Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4VoxelNavigation.cc,v 1.4 2004/05/17 13:30:26 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-06-02 $ >> 26 // >> 27 // 26 // class G4VoxelNavigation Implementation 28 // class G4VoxelNavigation Implementation 27 // 29 // 28 // Author: P.Kent, 1996 30 // Author: P.Kent, 1996 29 // 31 // 30 // ------------------------------------------- 32 // -------------------------------------------------------------------- 31 #include "G4VoxelNavigation.hh" << 32 #include "G4GeometryTolerance.hh" << 33 #include "G4VoxelSafety.hh" << 34 << 35 #include "G4AuxiliaryNavServices.hh" << 36 33 37 #include <cassert> << 34 #include "G4VoxelNavigation.hh" 38 #include <ostream> << 39 35 40 // ******************************************* 36 // ******************************************************************** 41 // Constructor 37 // Constructor 42 // ******************************************* 38 // ******************************************************************** 43 // 39 // 44 G4VoxelNavigation::G4VoxelNavigation() 40 G4VoxelNavigation::G4VoxelNavigation() 45 : fVoxelAxisStack(kNavigatorVoxelStackMax,kX << 41 : fVoxelDepth(-1), >> 42 fVoxelAxisStack(kNavigatorVoxelStackMax,kXAxis), 46 fVoxelNoSlicesStack(kNavigatorVoxelStackMa 43 fVoxelNoSlicesStack(kNavigatorVoxelStackMax,0), 47 fVoxelSliceWidthStack(kNavigatorVoxelStack 44 fVoxelSliceWidthStack(kNavigatorVoxelStackMax,0.), 48 fVoxelNodeNoStack(kNavigatorVoxelStackMax, 45 fVoxelNodeNoStack(kNavigatorVoxelStackMax,0), 49 fVoxelHeaderStack(kNavigatorVoxelStackMax, << 46 fVoxelHeaderStack(kNavigatorVoxelStackMax,(G4SmartVoxelHeader*)0), >> 47 fVoxelNode(0), >> 48 fCheck(false), >> 49 fVerbose(0) 50 { 50 { 51 fLogger= new G4NavigationLogger("G4VoxelNavi << 52 fpVoxelSafety= new G4VoxelSafety(); << 53 fHalfTolerance= 0.5*G4GeometryTolerance::Get << 54 << 55 #ifdef G4DEBUG_NAVIGATION << 56 SetVerboseLevel(5); // Reports most about << 57 #endif << 58 } 51 } 59 52 60 // ******************************************* 53 // ******************************************************************** 61 // Destructor 54 // Destructor 62 // ******************************************* 55 // ******************************************************************** 63 // 56 // 64 G4VoxelNavigation::~G4VoxelNavigation() 57 G4VoxelNavigation::~G4VoxelNavigation() 65 { 58 { 66 delete fpVoxelSafety; << 59 #ifdef G4DEBUG_NAVIGATION 67 delete fLogger; << 60 G4cout << "G4VoxelNavigation::~G4VoxelNavigation() called." << G4endl; >> 61 #endif 68 } 62 } 69 63 70 // ------------------------------------------- << 71 // Input: << 72 // exiting: : last step exited << 73 // blockedPhysical : phys volume last exit << 74 // blockedReplicaNo : copy/replica number o << 75 // Output: << 76 // entering : if true, found candid << 77 // blockedPhysical : candidate phys volume << 78 // blockedReplicaNo : copy/replica number << 79 // exiting: : will exit current (mo << 80 // In/Out << 81 // ------------------------------------------- << 82 << 83 // ******************************************* 64 // ******************************************************************** 84 // ComputeStep 65 // ComputeStep 85 // ******************************************* 66 // ******************************************************************** 86 // 67 // 87 G4double 68 G4double 88 G4VoxelNavigation::ComputeStep( const G4ThreeV 69 G4VoxelNavigation::ComputeStep( const G4ThreeVector& localPoint, 89 const G4ThreeV 70 const G4ThreeVector& localDirection, 90 const G4double 71 const G4double currentProposedStepLength, 91 G4double 72 G4double& newSafety, 92 /* const */ G4Naviga << 73 G4NavigationHistory& history, 93 G4bool& 74 G4bool& validExitNormal, 94 G4ThreeV 75 G4ThreeVector& exitNormal, 95 G4bool& 76 G4bool& exiting, 96 G4bool& 77 G4bool& entering, 97 G4VPhysi << 78 G4VPhysicalVolume *(*pBlockedPhysical), 98 G4int& b 79 G4int& blockedReplicaNo ) 99 { 80 { 100 G4VPhysicalVolume *motherPhysical, *samplePh << 81 G4VPhysicalVolume *motherPhysical, *samplePhysical, *blockedExitedVol=0; 101 G4LogicalVolume *motherLogical; 82 G4LogicalVolume *motherLogical; 102 G4VSolid *motherSolid; 83 G4VSolid *motherSolid; 103 G4ThreeVector sampleDirection; 84 G4ThreeVector sampleDirection; 104 G4double ourStep=currentProposedStepLength, << 85 G4double ourStep=currentProposedStepLength, motherSafety, ourSafety; 105 G4double motherSafety, motherStep = DBL_MAX; << 106 G4int localNoDaughters, sampleNo; 86 G4int localNoDaughters, sampleNo; 107 87 108 G4bool initialNode, noStep; 88 G4bool initialNode, noStep; 109 G4SmartVoxelNode *curVoxelNode; 89 G4SmartVoxelNode *curVoxelNode; 110 G4long curNoVolumes, contentNo; << 90 G4int curNoVolumes, contentNo; 111 G4double voxelSafety; 91 G4double voxelSafety; 112 92 113 motherPhysical = history.GetTopVolume(); 93 motherPhysical = history.GetTopVolume(); 114 motherLogical = motherPhysical->GetLogicalVo 94 motherLogical = motherPhysical->GetLogicalVolume(); 115 motherSolid = motherLogical->GetSolid(); 95 motherSolid = motherLogical->GetSolid(); 116 96 117 // 97 // 118 // Compute mother safety 98 // Compute mother safety 119 // 99 // 120 100 121 motherSafety = motherSolid->DistanceToOut(lo 101 motherSafety = motherSolid->DistanceToOut(localPoint); 122 ourSafety = motherSafety; // 102 ourSafety = motherSafety; // Working isotropic safety 123 103 124 #ifdef G4VERBOSE 104 #ifdef G4VERBOSE 125 if ( fCheck ) 105 if ( fCheck ) 126 { 106 { 127 fLogger->PreComputeStepLog (motherPhysical << 107 if(fVerbose == 1 ) >> 108 { >> 109 G4cout << "*** G4VoxelNavigation::ComputeStep(): ***" << G4endl >> 110 << " Invoked DistanceToOut(p) for mother solid: " >> 111 << motherSolid->GetName() >> 112 << ". Solid replied: " << motherSafety << G4endl >> 113 << " For local point p: " << localPoint >> 114 << ", to be considered as 'mother safety'." << G4endl; >> 115 } >> 116 if( motherSafety < 0.0 ) >> 117 { >> 118 G4cout << "ERROR - G4VoxelNavigation::ComputeStep()" << G4endl >> 119 << " Current solid " << motherSolid->GetName() >> 120 << " gave negative safety: " << motherSafety << G4endl >> 121 << " for the current (local) point " << localPoint >> 122 << G4endl; >> 123 G4Exception("G4VoxelNavigation::ComputeStep()", >> 124 "NegativeSafetyMotherVol", FatalException, >> 125 "Negative Safety In Voxel Navigation !" ); >> 126 } >> 127 if( motherSolid->Inside(localPoint)==kOutside ) >> 128 { >> 129 G4cout << "WARNING - G4VoxelNavigation::ComputeStep()" << G4endl >> 130 << " Point " << localPoint >> 131 << " is outside current volume " << motherPhysical->GetName() >> 132 << G4endl; >> 133 G4double estDistToSolid= motherSolid->DistanceToIn(localPoint); >> 134 G4cout << " Estimated isotropic distance to solid (distToIn)= " >> 135 << estDistToSolid << G4endl; >> 136 if( estDistToSolid > 100.0 * kCarTolerance ) >> 137 G4Exception("G4VoxelNavigation::ComputeStep()", >> 138 "FarOutsideCurrentVolume", FatalException, >> 139 "Point is far outside Current Volume !"); >> 140 else >> 141 G4Exception("G4VoxelNavigation::ComputeStep()", "OutsideCurrentVolume", >> 142 JustWarning, "Point is a little outside Current Volume."); >> 143 } 128 } 144 } 129 #endif 145 #endif 130 146 131 // 147 // 132 // Compute daughter safeties & intersections 148 // Compute daughter safeties & intersections 133 // 149 // 134 150 135 // Exiting normal optimisation 151 // Exiting normal optimisation 136 // 152 // 137 if ( exiting && validExitNormal ) 153 if ( exiting && validExitNormal ) 138 { 154 { 139 if ( localDirection.dot(exitNormal)>=kMinE 155 if ( localDirection.dot(exitNormal)>=kMinExitingNormalCosine ) 140 { 156 { 141 // Block exited daughter volume 157 // Block exited daughter volume 142 // 158 // 143 blockedExitedVol = *pBlockedPhysical; 159 blockedExitedVol = *pBlockedPhysical; 144 ourSafety = 0; 160 ourSafety = 0; 145 } 161 } 146 } 162 } 147 exiting = false; 163 exiting = false; 148 entering = false; 164 entering = false; 149 165 150 // For extra checking, get the distance to << 166 localNoDaughters = motherLogical->GetNoDaughters(); 151 G4bool motherValidExitNormal = false; << 152 G4ThreeVector motherExitNormal(0.0, 0.0, 0.0 << 153 << 154 #ifdef G4VERBOSE << 155 if ( fCheck ) << 156 { << 157 // Compute early -- a) for validity << 158 // b) to check against an << 159 motherStep = motherSolid->DistanceToOut(lo << 160 lo << 161 tr << 162 &mo << 163 &mo << 164 } << 165 #endif << 166 << 167 localNoDaughters = (G4int)motherLogical->Get << 168 167 169 fBList.Enlarge(localNoDaughters); 168 fBList.Enlarge(localNoDaughters); 170 fBList.Reset(); 169 fBList.Reset(); 171 170 172 initialNode = true; 171 initialNode = true; 173 noStep = true; 172 noStep = true; 174 173 175 while (noStep) 174 while (noStep) 176 { 175 { 177 curVoxelNode = fVoxelNode; 176 curVoxelNode = fVoxelNode; 178 curNoVolumes = curVoxelNode->GetNoContaine 177 curNoVolumes = curVoxelNode->GetNoContained(); 179 for (contentNo=curNoVolumes-1; contentNo>= 178 for (contentNo=curNoVolumes-1; contentNo>=0; contentNo--) 180 { 179 { 181 sampleNo = curVoxelNode->GetVolume((G4in << 180 sampleNo = curVoxelNode->GetVolume(contentNo); 182 if ( !fBList.IsBlocked(sampleNo) ) 181 if ( !fBList.IsBlocked(sampleNo) ) 183 { 182 { 184 fBList.BlockVolume(sampleNo); 183 fBList.BlockVolume(sampleNo); 185 samplePhysical = motherLogical->GetDau 184 samplePhysical = motherLogical->GetDaughter(sampleNo); 186 if ( samplePhysical!=blockedExitedVol 185 if ( samplePhysical!=blockedExitedVol ) 187 { 186 { 188 G4AffineTransform sampleTf(samplePhy 187 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 189 samplePhy 188 samplePhysical->GetTranslation()); 190 sampleTf.Invert(); 189 sampleTf.Invert(); 191 const G4ThreeVector samplePoint = 190 const G4ThreeVector samplePoint = 192 sampleTf.TransformPoint(l 191 sampleTf.TransformPoint(localPoint); 193 const G4VSolid *sampleSolid = 192 const G4VSolid *sampleSolid = 194 samplePhysical->GetLogica 193 samplePhysical->GetLogicalVolume()->GetSolid(); 195 const G4double sampleSafety = 194 const G4double sampleSafety = 196 sampleSolid->DistanceToIn 195 sampleSolid->DistanceToIn(samplePoint); 197 << 196 #ifdef G4VERBOSE >> 197 if(( fCheck ) && ( fVerbose == 1 )) >> 198 { >> 199 G4cout << "*** G4VoxelNavigation::ComputeStep(): ***" << G4endl >> 200 << " Invoked DistanceToIn(p) for daughter solid: " >> 201 << sampleSolid->GetName() >> 202 << ". Solid replied: " << sampleSafety << G4endl >> 203 << " For local point p: " << samplePoint >> 204 << ", to be considered as 'daughter safety'." << G4endl; >> 205 } >> 206 #endif 198 if ( sampleSafety<ourSafety ) 