Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/management/src/G4SmartVoxelHeader.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/management/src/G4SmartVoxelHeader.cc (Version 11.3.0) and /geometry/management/src/G4SmartVoxelHeader.cc (Version 5.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
                                                   >>  22 //
                                                   >>  23 //
                                                   >>  24 // $Id: G4SmartVoxelHeader.cc,v 1.21 2003/06/16 16:52:09 gunter Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-05-02-patch-01 $
                                                   >>  26 //
 25 //                                                 27 // 
 26 // class G4SmartVoxelHeader implementation     <<  28 // class G4SmartVoxelHeader
                                                   >>  29 //
                                                   >>  30 // Implementation
 27 //                                                 31 //
 28 // Define G4GEOMETRY_VOXELDEBUG for debugging      32 // Define G4GEOMETRY_VOXELDEBUG for debugging information on G4cout
 29 //                                                 33 //
                                                   >>  34 // History:
 30 // 29.04.02 Use 3D voxelisation for non consum     35 // 29.04.02 Use 3D voxelisation for non consuming replication - G.C.
 31 // 18.04.01 Migrated to STL vector - G.C.          36 // 18.04.01 Migrated to STL vector - G.C.
 32 // 12.02.99 Introduction of new quality/smartl <<  37 // 12.02.99 Introduction of new quality/smartless: max for (slices/candid) S.G.
 33 // 11.02.99 Voxels at lower levels are now bui <<  38 // 11.02.99 Voxels at lower levels are now built for collapsed slices      S.G.
 34 // 21.07.95 Full implementation, supporting no <<  39 // 21.07.95 Full implementation, supporting non divided physical volumes
 35 // 14.07.95 Initial version - stubb definition <<  40 // 14.07.95 Initial version - stubb definitions only
 36 // ------------------------------------------- <<  41 // ***************************************************************************
 37                                                    42 
 38 #include "G4SmartVoxelHeader.hh"                   43 #include "G4SmartVoxelHeader.hh"
 39                                                    44 
 40 #include "G4ios.hh"                            << 
 41                                                << 
 42 #include "G4LogicalVolume.hh"                      45 #include "G4LogicalVolume.hh"
 43 #include "G4VPhysicalVolume.hh"                    46 #include "G4VPhysicalVolume.hh"
 44 #include "G4VoxelLimits.hh"                        47 #include "G4VoxelLimits.hh"
 45                                                    48 
 46 #include "voxeldefs.hh"                        << 
 47 #include "G4AffineTransform.hh"                    49 #include "G4AffineTransform.hh"
 48 #include "G4VSolid.hh"                             50 #include "G4VSolid.hh"
 49 #include "G4VPVParameterisation.hh"                51 #include "G4VPVParameterisation.hh"
 50                                                    52 
 51 // *******************************************     53 // ***************************************************************************
 52 // Constructor for topmost header, to begin vo     54 // Constructor for topmost header, to begin voxel construction at a
 53 // given logical volume.                           55 // given logical volume.
 54 // Constructs target List of volumes, calls "B     56 // Constructs target List of volumes, calls "Build and refine" constructor.
