStack[depth]; 540 workNodeWidth = fVoxelSliceWidthStack[dept 442 workNodeWidth = fVoxelSliceWidthStack[depth]; 541 workMinExtent = workHeader->GetMinExtent() 443 workMinExtent = workHeader->GetMinExtent(); 542 workCoord = targetPoint(workHeaderAxis); 444 workCoord = targetPoint(workHeaderAxis); 543 minVal = workMinExtent+fVoxelNode->GetMinE 445 minVal = workMinExtent+fVoxelNode->GetMinEquivalentSliceNo()*workNodeWidth; 544 446 545 if ( minVal<=workCoord+fHalfTolerance ) << 447 if ( minVal<=workCoord+sigma ) 546 { 448 { 547 maxVal = workMinExtent+(fVoxelNode->GetM 449 maxVal = workMinExtent+(fVoxelNode->GetMaxEquivalentSliceNo()+1) 548 *workNodeWidth; 450 *workNodeWidth; 549 if ( maxVal<=workCoord-fHalfTolerance ) << 451 if ( maxVal<=workCoord-sigma ) 550 { 452 { 551 newNodeNo = fVoxelNode->GetMaxEquivale 453 newNodeNo = fVoxelNode->GetMaxEquivalentSliceNo()+1; 552 newHeader = workHeader; 454 newHeader = workHeader; 553 newDistance = (maxVal-localPoint(workH 455 newDistance = (maxVal-localPoint(workHeaderAxis)) 554 / localDirection(workHeade 456 / localDirection(workHeaderAxis); 555 isNewVoxel = true; 457 isNewVoxel = true; 556 newDepth = depth; 458 newDepth = depth; 557 } 459 } 558 } 460 } 559 else 461 else 560 { 462 { 561 newNodeNo = fVoxelNode->GetMinEquivalent 463 newNodeNo = fVoxelNode->GetMinEquivalentSliceNo()-1; 562 newHeader = workHeader; 464 newHeader = workHeader; 563 newDistance = (minVal-localPoint(workHea 465 newDistance = (minVal-localPoint(workHeaderAxis)) 564 / localDirection(workHeaderA 466 / localDirection(workHeaderAxis); 565 isNewVoxel = true; 467 isNewVoxel = true; 566 newDepth = depth; 468 newDepth = depth; 567 } 469 } 568 currentDistance = newDistance; 470 currentDistance = newDistance; 569 } 471 } 570 if (isNewVoxel) 472 if (isNewVoxel) 571 { 473 { 572 // Compute new voxel & adjust voxel stack 474 // Compute new voxel & adjust voxel stack 573 // 475 // 574 // newNodeNo=Candidate node no at 476 // newNodeNo=Candidate node no at 575 // newDepth =refinement depth of crossed v 477 // newDepth =refinement depth of crossed voxel boundary 576 // newHeader=Header for crossed voxel 478 // newHeader=Header for crossed voxel 577 // newDistance=distance to crossed voxel b 479 // newDistance=distance to crossed voxel boundary (along the track) 578 // 480 // 579 if ( (newNodeNo<0) || (newNodeNo>=G4int(ne << 481 if ( (newNodeNo<0) || (newNodeNo>=newHeader->GetNoSlices())) 580 { 482 { 581 // Leaving mother volume 483 // Leaving mother volume 582 // 484 // 583 isNewVoxel = false; 485 isNewVoxel = false; 584 } 486 } 585 else 487 else 586 { 488 { 587 // Compute intersection point on the lea 489 // Compute intersection point on the least refined 588 // voxel boundary that is hit 490 // voxel boundary that is hit 589 // 491 // 590 voxelPoint = localPoint+localDirection*n 492 voxelPoint = localPoint+localDirection*newDistance; 591 fVoxelNodeNoStack[newDepth] = newNodeNo; 493 fVoxelNodeNoStack[newDepth] = newNodeNo; 592 fVoxelDepth = newDepth; 494 fVoxelDepth = newDepth; 593 newVoxelNode = nullptr; << 495 newVoxelNode = 0; 594 while ( newVoxelNode == nullptr ) << 496 while ( !newVoxelNode ) 595 { 497 { 596 newProxy = newHeader->GetSlice(newNode 498 newProxy = newHeader->GetSlice(newNodeNo); 597 if (newProxy->IsNode()) 499 if (newProxy->IsNode()) 598 { 500 { 599 newVoxelNode = newProxy->GetNode(); 501 newVoxelNode = newProxy->GetNode(); 600 } 502 } 601 else 503 else 602 { 504 { 603 ++fVoxelDepth; << 505 fVoxelDepth++; 604 newHeader = newProxy->GetHeader(); 506 newHeader = newProxy->GetHeader(); 605 newHeaderAxis = newHeader->GetAxis() 507 newHeaderAxis = newHeader->GetAxis(); 606 newHeaderNoSlices = (G4int)newHeader << 508 newHeaderNoSlices = newHeader->GetNoSlices(); 607 newHeaderMin = newHeader->GetMinExte 509 newHeaderMin = newHeader->GetMinExtent(); 608 newHeaderNodeWidth = (newHeader->Get 510 newHeaderNodeWidth = (newHeader->GetMaxExtent()-newHeaderMin) 609 / newHeaderNoSlic 511 / newHeaderNoSlices; 610 newNodeNo = G4int( (voxelPoint(newHe 512 newNodeNo = G4int( (voxelPoint(newHeaderAxis)-newHeaderMin) 611 / newHeaderNodeWi 513 / newHeaderNodeWidth ); 612 // Rounding protection 514 // Rounding protection 613 // 515 // 614 if ( newNodeNo<0 ) 516 if ( newNodeNo<0 ) 615 { 517 { 616 newNodeNo=0; 518 newNodeNo=0; 617 } 519 } 618 else if ( newNodeNo>=newHeaderNoSlic 520 else if ( newNodeNo>=newHeaderNoSlices ) 619 { << 521 { 620 newNodeNo = newHeaderNoSlices-1; << 522 newNodeNo = newHeaderNoSlices-1; 621 } << 523 } 622 // Stack info for stepping 524 // Stack info for stepping 623 // 525 // 624 fVoxelAxisStack[fVoxelDepth] = newHe 526 fVoxelAxisStack[fVoxelDepth] = newHeaderAxis; 625 fVoxelNoSlicesStack[fVoxelDepth] = n 527 fVoxelNoSlicesStack[fVoxelDepth] = newHeaderNoSlices; 626 fVoxelSliceWidthStack[fVoxelDepth] = 528 fVoxelSliceWidthStack[fVoxelDepth] = newHeaderNodeWidth; 627 fVoxelNodeNoStack[fVoxelDepth] = new 529 fVoxelNodeNoStack[fVoxelDepth] = newNodeNo; 628 fVoxelHeaderStack[fVoxelDepth] = new 530 fVoxelHeaderStack[fVoxelDepth] = newHeader; 629 } 531 } 630 } 532 } 631 fVoxelNode = newVoxelNode; 533 fVoxelNode = newVoxelNode; 632 } 534 } 633 } 535 } 634 return isNewVoxel; 536 return isNewVoxel; 635 } 537 } 636 538 637 // ******************************************* 539 // ******************************************************************** 638 // ComputeSafety 540 // ComputeSafety 639 // 541 // 640 // Calculates the isotropic distance to the ne 542 // Calculates the isotropic distance to the nearest boundary from the 641 // specified point in the local coordinate sys 543 // specified point in the local coordinate system. 642 // The localpoint utilised must be within the 544 // The localpoint utilised must be within the current volume. 