207 if ( sampleSafety<ourSafety ) 199 { 208 { 200 ourSafety = sampleSafety; 209 ourSafety = sampleSafety; 201 } 210 } 202 if ( sampleSafety<=ourStep ) 211 if ( sampleSafety<=ourStep ) 203 { 212 { 204 sampleDirection = sampleTf.Transfo 213 sampleDirection = sampleTf.TransformAxis(localDirection); 205 G4double sampleStep = 214 G4double sampleStep = 206 sampleSolid->DistanceToIn 215 sampleSolid->DistanceToIn(samplePoint, sampleDirection); 207 #ifdef G4VERBOSE 216 #ifdef G4VERBOSE 208 if( fCheck ) << 217 if(( fCheck ) && ( fVerbose == 1 )) 209 { 218 { 210 fLogger->PrintDaughterLog(sample << 219 G4cout << "*** G4VoxelNavigation::ComputeStep(): ***" << G4endl 211 sample << 220 << " Invoked DistanceToIn(p,v) for daughter solid: " 212 sample << 221 << sampleSolid->GetName() >> 222 << ". Solid replied: " << sampleStep << G4endl >> 223 << " For local point p: " << samplePoint << G4endl >> 224 << " Direction v: " << sampleDirection >> 225 << ", to be considered as 'daughter step'." << G4endl; 213 } 226 } 214 #endif 227 #endif 215 if ( sampleStep<=ourStep ) 228 if ( sampleStep<=ourStep ) 216 { 229 { 217 ourStep = sampleStep; 230 ourStep = sampleStep; 218 entering = true; 231 entering = true; 219 exiting = false; 232 exiting = false; 220 *pBlockedPhysical = samplePhysic 233 *pBlockedPhysical = samplePhysical; 221 blockedReplicaNo = -1; 234 blockedReplicaNo = -1; 222 #ifdef G4VERBOSE 235 #ifdef G4VERBOSE 223 // Check to see that the resulti 236 // Check to see that the resulting point is indeed in/on volume. 224 // This could be done only for s << 237 // This check could eventually be made only for successful 225 if ( fCheck ) << 238 // candidate. >> 239 >> 240 if ( ( fCheck ) && ( sampleStep < kInfinity ) ) 226 { 241 { 227 fLogger->AlongComputeStepLog ( << 242 G4ThreeVector intersectionPoint; 228 sampleDirection, localDirect << 243 intersectionPoint= samplePoint + sampleStep * sampleDirection; >> 244 EInside insideIntPt= sampleSolid->Inside(intersectionPoint); >> 245 G4String solidResponse = "-kInside-"; >> 246 if (insideIntPt == kOutside) >> 247 solidResponse = "-kOutside-"; >> 248 else if (insideIntPt == kSurface) >> 249 solidResponse = "-kSurface-"; >> 250 if( fVerbose == 1 ) >> 251 { >> 252 G4cout << "*** G4VoxelNavigation::ComputeStep(): ***"<<G4endl >> 253 << " Invoked Inside() for solid: " >> 254 << sampleSolid->GetName() >> 255 << ". Solid replied: " << solidResponse << G4endl >> 256 << " For point p: " << intersectionPoint >> 257 << ", considered as 'intersection' point." << G4endl; >> 258 } >> 259 if( insideIntPt != kSurface ) >> 260 { >> 261 G4int oldcoutPrec = G4cout.precision(16); >> 262 G4cout << "WARNING - G4VoxelNavigation::ComputeStep()" >> 263 << G4endl >> 264 << " Inaccurate solid DistanceToIn" >> 265 << " for solid " << sampleSolid->GetName() << G4endl; >> 266 G4cout << " Solid gave DistanceToIn = " >> 267 << sampleStep << " yet returns " << solidResponse >> 268 << " for this point !" << G4endl; >> 269 G4cout << " Point = " << intersectionPoint << G4endl; >> 270 if ( insideIntPt != kInside ) >> 271 G4cout << " DistanceToIn(p) = " >> 272 << sampleSolid->DistanceToIn(intersectionPoint) >> 273 << G4endl; >> 274 if ( insideIntPt != kOutside ) >> 275 G4cout << " DistanceToOut(p) = " >> 276 << sampleSolid->DistanceToOut(intersectionPoint) >> 277 << G4endl; >> 278 G4Exception("G4VoxelNavigation::ComputeStep()", >> 279 "InaccurateDistanceToIn", JustWarning, >> 280 "Navigator gets conflicting response from Solid."); >> 281 G4cout.precision(oldcoutPrec); >> 282 } 229 } 283 } 230 #endif 284 #endif 231 } 285 } 232 #ifdef G4VERBOSE << 233 if ( fCheck && ( sampleStep < kInf << 234 && ( sampleStep >= mot << 235 { << 236 // The intersection point with << 237 // point from the mother volume << 238 fLogger->CheckDaughterEntryPoin << 239 << 240 << 241 << 242 << 243 } << 244 #endif << 245 } << 246 #ifdef G4VERBOSE << 247 else // ie if sampleSafety > outStep << 248 { << 249 if( fCheck ) << 250 { << 251 fLogger->PrintDaughterLog(sample << 252 sample << 253 G4Thre << 254 } << 255 } 286 } 256 #endif << 257 } 287 } 258 } 288 } 259 } 289 } 260 if (initialNode) 290 if (initialNode) 261 { 291 { 262 initialNode = false; 292 initialNode = false; 263 voxelSafety = ComputeVoxelSafety(localPo 293 voxelSafety = ComputeVoxelSafety(localPoint); 264 if ( voxelSafety<ourSafety ) 294 if ( voxelSafety<ourSafety ) 265 { 295 { 266 ourSafety = voxelSafety; 296 ourSafety = voxelSafety; 267 } 297 } 268 if ( currentProposedStepLength<ourSafety 298 if ( currentProposedStepLength<ourSafety ) 269 { 299 { 270 // Guaranteed physics limited 300 // Guaranteed physics limited 271 // 301 // 272 noStep = false; 302 noStep = false; 273 entering = false; 303 entering = false; 274 exiting = false; 304 exiting = false; 275 *pBlockedPhysical = nullptr; << 305 *pBlockedPhysical = 0; 276 ourStep = kInfinity; 306 ourStep = kInfinity; 277 } 307 } 278 else 308 else 279 { 309 { 280 // 310 // 281 // Compute mother intersection if requ 311 // Compute mother intersection if required 282 // 312 // 283 if ( motherSafety<=ourStep ) 313 if ( motherSafety<=ourStep ) 284 { 314 { 285 // In case of check mode this is a d << 315 G4double motherStep = 286 motherStep = motherSolid->DistanceTo << 316 motherSolid->DistanceToOut(localPoint, 287 true, &motherVal << 317 