 55 // Assumes all daughters represent single volu     57 // Assumes all daughters represent single volumes (ie. no divisions
 56 // or parametric)                                  58 // or parametric)
 57 // *******************************************     59 // ***************************************************************************
 58 //                                                 60 //
 59 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic     61 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 60                                        G4int p     62                                        G4int pSlice)
 61   : fminEquivalent(pSlice),                        63   : fminEquivalent(pSlice),
 62     fmaxEquivalent(pSlice),                        64     fmaxEquivalent(pSlice),
 63     fparamAxis(kUndefined)                         65     fparamAxis(kUndefined)
 64 {                                                  66 {
 65   std::size_t nDaughters = pVolume->GetNoDaugh <<  67   G4int nDaughters = pVolume->GetNoDaughters();
                                                   >>  68   G4VoxelLimits limits;   // Create `unlimited' limits object
 66                                                    69 
 67   // Determine whether daughter is replicated      70   // Determine whether daughter is replicated
 68   //                                               71   //
 69   if ((nDaughters!=1) || (!pVolume->GetDaughte     72   if ((nDaughters!=1) || (!pVolume->GetDaughter(0)->IsReplicated()))
 70   {                                                73   {
 71     // Daughter not replicated => conventional     74     // Daughter not replicated => conventional voxel Build
 72     // where each daughters extents are comput     75     // where each daughters extents are computed
 73     //                                             76     //
 74     BuildVoxels(pVolume);                          77     BuildVoxels(pVolume);
 75   }                                                78   }
 76   else                                             79   else
 77   {                                                80   {
 78     // Single replicated daughter                  81     // Single replicated daughter
 79     //                                             82     //
 80     BuildReplicaVoxels(pVolume);                   83     BuildReplicaVoxels(pVolume);
 81   }                                                84   }
 82 }                                                  85 }
 83                                                    86 
 84 // *******************************************     87 // ***************************************************************************
 85 // Protected constructor:                          88 // Protected constructor:
 86 // builds and refines voxels between specified     89 // builds and refines voxels between specified limits, considering only
 87 // the physical volumes numbered `pCandidates'     90 // the physical volumes numbered `pCandidates'. `pSlice' is used to set max
 88 // and min equivalent slice nos for the header     91 // and min equivalent slice nos for the header - they apply to the level
 89 // of the header, not its nodes.                   92 // of the header, not its nodes.
 90 // *******************************************     93 // ***************************************************************************
 91 //                                                 94 //
 92 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic     95 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 93                                  const G4Voxel     96                                  const G4VoxelLimits& pLimits,
 94                                  const G4Volum     97                                  const G4VolumeNosVector* pCandidates,
 95                                        G4int p     98                                        G4int pSlice)
 96   : fminEquivalent(pSlice),                        99   : fminEquivalent(pSlice),
 97     fmaxEquivalent(pSlice),                       100     fmaxEquivalent(pSlice),
 98     fparamAxis(kUndefined)                        101     fparamAxis(kUndefined)
 99 {                                                 102 {
100 #ifdef G4GEOMETRY_VOXELDEBUG                      103 #ifdef G4GEOMETRY_VOXELDEBUG
101   G4cout << "**** G4SmartVoxelHeader::G4SmartV    104   G4cout << "**** G4SmartVoxelHeader::G4SmartVoxelHeader" << G4endl
102          << "     Limits " << pLimits << G4end    105          << "     Limits " << pLimits << G4endl
103          << "     Candidate #s = " ;              106          << "     Candidate #s = " ;
104   for (auto i=0; i<pCandidates->size(); ++i)   << 107   for (size_t i=0;i<pCandidates->size();i++)
105   {                                               108   {
106     G4cout << (*pCandidates)[i] << " ";           109     G4cout << (*pCandidates)[i] << " ";
107   }                                               110   }
108   G4cout << G4endl;                               111   G4cout << G4endl;
109 #endif                                            112 #endif   
110                                                   113 
111   BuildVoxelsWithinLimits(pVolume,pLimits,pCan    114   BuildVoxelsWithinLimits(pVolume,pLimits,pCandidates);
112 }                                                 115 }
113                                                   116 
114 // *******************************************    117 // ***************************************************************************
115 // Destructor:                                    118 // Destructor:
116 // deletes all proxies and underlying objects.    119 // deletes all proxies and underlying objects.