643 // ******************************************* 545 // ******************************************************************** 644 // 546 // 645 G4double 547 G4double 646 G4VoxelNavigation::ComputeSafety(const G4Three 548 G4VoxelNavigation::ComputeSafety(const G4ThreeVector& localPoint, 647 const G4Navig 549 const G4NavigationHistory& history, 648 const G4doubl << 550 const G4double maxLength) 649 { 551 { 650 G4VPhysicalVolume *motherPhysical, *samplePh 552 G4VPhysicalVolume *motherPhysical, *samplePhysical; 651 G4LogicalVolume *motherLogical; 553 G4LogicalVolume *motherLogical; 652 G4VSolid *motherSolid; 554 G4VSolid *motherSolid; 653 G4double motherSafety, ourSafety; 555 G4double motherSafety, ourSafety; 654 G4int sampleNo; << 556 G4int localNoDaughters, sampleNo; 655 G4SmartVoxelNode *curVoxelNode; 557 G4SmartVoxelNode *curVoxelNode; 656 G4long curNoVolumes, contentNo; << 558 G4int curNoVolumes, contentNo; 657 G4double voxelSafety; 559 G4double voxelSafety; 658 560 659 motherPhysical = history.GetTopVolume(); 561 motherPhysical = history.GetTopVolume(); 660 motherLogical = motherPhysical->GetLogicalVo 562 motherLogical = motherPhysical->GetLogicalVolume(); 661 motherSolid = motherLogical->GetSolid(); 563 motherSolid = motherLogical->GetSolid(); 662 564 663 if( fBestSafety ) 565 if( fBestSafety ) 664 { 566 { 665 return fpVoxelSafety->ComputeSafety( local 567 return fpVoxelSafety->ComputeSafety( localPoint,*motherPhysical,maxLength ); 666 } 568 } 667 569 668 // 570 // 669 // Compute mother safety 571 // Compute mother safety 670 // 572 // 671 573 672 motherSafety = motherSolid->DistanceToOut(lo 574 motherSafety = motherSolid->DistanceToOut(localPoint); 673 ourSafety = motherSafety; // 575 ourSafety = motherSafety; // Working isotropic safety 674 576 675 if( motherSafety == 0.0 ) << 676 { << 677 #ifdef G4DEBUG_NAVIGATION << 678 // Check that point is inside mother volum << 679 EInside insideMother = motherSolid->Insid << 680 << 681 if( insideMother == kOutside ) << 682 { << 683 G4ExceptionDescription message; << 684 message << "Safety method called for loc << 685 << "Location for safety is Outside th << 686 << "The approximate distance to the s << 687 << "(safety from outside) is: " << 688 << motherSolid->DistanceToIn( localPo << 689 message << " Problem occurred with phys << 690 << " Name: " << motherPhysical->GetNa << 691 << " Copy No: " << motherPhysical->Ge << 692 << " Local Point = " << localPoint << 693 message << " Description of solid: " << << 694 << *motherSolid << G4endl; << 695 G4Exception("G4VoxelNavigation::ComputeS << 696 JustWarning, message); << 697 } << 698 << 699 // Following check is NOT for an issue - i << 700 // It is allowed that a solid gives appro << 701 // << 702 if( insideMother == kInside ) // && fVerbo << 703 { << 704 G4ExceptionDescription messageIn; << 705 << 706 messageIn << " Point is Inside, but safe << 707 messageIn << " Inexact safety for volume << 708 << " Solid: Name= " << motherSol << 709 << " Type= " << motherSolid->Ge << 710 messageIn << " Local point= " << localP << 711 messageIn << " Solid parameters: " << G << 712 G4Exception("G4VoxelNavigation::ComputeS << 713 JustWarning, messageIn); << 714 } << 715 #endif << 716 // if( insideMother != kInside ) << 717 return 0.0; << 718 } << 719 << 720 #ifdef G4VERBOSE 577 #ifdef G4VERBOSE 721 if( fCheck ) 578 if( fCheck ) 722 { 579 { 723 fLogger->ComputeSafetyLog (motherSolid,loc << 580 fLogger->ComputeSafetyLog (motherSolid, localPoint, motherSafety, true); 724 } 581 } 725 #endif 582 #endif 726 // 583 // 727 // Compute daughter safeties << 584 // Compute daughter safeties 728 // 585 // 729 // Look only inside the current Voxel only ( << 586 >> 587 localNoDaughters = motherLogical->GetNoDaughters(); >> 588 >> 589 // Look only inside the current Voxel only (in the first version). 