localDirection, >> 318 true, &validExitNormal, &exitNormal); 288 #ifdef G4VERBOSE 319 #ifdef G4VERBOSE 289 if ( fCheck ) 320 if ( fCheck ) 290 { 321 { 291 fLogger->PostComputeStepLog(mother << 322 if(fVerbose == 1) 292 mother << 293 if( motherValidExitNormal ) << 294 { 323 { 295 fLogger->CheckAndReportBadNormal << 324 G4cout << "*** G4VoxelNavigation::ComputeStep(): ***" << G4endl 296 << 325 << " Invoked DistanceToOut(p,v,...) for mother solid: " 297 << 326 << motherSolid->GetName() 298 "From << 327 << ". Solid replied: " << motherStep << G4endl >> 328 << " For local point p: " << localPoint << G4endl >> 329 << " Direction v: " << localDirection >> 330 << ", to be considered as 'mother step'." << G4endl; 299 } 331 } 300 } << 332 if( ( motherStep < 0.0 ) || ( motherStep >= kInfinity) ) 301 #endif << 302 if( (motherStep >= kInfinity) || (mo << 303 { << 304 #ifdef G4VERBOSE << 305 if( fCheck ) // Error - indication << 306 { 333 { 307 fLogger->ReportOutsideMother(loc << 334 G4int oldPrOut= G4cout.precision(16); 308 mot << 335 G4int oldPrErr= G4cerr.precision(16); >> 336 G4cerr << "ERROR - G4VoxelNavigation::ComputeStep()" << G4endl >> 337 << " Problem in Navigation" << G4endl >> 338 << " Point (local coordinates): " >> 339 << localPoint << G4endl >> 340 << " Local Direction: " << localDirection << G4endl >> 341 << " Solid: " << motherSolid->GetName() << G4endl; >> 342 G4Exception("G4VoxelNavigation::ComputeStep()", >> 343 "PointOutsideCurrentVolume", FatalException, >> 344 "Current point is outside the current solid !"); >> 345 G4cout.precision(oldPrOut); >> 346 G4cerr.precision(oldPrErr); 309 } 347 } >> 348 } 310 #endif 349 #endif 311 motherStep = 0.0; << 312 ourStep = 0.0; << 313 exiting = true; << 314 entering = false; << 315 << 316 // validExitNormal= motherValidExi << 317 // exitNormal= motherExitNormal; << 318 // Useful only if the point is ver << 319 // => but it would need to be rota << 320 validExitNormal= false; << 321 << 322 *pBlockedPhysical = nullptr; // or << 323 blockedReplicaNo = 0; // or mothe << 324 << 325 newSafety = 0.0; << 326 return ourStep; << 327 } << 328 << 329 if ( motherStep<=ourStep ) 350 if ( motherStep<=ourStep ) 330 { 351 { 331 ourStep = motherStep; 352 ourStep = motherStep; 332 exiting = true; 353 exiting = true; 333 entering = false; 354 entering = false; 334 << 335 // Exit normal: Natural location t << 336 // << 337 validExitNormal = motherValidExitN << 338 exitNormal = motherExitNormal; << 339 << 340 if ( validExitNormal ) 355 if ( validExitNormal ) 341 { 356 { 342 const G4RotationMatrix *rot = mo 357 const G4RotationMatrix *rot = motherPhysical->GetRotation(); 343 if (rot != nullptr) << 358 if (rot) 344 { 359 { 345 exitNormal *= rot->inverse(); 360 exitNormal *= rot->inverse(); 346 #ifdef G4VERBOSE << 347 if( fCheck ) << 348 { << 349 fLogger->CheckAndReportBadNo << 350 << 351 << 352 << 353 } << 354 #endif << 355 } 361 } 356 } << 362 } 357 } 363 } 358 else 364 else 359 { 365 { 360 validExitNormal = false; 366 validExitNormal = false; 361 } 367 } 362 } 368 } 363 } 369 } 364 newSafety = ourSafety; 370 newSafety = ourSafety; 365 } 371 } 366 if (noStep) 372 if (noStep) 367 { 373 { 368 noStep = LocateNextVoxel(localPoint, loc 374 noStep = LocateNextVoxel(localPoint, localDirection, ourStep); 369 } 375 } 370 } // end -while (noStep)- loop 376 } // end -while (noStep)- loop 371 377 372 return ourStep; 378 return ourStep; 373 } 379 } 374 380 375 // ******************************************* 381 // ******************************************************************** 376 // ComputeVoxelSafety 382 // ComputeVoxelSafety 377 // 383 // 378 // Computes safety from specified point to vox 384 // Computes safety from specified point to voxel boundaries 379 // using already located point 385 // using already located point 380 // o collected boundaries for most derived lev 386 // o collected boundaries for most derived level 381 // o adjacent boundaries for previous levels 387 // o adjacent boundaries for previous levels 382 // ******************************************* 388 // ******************************************************************** 383 // 389 // 384 G4double 390 G4double 385 G4VoxelNavigation::ComputeVoxelSafety(const G4 391 G4VoxelNavigation::ComputeVoxelSafety(const G4ThreeVector& localPoint) const 386 { 392 { 387 G4SmartVoxelHeader *curHeader; 393 G4SmartVoxelHeader *curHeader; 388 G4double voxelSafety, curNodeWidth; 394 G4double voxelSafety, curNodeWidth; 389 G4double curNodeOffset, minCurCommonDelta, m 395 G4double curNodeOffset, minCurCommonDelta, maxCurCommonDelta; 390 G4int minCurNodeNoDelta, maxCurNodeNoDelta; 396 G4int minCurNodeNoDelta, maxCurNodeNoDelta; 391 G4int localVoxelDepth, curNodeNo; 397 G4int localVoxelDepth, curNodeNo; 392 EAxis curHeaderAxis; 398 EAxis curHeaderAxis; 393 399 394 localVoxelDepth = fVoxelDepth; 400 localVoxelDepth = fVoxelDepth; 395 401 396 curHeader = fVoxelHeaderStack[localVoxelDept 402 curHeader = fVoxelHeaderStack[localVoxelDepth]; 397 curHeaderAxis = fVoxelAxisStack[localVoxelDe 403 curHeaderAxis = fVoxelAxisStack[localVoxelDepth]; 398 curNodeNo = fVoxelNodeNoStack[localVoxelDept 404 curNodeNo = fVoxelNodeNoStack[localVoxelDepth]; 399 curNodeWidth = fVoxelSliceWidthStack[localVo 405 curNodeWidth = fVoxelSliceWidthStack[localVoxelDepth]; 