117 // *******************************************    120 // ***************************************************************************
118 //                                                121 //
119 G4SmartVoxelHeader::~G4SmartVoxelHeader()         122 G4SmartVoxelHeader::~G4SmartVoxelHeader()
120 {                                                 123 {
121   // Manually destroy underlying nodes/headers    124   // Manually destroy underlying nodes/headers
122   // Delete collected headers and nodes once o    125   // Delete collected headers and nodes once only
123   //                                              126   //
124   std::size_t node, proxy, maxNode=fslices.siz << 127   G4int node, proxy, maxNode=fslices.size();
125   G4SmartVoxelProxy* lastProxy = nullptr;      << 128   G4SmartVoxelProxy *lastProxy=0;
126   G4SmartVoxelNode *dyingNode, *lastNode=nullp << 129   G4SmartVoxelNode *dyingNode, *lastNode=0;
127   G4SmartVoxelHeader *dyingHeader, *lastHeader << 130   G4SmartVoxelHeader *dyingHeader, *lastHeader=0;
128                                                   131 
129   for (node=0; node<maxNode; ++node)           << 132   for (node=0; node<maxNode; node++)
130   {                                               133   {
131     if (fslices[node]->IsHeader())                134     if (fslices[node]->IsHeader())
132     {                                             135     {
133       dyingHeader = fslices[node]->GetHeader()    136       dyingHeader = fslices[node]->GetHeader();
134       if (lastHeader != dyingHeader)           << 137       if (lastHeader!=dyingHeader)
135       {                                           138       {
136         lastHeader = dyingHeader;                 139         lastHeader = dyingHeader;
137         lastNode = nullptr;                    << 140         lastNode = 0;
138         delete dyingHeader;                       141         delete dyingHeader;
139       }                                           142       }
140     }                                             143     }
141     else                                       << 144       else
142     {                                             145     {
143       dyingNode = fslices[node]->GetNode();       146       dyingNode = fslices[node]->GetNode();
144       if (dyingNode != lastNode)               << 147       if (dyingNode!=lastNode)
145       {                                           148       {
146         lastNode = dyingNode;                  << 149         lastNode=dyingNode;
147         lastHeader = nullptr;                  << 150         lastHeader=0;
148         delete dyingNode;                         151         delete dyingNode;
149       }                                           152       }
150     }                                             153     }
151   }                                               154   }
152   // Delete proxies                               155   // Delete proxies
153   //                                              156   //
154   for (proxy=0; proxy<maxNode; ++proxy)        << 157   for (proxy=0; proxy<maxNode; proxy++)
155   {                                               158   {
156     if (fslices[proxy] != lastProxy)           << 159     if (fslices[proxy]!=lastProxy)
157     {                                             160     {
158       lastProxy = fslices[proxy];                 161       lastProxy = fslices[proxy];
159       delete lastProxy;                           162       delete lastProxy;
160     }                                             163     }
161   }                                               164   }
162   // Don't need to clear slices                   165   // Don't need to clear slices
163   // fslices.clear();                             166   // fslices.clear();
164 }                                                 167 }
165                                                   168 
166 // *******************************************    169 // ***************************************************************************
167 // Equality operator: returns true if contents    170 // Equality operator: returns true if contents are equivalent.
168 // Implies a deep search through contained nod    171 // Implies a deep search through contained nodes/header.
169 // Compares headers' axes,sizes,extents. Retur    172 // Compares headers' axes,sizes,extents. Returns false if different.
170 // For each contained proxy, determines whethe    173 // For each contained proxy, determines whether node/header, compares and
171 // returns if different. Compares and returns     174 // returns if different. Compares and returns if proxied nodes/headers
172 // are different.                                 175 // are different.