730 // 590 // 731 curVoxelNode = fVoxelNode; 591 curVoxelNode = fVoxelNode; 732 curNoVolumes = curVoxelNode->GetNoContained( 592 curNoVolumes = curVoxelNode->GetNoContained(); 733 593 734 for ( contentNo=curNoVolumes-1; contentNo>=0 594 for ( contentNo=curNoVolumes-1; contentNo>=0; contentNo-- ) 735 { 595 { 736 sampleNo = curVoxelNode->GetVolume((G4int) << 596 sampleNo = curVoxelNode->GetVolume(contentNo); 737 samplePhysical = motherLogical->GetDaughte 597 samplePhysical = motherLogical->GetDaughter(sampleNo); 738 598 739 G4AffineTransform sampleTf(samplePhysical- 599 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 740 samplePhysical- 600 samplePhysical->GetTranslation()); 741 sampleTf.Invert(); 601 sampleTf.Invert(); 742 const G4ThreeVector samplePoint = sampleTf << 602 const G4ThreeVector samplePoint = 743 const G4VSolid* sampleSolid= samplePhysica << 603 sampleTf.TransformPoint(localPoint); >> 604 const G4VSolid *sampleSolid = >> 605 samplePhysical->GetLogicalVolume()->GetSolid(); 744 G4double sampleSafety = sampleSolid->Dista 606 G4double sampleSafety = sampleSolid->DistanceToIn(samplePoint); 745 if ( sampleSafety<ourSafety ) 607 if ( sampleSafety<ourSafety ) 746 { 608 { 747 ourSafety = sampleSafety; 609 ourSafety = sampleSafety; 748 } 610 } 749 #ifdef G4VERBOSE 611 #ifdef G4VERBOSE 750 if( fCheck ) 612 if( fCheck ) 751 { 613 { 752 fLogger->ComputeSafetyLog(sampleSolid, s << 614 fLogger->ComputeSafetyLog (sampleSolid,samplePoint,sampleSafety,false); 753 sampleSafety, << 754 } 615 } 755 #endif 616 #endif 756 } 617 } 757 voxelSafety = ComputeVoxelSafety(localPoint) 618 voxelSafety = ComputeVoxelSafety(localPoint); 758 if ( voxelSafety<ourSafety ) 619 if ( voxelSafety<ourSafety ) 759 { 620 { 760 ourSafety = voxelSafety; 621 ourSafety = voxelSafety; 761 } 622 } 762 return ourSafety; 623 return ourSafety; 763 } 624 } 764 625 765 void G4VoxelNavigation::RelocateWithinVolume( << 766 << 767 { << 768 auto motherLogical = motherPhysical->GetLogi << 769 << 770 assert(motherLogical != nullptr); << 771 << 772 if ( auto pVoxelHeader = motherLogical->GetV << 773 VoxelLocate( pVoxelHeader, localPoint ); << 774 } << 775 << 776 // ******************************************* 626 // ******************************************************************** 777 // SetVerboseLevel 627 // SetVerboseLevel 778 // ******************************************* 628 // ******************************************************************** 779 // 629 // 780 void G4VoxelNavigation::SetVerboseLevel(G4int 630 void G4VoxelNavigation::SetVerboseLevel(G4int level) 781 { 631 { 782 if( fLogger != nullptr ) { fLogger->SetVerbo << 632 if( fLogger ) fLogger->SetVerboseLevel(level); 783 if( fpVoxelSafety != nullptr) { fpVoxelSafet << 633 if( fpVoxelSafety) fpVoxelSafety->SetVerboseLevel( level ); 784 } 634 } 785 635