400 406 401 // Compute linear intersection distance to b 407 // Compute linear intersection distance to boundaries of max/min 402 // to collected nodes at current level 408 // to collected nodes at current level 403 // 409 // 404 curNodeOffset = curNodeNo*curNodeWidth; 410 curNodeOffset = curNodeNo*curNodeWidth; 405 maxCurNodeNoDelta = fVoxelNode->GetMaxEquiva 411 maxCurNodeNoDelta = fVoxelNode->GetMaxEquivalentSliceNo()-curNodeNo; 406 minCurNodeNoDelta = curNodeNo-fVoxelNode->Ge 412 minCurNodeNoDelta = curNodeNo-fVoxelNode->GetMinEquivalentSliceNo(); 407 minCurCommonDelta = localPoint(curHeaderAxis 413 minCurCommonDelta = localPoint(curHeaderAxis) 408 - curHeader->GetMinExten 414 - curHeader->GetMinExtent() - curNodeOffset; 409 maxCurCommonDelta = curNodeWidth-minCurCommo 415 maxCurCommonDelta = curNodeWidth-minCurCommonDelta; 410 416 411 if ( minCurNodeNoDelta<maxCurNodeNoDelta ) 417 if ( minCurNodeNoDelta<maxCurNodeNoDelta ) 412 { 418 { 413 voxelSafety = minCurNodeNoDelta*curNodeWid 419 voxelSafety = minCurNodeNoDelta*curNodeWidth; 414 voxelSafety += minCurCommonDelta; 420 voxelSafety += minCurCommonDelta; 415 } 421 } 416 else if (maxCurNodeNoDelta < minCurNodeNoDel 422 else if (maxCurNodeNoDelta < minCurNodeNoDelta) 417 { << 423 { 418 voxelSafety = maxCurNodeNoDelta*curNodeWid << 424 voxelSafety = maxCurNodeNoDelta*curNodeWidth; 419 voxelSafety += maxCurCommonDelta; << 425 voxelSafety += maxCurCommonDelta; 420 } << 426 } 421 else // (maxCurNodeNoDelta == minCurNodeN << 427 else // (maxCurNodeNoDelta == minCurNodeNoDelta) 422 { << 428 { 423 voxelSafety = minCurNodeNoDelta*curNodeWid << 429 voxelSafety = minCurNodeNoDelta*curNodeWidth; 424 voxelSafety += std::min(minCurCommonDelta, << 430 voxelSafety += std::min(minCurCommonDelta,maxCurCommonDelta); 425 } << 431 } 426 432 427 // Compute isotropic safety to boundaries of 433 // Compute isotropic safety to boundaries of previous levels 428 // [NOT to collected boundaries] 434 // [NOT to collected boundaries] 429 << 435 // 430 // Loop checking, 07.10.2016, JA << 431 while ( (localVoxelDepth>0) && (voxelSafety> 436 while ( (localVoxelDepth>0) && (voxelSafety>0) ) 432 { 437 { 433 localVoxelDepth--; 438 localVoxelDepth--; 434 curHeader = fVoxelHeaderStack[localVoxelDe 439 curHeader = fVoxelHeaderStack[localVoxelDepth]; 435 curHeaderAxis = fVoxelAxisStack[localVoxel 440 curHeaderAxis = fVoxelAxisStack[localVoxelDepth]; 436 curNodeNo = fVoxelNodeNoStack[localVoxelDe 441 curNodeNo = fVoxelNodeNoStack[localVoxelDepth]; 437 curNodeWidth = fVoxelSliceWidthStack[local 442 curNodeWidth = fVoxelSliceWidthStack[localVoxelDepth]; 438 curNodeOffset = curNodeNo*curNodeWidth; 443 curNodeOffset = curNodeNo*curNodeWidth; 439 minCurCommonDelta = localPoint(curHeaderAx 444 minCurCommonDelta = localPoint(curHeaderAxis) 440 - curHeader->GetMinExt 445 - curHeader->GetMinExtent() - curNodeOffset; 441 maxCurCommonDelta = curNodeWidth-minCurCom 446 maxCurCommonDelta = curNodeWidth-minCurCommonDelta; 442 447 443 if ( minCurCommonDelta<voxelSafety ) 448 if ( minCurCommonDelta<voxelSafety ) 444 { 449 { 445 voxelSafety = minCurCommonDelta; 450 voxelSafety = minCurCommonDelta; 446 } 451 } 447 if ( maxCurCommonDelta<voxelSafety ) 452 if ( maxCurCommonDelta<voxelSafety ) 448 { 453 { 449 voxelSafety = maxCurCommonDelta; 454 voxelSafety = maxCurCommonDelta; 450 } 455 } 451 } 456 } 452 if ( voxelSafety<0 ) 457 if ( voxelSafety<0 ) 453 { 458 { 454 voxelSafety = 0; 459 voxelSafety = 0; 455 } 460 } 456 461 457 return voxelSafety; 462 return voxelSafety; 458 } 463 } 459 464 460 // ******************************************* 465 // ******************************************************************** 461 // LocateNextVoxel 466 // LocateNextVoxel 462 // 467 // 463 // Finds the next voxel from the current voxel 468 // Finds the next voxel from the current voxel and point 464 // in the specified direction 469 // in the specified direction 465 // 470 // 466 // Returns false if all voxels considered 471 // Returns false if all voxels considered 467 // [current Step ends inside same 472 // [current Step ends inside same voxel or leaves all voxels] 468 // true otherwise 473 // true otherwise 469 // [the information on the next v 474 // [the information on the next voxel is put into the set of 470 // fVoxel* variables & "stacks"] 475 // fVoxel* variables & "stacks"] 471 // ******************************************* 476 // ******************************************************************** 472 // 477 // 473 G4bool 478 G4bool 474 G4VoxelNavigation::LocateNextVoxel(const G4Thr 479 G4VoxelNavigation::LocateNextVoxel(const G4ThreeVector& localPoint, 475 const G4Thr 480 const G4ThreeVector& localDirection, 476 const G4dou 481 const G4double currentStep) 477 { 482 { 478 G4SmartVoxelHeader *workHeader=nullptr, *new << 483 G4SmartVoxelHeader *workHeader=0, *newHeader=0; 479 G4SmartVoxelProxy *newProxy=nullptr; << 484 G4SmartVoxelProxy *newProxy=0; 480 G4SmartVoxelNode *newVoxelNode=nullptr; << 485 G4SmartVoxelNode *newVoxelNode=0; 481 G4ThreeVector targetPoint, voxelPoint; 486 G4ThreeVector targetPoint, voxelPoint; 482 G4double workNodeWidth, workMinExtent, workC 487 G4double workNodeWidth, workMinExtent, workCoord; 483 G4double minVal, maxVal, newDistance=0.; 488 G4double minVal, maxVal, newDistance=0.; 