173 // *******************************************    176 // ***************************************************************************
174 //                                                177 //
175 G4bool G4SmartVoxelHeader::operator == (const     178 G4bool G4SmartVoxelHeader::operator == (const G4SmartVoxelHeader& pHead) const
176 {                                                 179 {
177   if ( (GetAxis()      == pHead.GetAxis())        180   if ( (GetAxis()      == pHead.GetAxis())
178     && (GetNoSlices()  == pHead.GetNoSlices())    181     && (GetNoSlices()  == pHead.GetNoSlices())
179     && (GetMinExtent() == pHead.GetMinExtent()    182     && (GetMinExtent() == pHead.GetMinExtent())
180     && (GetMaxExtent() == pHead.GetMaxExtent()    183     && (GetMaxExtent() == pHead.GetMaxExtent()) )
181   {                                               184   {
182     std::size_t node, maxNode;                 << 185     G4int node, maxNode;
183     G4SmartVoxelProxy *leftProxy, *rightProxy;    186     G4SmartVoxelProxy *leftProxy, *rightProxy;
184     G4SmartVoxelHeader *leftHeader, *rightHead    187     G4SmartVoxelHeader *leftHeader, *rightHeader;
185     G4SmartVoxelNode *leftNode, *rightNode;       188     G4SmartVoxelNode *leftNode, *rightNode;
186                                                   189 
187     maxNode = GetNoSlices();                   << 190     maxNode=GetNoSlices();
188     for (node=0; node<maxNode; ++node)         << 191     for (node=0; node<maxNode; node++)
189     {                                             192     {
190       leftProxy  = GetSlice(node);                193       leftProxy  = GetSlice(node);
191       rightProxy = pHead.GetSlice(node);          194       rightProxy = pHead.GetSlice(node);
192       if (leftProxy->IsHeader())                  195       if (leftProxy->IsHeader())
193       {                                           196       {
194         if (rightProxy->IsNode())                 197         if (rightProxy->IsNode())
195         {                                         198         {
196           return false;                           199           return false;
197         }                                         200         }
198         else                                      201         else
199         {                                         202         {
200           leftHeader  = leftProxy->GetHeader()    203           leftHeader  = leftProxy->GetHeader();
201           rightHeader = rightProxy->GetHeader(    204           rightHeader = rightProxy->GetHeader();
202           if (!(*leftHeader == *rightHeader))  << 205           if (!(*leftHeader==*rightHeader))
203           {                                       206           {
204             return false;                         207             return false;
205           }                                       208           }
206         }                                         209         }
207       }                                           210       }
208       else                                        211       else
209       {                                           212       {
210         if (rightProxy->IsHeader())               213         if (rightProxy->IsHeader())
211         {                                         214         {
212           return false;                           215           return false;
213         }                                         216         }
214         else                                      217         else
215         {                                         218         {
216           leftNode  = leftProxy->GetNode();       219           leftNode  = leftProxy->GetNode();
217           rightNode = rightProxy->GetNode();      220           rightNode = rightProxy->GetNode();
218           if (!(*leftNode == *rightNode))      << 221           if (!(*leftNode==*rightNode))
219           {                                       222           {
220             return false;                         223             return false;
221           }                                       224           }
222         }                                         225         }
223       }                                           226       }
224     }                                             227     }
225     return true;                                  228     return true;
226   }                                               229   }
227   else                                            230   else
228   {                                               231   {
229     return false;                                 232     return false;
230   }                                               233   }
231 }                                                 234 }
232                                                   235 
233 // *******************************************    236 // ***************************************************************************
234 // Builds voxels for daughters specified volum    237 // Builds voxels for daughters specified volume, in NON-REPLICATED case
235 // o Create List of target volume nos (all dau    238 // o Create List of target volume nos (all daughters; 0->noDaughters-1)
236 // o BuildWithinLimits does Build & also deter    239 // o BuildWithinLimits does Build & also determines mother dimensions.
237 // *******************************************    240 // ***************************************************************************
238 //                                                241 //
239 void G4SmartVoxelHeader::BuildVoxels(G4Logical    242 void G4SmartVoxelHeader::BuildVoxels(G4LogicalVolume* pVolume)
240 {                                                 243 {
241   G4VoxelLimits limits;   // Create `unlimited    244   G4VoxelLimits limits;   // Create `unlimited' limits object
242   std::size_t nDaughters = pVolume->GetNoDaugh << 245   G4int nDaughters = pVolume->GetNoDaughters();
243                                                   246 
244   G4VolumeNosVector targetList;                   247   G4VolumeNosVector targetList;
245   targetList.reserve(nDaughters);                 248   targetList.reserve(nDaughters);
246   for (std::size_t i=0; i<nDaughters; ++i)     << 249   for (G4int i=0; i<nDaughters; i++)
247   {                                               250   {
248     targetList.push_back((G4int)i);            << 251     targetList.push_back(i);
249   }                                               252   }
250   BuildVoxelsWithinLimits(pVolume, limits, &ta    253   BuildVoxelsWithinLimits(pVolume, limits, &targetList);
251 }                                                 254 }
252                                                   255 
253 // *******************************************    256 // ***************************************************************************
254 // Builds voxels for specified volume containi    257 // Builds voxels for specified volume containing a single replicated volume.
255 // If axis is not specified (i.e. "kUndefined"    258 // If axis is not specified (i.e. "kUndefined"), 3D voxelisation is applied,
256 // and the best axis is determined according t    259 // and the best axis is determined according to heuristics as for placements.
257 // *******************************************    260 // ***************************************************************************
258 //                                                261 //
259 void G4SmartVoxelHeader::BuildReplicaVoxels(G4    262 void G4SmartVoxelHeader::BuildReplicaVoxels(G4LogicalVolume* pVolume)
260 {                                                 263 {
261   G4VPhysicalVolume* pDaughter = nullptr;      << 264   G4VPhysicalVolume *pDaughter=0;
262                                                   265 
263   // Replication data                             266   // Replication data
264   //                                              267   //
265   EAxis axis;                                     268   EAxis axis;
266   G4int nReplicas;                                269   G4int nReplicas;
267   G4double width,offset;                          270   G4double width,offset;
268   G4bool consuming;                               271   G4bool consuming;
269                                                   272 
270   // Consistency check: pVolume should contain    273   // Consistency check: pVolume should contain single replicated volume
271   //                                              274   //
272   if ( (pVolume->GetNoDaughters()==1)             275   if ( (pVolume->GetNoDaughters()==1)
273     && (pVolume->GetDaughter(0)->IsReplicated( << 276     && (pVolume->GetDaughter(0)->IsReplicated()==true) )
274   {                                               277   {
275     // Obtain replication data                    278     // Obtain replication data
276     //                                            279     //
277     pDaughter = pVolume->GetDaughter(0);       << 280     pDaughter=pVolume->GetDaughter(0);
278     pDaughter->GetReplicationData(axis,nReplic    281     pDaughter->GetReplicationData(axis,nReplicas,width,offset,consuming);
279     fparamAxis = axis;                            282     fparamAxis = axis;
280     if ( !consuming )                          << 283     if ( consuming==false )
281     {                                             284     {
282       G4VoxelLimits limits;   // Create `unlim    285       G4VoxelLimits limits;   // Create `unlimited' limits object
283       G4VolumeNosVector targetList;               286       G4VolumeNosVector targetList;
284       targetList.reserve(nReplicas);              287       targetList.reserve(nReplicas);
285       for (auto i=0; i<nReplicas; ++i)         << 288       for (G4int i=0; i<nReplicas; i++)
286       {                                           289       {
287         targetList.push_back(i);                  290         targetList.push_back(i);
288       }                                           291       }
289       if (axis != kUndefined)                     292       if (axis != kUndefined)
290       {                                           293       {
291         // Apply voxelisation along the specif    294         // Apply voxelisation along the specified axis only
292                                                   295 
293         G4ProxyVector* pSlices=BuildNodes(pVol    296         G4ProxyVector* pSlices=BuildNodes(pVolume,limits,&targetList,axis);
294         faxis = axis;                             297         faxis = axis;
295         fslices = *pSlices;                       298         fslices = *pSlices;
296         delete pSlices;                           299         delete pSlices;
297                                                   300 
298         // Calculate and set min and max exten    301         // Calculate and set min and max extents given our axis
299         //                                        302         //
300         const G4AffineTransform origin;           303         const G4AffineTransform origin;
301         pVolume->GetSolid()->CalculateExtent(f    304         pVolume->GetSolid()->CalculateExtent(faxis, limits, origin,
302                                              f    305                                              fminExtent, fmaxExtent);
303         // Calculate equivalent nos               306         // Calculate equivalent nos
304         //                                        307         //
305         BuildEquivalentSliceNos();                308         BuildEquivalentSliceNos();
306         CollectEquivalentNodes();   // Collect    309         CollectEquivalentNodes();   // Collect common nodes
307       }                                           310       }
308       else                                        311       else
309       {                                           312       {
310         // Build voxels similarly as for norma    313         // Build voxels similarly as for normal placements considering
311         // all three cartesian axes.              314         // all three cartesian axes.