484 G4double newHeaderMin, newHeaderNodeWidth; 489 G4double newHeaderMin, newHeaderNodeWidth; 485 G4int depth=0, newDepth=0, workNodeNo=0, new 490 G4int depth=0, newDepth=0, workNodeNo=0, newNodeNo=0, newHeaderNoSlices=0; 486 EAxis workHeaderAxis, newHeaderAxis; 491 EAxis workHeaderAxis, newHeaderAxis; 487 G4bool isNewVoxel = false; << 492 G4bool isNewVoxel=false; 488 493 489 G4double currentDistance = currentStep; 494 G4double currentDistance = currentStep; 490 495 491 // Determine if end of Step within current v 496 // Determine if end of Step within current voxel 492 // 497 // 493 for (depth=0; depth<fVoxelDepth; ++depth) << 498 for (depth=0; depth<fVoxelDepth; depth++) 494 { 499 { 495 targetPoint = localPoint+localDirection*cu 500 targetPoint = localPoint+localDirection*currentDistance; 496 newDistance = currentDistance; 501 newDistance = currentDistance; 497 workHeader = fVoxelHeaderStack[depth]; 502 workHeader = fVoxelHeaderStack[depth]; 498 workHeaderAxis = fVoxelAxisStack[depth]; 503 workHeaderAxis = fVoxelAxisStack[depth]; 499 workNodeNo = fVoxelNodeNoStack[depth]; 504 workNodeNo = fVoxelNodeNoStack[depth]; 500 workNodeWidth = fVoxelSliceWidthStack[dept 505 workNodeWidth = fVoxelSliceWidthStack[depth]; 501 workMinExtent = workHeader->GetMinExtent() 506 workMinExtent = workHeader->GetMinExtent(); 502 workCoord = targetPoint(workHeaderAxis); 507 workCoord = targetPoint(workHeaderAxis); 503 minVal = workMinExtent+workNodeNo*workNode 508 minVal = workMinExtent+workNodeNo*workNodeWidth; 504 509 505 if ( minVal<=workCoord+fHalfTolerance ) << 510 if ( minVal<=workCoord+kCarTolerance*0.5 ) 506 { 511 { 507 maxVal = minVal+workNodeWidth; 512 maxVal = minVal+workNodeWidth; 508 if ( maxVal<=workCoord-fHalfTolerance ) << 513 if ( maxVal<=workCoord-kCarTolerance*0.5 ) 509 { 514 { 510 // Must consider next voxel 515 // Must consider next voxel 511 // 516 // 512 newNodeNo = workNodeNo+1; 517 newNodeNo = workNodeNo+1; 513 newHeader = workHeader; 518 newHeader = workHeader; 514 newDistance = (maxVal-localPoint(workH 519 newDistance = (maxVal-localPoint(workHeaderAxis)) 515 / localDirection(workHeade 520 / localDirection(workHeaderAxis); 516 isNewVoxel = true; 521 isNewVoxel = true; 517 newDepth = depth; 522 newDepth = depth; 518 } 523 } 519 } 524 } 520 else 525 else 521 { 526 { 522 newNodeNo = workNodeNo-1; 527 newNodeNo = workNodeNo-1; 523 newHeader = workHeader; 528 newHeader = workHeader; 524 newDistance = (minVal-localPoint(workHea 529 newDistance = (minVal-localPoint(workHeaderAxis)) 525 / localDirection(workHeaderA 530 / localDirection(workHeaderAxis); 526 isNewVoxel = true; 531 isNewVoxel = true; 527 newDepth = depth; 532 newDepth = depth; 528 } 533 } 529 currentDistance = newDistance; 534 currentDistance = newDistance; 530 } 535 } 531 targetPoint = localPoint+localDirection*curr 536 targetPoint = localPoint+localDirection*currentDistance; 532 537 533 // Check if end of Step within collected bou 538 // Check if end of Step within collected boundaries of current voxel 534 // 539 // 535 depth = fVoxelDepth; 540 depth = fVoxelDepth; 536 { 541 { 537 workHeader = fVoxelHeaderStack[depth]; 542 workHeader = fVoxelHeaderStack[depth]; 538 workHeaderAxis = fVoxelAxisStack[depth]; 543 workHeaderAxis = fVoxelAxisStack[depth]; 539 workNodeNo = fVoxelNodeNoStack[depth]; 544 workNodeNo = fVoxelNodeNoStack[depth]; 540 workNodeWidth = fVoxelSliceWidthStack[dept 545 workNodeWidth = fVoxelSliceWidthStack[depth]; 541 workMinExtent = workHeader->GetMinExtent() 546 workMinExtent = workHeader->GetMinExtent(); 542 workCoord = targetPoint(workHeaderAxis); 547 workCoord = targetPoint(workHeaderAxis); 543 minVal = workMinExtent+fVoxelNode->GetMinE 548 minVal = workMinExtent+fVoxelNode->GetMinEquivalentSliceNo()*workNodeWidth; 544 549 545 if ( minVal<=workCoord+fHalfTolerance ) << 550 if ( minVal<=workCoord+kCarTolerance*0.5 ) 546 { 551 { 547 maxVal = workMinExtent+(fVoxelNode->GetM 552 maxVal = workMinExtent+(fVoxelNode->GetMaxEquivalentSliceNo()+1) 548 *workNodeWidth; 553 *workNodeWidth; 549 if ( maxVal<=workCoord-fHalfTolerance ) << 554 if ( maxVal<=workCoord-kCarTolerance*0.5 ) 550 { 555 { 551 newNodeNo = fVoxelNode->GetMaxEquivale 556 newNodeNo = fVoxelNode->GetMaxEquivalentSliceNo()+1; 552 newHeader = workHeader; 557 newHeader = workHeader; 553 newDistance = (maxVal-localPoint(workH 558 newDistance = (maxVal-localPoint(workHeaderAxis)) 554 / localDirection(workHeade 559 / localDirection(workHeaderAxis); 555 isNewVoxel = true; 560 isNewVoxel = true; 556 newDepth = depth; 561 newDepth = depth; 557 } 562 } 558 } 563 } 559 else 564 else 560 { 565 { 561 newNodeNo = fVoxelNode->GetMinEquivalent 566 newNodeNo = fVoxelNode->GetMinEquivalentSliceNo()-1; 562 newHeader = workHeader; 567 newHeader = workHeader; 563 newDistance = (minVal-localPoint(workHea 568 newDistance = (minVal-localPoint(workHeaderAxis)) 564 / localDirection(workHeaderA 569 / localDirection(workHeaderAxis); 565 isNewVoxel = true; 570 isNewVoxel = true; 566 newDepth = depth; 571 newDepth = depth; 567 } 572 } 568 currentDistance = newDistance; 573 currentDistance = newDistance; 569 } 574 } 570 if (isNewVoxel) 575 if (isNewVoxel) 571 { 576 { 572 // Compute new voxel & adjust voxel stack 577 // Compute new voxel & adjust voxel stack 573 // 578 // 574 // newNodeNo=Candidate node no at 579 // newNodeNo=Candidate node no at 575 // newDepth =refinement depth of crossed v 580 // newDepth =refinement depth of crossed voxel boundary 576 // newHeader=Header for crossed voxel 581 // newHeader=Header for crossed voxel 577 // newDistance=distance to crossed voxel b 582 // newDistance=distance to crossed voxel boundary (along the track) 578 // 583 // 579 if ( (newNodeNo<0) || (newNodeNo>=G4int(ne << 584 if ( (newNodeNo<0) || (newNodeNo>=newHeader->GetNoSlices())) 580 { 585 { 581 // Leaving mother volume 586 // Leaving mother volume 582 // 587 // 583 isNewVoxel = false; 588 isNewVoxel = false; 584 } 589 } 585 else 590 else 586 { 591 { 587 // Compute intersection point on the lea 592 // Compute intersection point on the least refined 588 // voxel boundary that is hit 593 // voxel boundary that is hit 589 // 594 // 590 voxelPoint = localPoint+localDirection*n 595 voxelPoint = localPoint+localDirection*newDistance; 591 fVoxelNodeNoStack[newDepth] = newNodeNo; 596 fVoxelNodeNoStack[newDepth] = newNodeNo; 592 fVoxelDepth = newDepth; 597 fVoxelDepth = newDepth; 593 newVoxelNode = nullptr; << 598 newVoxelNode = 0; 594 while ( newVoxelNode == nullptr ) << 599 while ( !newVoxelNode ) 595 { 600 { 596 newProxy = newHeader->GetSlice(newNode 601 newProxy = newHeader->GetSlice(newNodeNo); 597 if (newProxy->IsNode()) 602 if (newProxy->IsNode()) 598 { 603 { 599 newVoxelNode = newProxy->GetNode(); 604 newVoxelNode = newProxy->GetNode(); 600 } 605 } 601 else 606 else 602 { 607 { 603 ++fVoxelDepth; << 608 fVoxelDepth++; 604 newHeader = newProxy->GetHeader(); 609 newHeader = newProxy->GetHeader(); 605 newHeaderAxis = newHeader->GetAxis() 610 newHeaderAxis = newHeader->GetAxis(); 606 newHeaderNoSlices = (G4int)newHeader << 611 newHeaderNoSlices = newHeader->GetNoSlices(); 607 newHeaderMin = newHeader->GetMinExte 612 newHeaderMin = newHeader->GetMinExtent(); 608 newHeaderNodeWidth = (newHeader->Get 613 newHeaderNodeWidth = (newHeader->GetMaxExtent()-newHeaderMin) 609 / newHeaderNoSlic 614 / newHeaderNoSlices; 610 newNodeNo = G4int( (voxelPoint(newHe 615 newNodeNo = G4int( (voxelPoint(newHeaderAxis)-newHeaderMin) 611 / newHeaderNodeWi 616 / newHeaderNodeWidth ); 612 // Rounding protection 617 // Rounding protection 613 // 618 // 614 if ( newNodeNo<0 ) 619 if ( newNodeNo<0 ) 615 { 620 { 616 newNodeNo=0; 621 newNodeNo=0; 617 } 622 } 618 else if ( newNodeNo>=newHeaderNoSlic 623 else if ( newNodeNo>=newHeaderNoSlices ) 619 { << 624 { 620 newNodeNo = newHeaderNoSlices-1; << 625 newNodeNo = newHeaderNoSlices-1; 621 } << 626 } 622 // Stack info for stepping 627 // Stack info for stepping 623 // 628 // 624 fVoxelAxisStack[fVoxelDepth] = newHe 629 fVoxelAxisStack[fVoxelDepth] = newHeaderAxis; 625 fVoxelNoSlicesStack[fVoxelDepth] = n 630 fVoxelNoSlicesStack[fVoxelDepth] = newHeaderNoSlices; 626 fVoxelSliceWidthStack[fVoxelDepth] = 631 fVoxelSliceWidthStack[fVoxelDepth] = newHeaderNodeWidth; 627 fVoxelNodeNoStack[fVoxelDepth] = new 632 fVoxelNodeNoStack[fVoxelDepth] = newNodeNo; 628 fVoxelHeaderStack[fVoxelDepth] = new 633 fVoxelHeaderStack[fVoxelDepth] = newHeader; 629 } 634 } 630 } 635 } 631 fVoxelNode = newVoxelNode; 636 fVoxelNode = newVoxelNode; 632 } 637 } 633 } 638 } 634 return isNewVoxel; 639 return isNewVoxel; 635 } 640 } 636 641 637 // ******************************************* 642 // ******************************************************************** 638 // ComputeSafety 643 // ComputeSafety 639 // 644 // 640 // Calculates the isotropic distance to the ne 645 // Calculates the isotropic distance to the nearest boundary from the 641 // specified point in the local coordinate sys 646 // specified point in the local coordinate system. 642 // The localpoint utilised must be within the 647 // The localpoint utilised must be within the current volume. 643 // ******************************************* 648 // ******************************************************************** 644 // 649 // 645 G4double 650 G4double 646 G4VoxelNavigation::ComputeSafety(const G4Three 651 G4VoxelNavigation::ComputeSafety(const G4ThreeVector& localPoint, 647 const G4Navig 652 const G4NavigationHistory& history, 648 const G4doubl << 653 const G4double ) 649 { 654 { 650 G4VPhysicalVolume *motherPhysical, *samplePh 655 G4VPhysicalVolume *motherPhysical, *samplePhysical; 651 G4LogicalVolume *motherLogical; 656 G4LogicalVolume *motherLogical; 652 G4VSolid *motherSolid; 657 G4VSolid *motherSolid; 653 G4double motherSafety, ourSafety; 658 G4double motherSafety, ourSafety; 654 G4int sampleNo; << 659 G4int localNoDaughters, sampleNo; 655 G4SmartVoxelNode *curVoxelNode; 660 G4SmartVoxelNode *curVoxelNode; 656 G4long curNoVolumes, contentNo; << 661 G4int curNoVolumes, contentNo; 657 G4double voxelSafety; 662 G4double voxelSafety; 658 663 659 motherPhysical = history.GetTopVolume(); 664 motherPhysical = history.GetTopVolume(); 660 motherLogical = motherPhysical->GetLogicalVo 665 motherLogical = motherPhysical->GetLogicalVolume(); 661 motherSolid = motherLogical->GetSolid(); 666 motherSolid = motherLogical->GetSolid(); 662 667 663 if( fBestSafety ) << 664 { << 665 return fpVoxelSafety->ComputeSafety( local << 666 } << 667 << 668 // 668 // 669 // Compute mother safety 669 // Compute mother safety 670 // 670 // 671 