312                                                   315 
313         BuildVoxelsWithinLimits(pVolume, limit    316         BuildVoxelsWithinLimits(pVolume, limits, &targetList);
314       }                                           317       }
315     }                                             318     }
316     else                                          319     else
317     {                                             320     {
318       // Replication is consuming -> Build vox    321       // Replication is consuming -> Build voxels directly
319       //                                          322       //
320       // o Cartesian axes - range is -width*nR    323       // o Cartesian axes - range is -width*nREplicas/2 to +width*nREplicas/2
321       //                    nReplicas replicat    324       //                    nReplicas replications result
322       // o Radial axis (rho) = range is 0 to w    325       // o Radial axis (rho) = range is 0 to width*nReplicas
323       //                    nReplicas replicat    326       //                    nReplicas replications result
324       // o Phi axi       - range is offset to     327       // o Phi axi       - range is offset to offset+width*nReplicas radians
325       //                                          328       //
326       // Equivalent slices no computation & co    329       // Equivalent slices no computation & collection not required - all
327       // slices are different                     330       // slices are different
328       //                                          331       //
329       switch (axis)                               332       switch (axis)
330       {                                           333       {
331         case kXAxis:                              334         case kXAxis:
332         case kYAxis:                              335         case kYAxis:
333         case kZAxis:                              336         case kZAxis:
334           fminExtent = -width*nReplicas*0.5;      337           fminExtent = -width*nReplicas*0.5;
335           fmaxExtent =  width*nReplicas*0.5;      338           fmaxExtent =  width*nReplicas*0.5;
336           break;                                  339           break;
337         case kRho:                                340         case kRho:
338           fminExtent = offset;                    341           fminExtent = offset;
339           fmaxExtent = width*nReplicas+offset;    342           fmaxExtent = width*nReplicas+offset;
340           break;                                  343           break;
341         case kPhi:                                344         case kPhi:
342           fminExtent = offset;                    345           fminExtent = offset;
343           fmaxExtent = offset+width*nReplicas;    346           fmaxExtent = offset+width*nReplicas;
344           break;                                  347           break;
345         default:                                  348         default:
346           G4Exception("G4SmartVoxelHeader::Bui << 349           G4cout << "ERROR - Illegal axis !" << G4endl;
347                       "GeomMgt0002", FatalExce << 350           G4Exception("ERROR - G4SmartVoxelHeader::BuildReplicaVoxels");
348           break;                                  351           break;
349       }                                           352       }  
350       faxis = axis;   // Set axis                 353       faxis = axis;   // Set axis
351       BuildConsumedNodes(nReplicas);              354       BuildConsumedNodes(nReplicas);
352       if ( (axis==kXAxis) || (axis==kYAxis) ||    355       if ( (axis==kXAxis) || (axis==kYAxis) || (axis==kZAxis) )
353       {                                           356       {
354         // Sanity check on extent                 357         // Sanity check on extent
355         //                                        358         //
356         G4double emin = kInfinity, emax = -kIn << 359         G4double min, max;
357         G4VoxelLimits limits;                     360         G4VoxelLimits limits;
358         G4AffineTransform origin;                 361         G4AffineTransform origin;
359         pVolume->GetSolid()->CalculateExtent(a << 362         pVolume->GetSolid()->CalculateExtent(axis, limits, origin, min, max);
360         if ( (std::fabs((emin-fminExtent)/fmin << 363         if ( (fabs((min-fminExtent)/fminExtent) +
361               std::fabs((emax-fmaxExtent)/fmax << 364               fabs((max-fmaxExtent)/fmaxExtent)) > 0.05)
362         {                                         365         {
363           std::ostringstream message;          << 366           G4cout << "ERROR - Replicated geometry, logical volume: "
364           message << "Sanity check: wrong soli << 367                  << pVolume->GetName() << G4endl;
365                   << "        Replicated geome << 368           G4Exception("ERROR - G4SmartVoxelHeader::BuildReplicaVoxels");
366                   << pVolume->GetName();       << 
367           G4Exception("G4SmartVoxelHeader::Bui << 
368                       "GeomMgt0002", FatalExce << 
369         }                                         369         }
370       }                                           370       }
371     }                                             371     }
372   }                                               372   }
373   else                                            373   else
374   {                                               374   {
375     G4Exception("G4SmartVoxelHeader::BuildRepl << 375     G4cout << "ERROR - There must be a single replicated volume !" << G4endl;
376                 FatalException, "Only one repl << 376     G4Exception("ERROR - G4SmartVoxelHeader::BuildReplicaVoxels");
377   }                                               377   }
378 }                                                 378 }
379                                                   379 
380 // *******************************************    380 // ***************************************************************************
381 // Builds `consumed nodes': nReplicas nodes ea    381 // Builds `consumed nodes': nReplicas nodes each containing one replication,
382 // numbered in sequence 0->nReplicas-1            382 // numbered in sequence 0->nReplicas-1
383 // o Modifies fslices `in place'                  383 // o Modifies fslices `in place'
384 // o faxis,fminExtent,fmaxExtent NOT modified.    384 // o faxis,fminExtent,fmaxExtent NOT modified.