671 672 motherSafety = motherSolid->DistanceToOut(lo 672 motherSafety = motherSolid->DistanceToOut(localPoint); 673 ourSafety = motherSafety; // 673 ourSafety = motherSafety; // Working isotropic safety 674 674 675 if( motherSafety == 0.0 ) << 676 { << 677 #ifdef G4DEBUG_NAVIGATION << 678 // Check that point is inside mother volum << 679 EInside insideMother = motherSolid->Insid << 680 << 681 if( insideMother == kOutside ) << 682 { << 683 G4ExceptionDescription message; << 684 message << "Safety method called for loc << 685 << "Location for safety is Outside th << 686 << "The approximate distance to the s << 687 << "(safety from outside) is: " << 688 << motherSolid->DistanceToIn( localPo << 689 message << " Problem occurred with phys << 690 << " Name: " << motherPhysical->GetNa << 691 << " Copy No: " << motherPhysical->Ge << 692 << " Local Point = " << localPoint << 693 message << " Description of solid: " << << 694 << *motherSolid << G4endl; << 695 G4Exception("G4VoxelNavigation::ComputeS << 696 JustWarning, message); << 697 } << 698 << 699 // Following check is NOT for an issue - i << 700 // It is allowed that a solid gives appro << 701 // << 702 if( insideMother == kInside ) // && fVerbo << 703 { << 704 G4ExceptionDescription messageIn; << 705 << 706 messageIn << " Point is Inside, but safe << 707 messageIn << " Inexact safety for volume << 708 << " Solid: Name= " << motherSol << 709 << " Type= " << motherSolid->Ge << 710 messageIn << " Local point= " << localP << 711 messageIn << " Solid parameters: " << G << 712 G4Exception("G4VoxelNavigation::ComputeS << 713 JustWarning, messageIn); << 714 } << 715 #endif << 716 // if( insideMother != kInside ) << 717 return 0.0; << 718 } << 719 << 720 #ifdef G4VERBOSE 675 #ifdef G4VERBOSE 721 if( fCheck ) << 676 if(( fCheck ) && ( fVerbose == 1 )) 722 { 677 { 723 fLogger->ComputeSafetyLog (motherSolid,loc << 678 G4cout << "*** G4VoxelNavigation::ComputeSafety(): ***" << G4endl >> 679 << " Invoked DistanceToOut(p) for mother solid: " >> 680 << motherSolid->GetName() >> 681 << ". Solid replied: " << motherSafety << G4endl >> 682 << " For local point p: " << localPoint >> 683 << ", to be considered as 'mother safety'." << G4endl; 724 } 684 } 725 #endif 685 #endif 726 // 686 // 727 // Compute daughter safeties << 687 // Compute daughter safeties 728 // 688 // 729 // Look only inside the current Voxel only ( << 689 >> 690 localNoDaughters = motherLogical->GetNoDaughters(); >> 691 >> 692 // Look only inside the current Voxel only (in the first version). 730 // 693 // 731 curVoxelNode = fVoxelNode; 694 curVoxelNode = fVoxelNode; 732 curNoVolumes = curVoxelNode->GetNoContained( 695 curNoVolumes = curVoxelNode->GetNoContained(); 733 696 734 for ( contentNo=curNoVolumes-1; contentNo>=0 697 for ( contentNo=curNoVolumes-1; contentNo>=0; contentNo-- ) 735 { 698 { 736 sampleNo = curVoxelNode->GetVolume((G4int) << 699 sampleNo = curVoxelNode->GetVolume(contentNo); 737 samplePhysical = motherLogical->GetDaughte 700 samplePhysical = motherLogical->GetDaughter(sampleNo); 738 701 739 G4AffineTransform sampleTf(samplePhysical- 702 G4AffineTransform sampleTf(samplePhysical->GetRotation(), 740 samplePhysical- 703 samplePhysical->GetTranslation()); 741 sampleTf.Invert(); 704 sampleTf.Invert(); 742 const G4ThreeVector samplePoint = sampleTf << 705 const G4ThreeVector samplePoint = 743 const G4VSolid* sampleSolid= samplePhysica << 706 sampleTf.TransformPoint(localPoint); >> 707 const G4VSolid *sampleSolid = >> 708 samplePhysical->GetLogicalVolume()->GetSolid(); 744 G4double sampleSafety = sampleSolid->Dista 709 G4double sampleSafety = sampleSolid->DistanceToIn(samplePoint); 745 if ( sampleSafety<ourSafety ) 710 if ( sampleSafety<ourSafety ) 746 { 711 { 747 ourSafety = sampleSafety; 712 ourSafety = sampleSafety; 748 } 713 } 749 #ifdef G4VERBOSE 714 #ifdef G4VERBOSE 750 if( fCheck ) << 715 if(( fCheck ) && ( fVerbose == 1 )) 751 { 716 { 752 fLogger->ComputeSafetyLog(sampleSolid, s << 717 G4cout << "*** G4VoxelNavigation::ComputeSafety(): ***" << G4endl 753 sampleSafety, << 718 << " Invoked DistanceToIn(p) for daughter solid: " >> 719 << sampleSolid->GetName() >> 720 << ". Solid replied: " << sampleSafety << G4endl >> 721 << " For local point p: " << samplePoint >> 722 << ", to be considered as 'daughter safety'." << G4endl; 754 } 723 } 755 #endif 724 #endif 756 } 725 } 757 voxelSafety = ComputeVoxelSafety(localPoint) 726 voxelSafety = ComputeVoxelSafety(localPoint); 758 if ( voxelSafety<ourSafety ) 727 if ( voxelSafety<ourSafety ) 759 { 728 { 760 ourSafety = voxelSafety; 729 ourSafety = voxelSafety; 761 } 730 } 762 return ourSafety; 731 return ourSafety; 763 } << 764 << 765 void G4VoxelNavigation::RelocateWithinVolume( << 766 << 767 { << 768 auto motherLogical = motherPhysical->GetLogi << 769 << 770 assert(motherLogical != nullptr); << 771 << 772 if ( auto pVoxelHeader = motherLogical->GetV << 773 VoxelLocate( pVoxelHeader, localPoint ); << 774 } << 775 << 776 // ******************************************* << 777 // SetVerboseLevel << 778 // ******************************************* << 779 // << 780 void G4VoxelNavigation::SetVerboseLevel(G4int << 781 { << 782 if( fLogger != nullptr ) { fLogger->SetVerbo << 783 if( fpVoxelSafety != nullptr) { fpVoxelSafet << 784 } 732 } 785 733