385 // *******************************************    385 // ***************************************************************************
386 //                                                386 //
387 void G4SmartVoxelHeader::BuildConsumedNodes(G4    387 void G4SmartVoxelHeader::BuildConsumedNodes(G4int nReplicas)
388 {                                                 388 {
389   G4int nNode, nVol;                              389   G4int nNode, nVol;
390   G4SmartVoxelNode* pNode;                     << 390   G4SmartVoxelNode *pNode;
391   G4SmartVoxelProxy* pProxyNode;               << 391   G4SmartVoxelProxy *pProxyNode;
392                                                   392 
393   // Create and fill nodes in temporary G4Node    393   // Create and fill nodes in temporary G4NodeVector (on stack)
394   //                                              394   //
395   G4NodeVector nodeList;                          395   G4NodeVector nodeList;
396   nodeList.reserve(nReplicas);                    396   nodeList.reserve(nReplicas);
397   for (nNode=0; nNode<nReplicas; ++nNode)      << 397   for (nNode=0; nNode<nReplicas; nNode++)
398   {                                               398   {
399     pNode = new G4SmartVoxelNode(nNode);       << 399     pNode=new G4SmartVoxelNode(nNode);
400     if (pNode == nullptr)                      << 400     if (!pNode)
401     {                                             401     {
402       G4Exception("G4SmartVoxelHeader::BuildCo << 402       G4cout << "ERROR - Node allocation failed." << G4endl;
403                   FatalException, "Node alloca << 403       G4Exception("ERROR - G4SmartVoxelHeader::BuildConsumedNodes");
404     }                                             404     }
405     nodeList.push_back(pNode);                    405     nodeList.push_back(pNode);
406   }                                               406   }
407   for (nVol=0; nVol<nReplicas; ++nVol)         << 407   for (nVol=0; nVol<nReplicas; nVol++)
408   {                                               408   {
409     nodeList[nVol]->Insert(nVol);   // Insert     409     nodeList[nVol]->Insert(nVol);   // Insert replication of number
410   }                                 // identic    410   }                                 // identical to voxel number
411                                                   411 
412   // Create & fill proxy List `in place' by mo    412   // Create & fill proxy List `in place' by modifying instance data fslices
413   //                                              413   //
414   fslices.clear();                                414   fslices.clear();
415   for (nNode=0; nNode<nReplicas; ++nNode)      << 415   for (nNode=0; nNode<nReplicas; nNode++)
416   {                                               416   {
417     pProxyNode = new G4SmartVoxelProxy(nodeLis    417     pProxyNode = new G4SmartVoxelProxy(nodeList[nNode]);
418     if (pProxyNode == nullptr)                 << 418     if (!pProxyNode)
419     {                                             419     {
420       G4Exception("G4SmartVoxelHeader::BuildCo << 420       G4cout << "ERROR - Proxy Node allocation failed." << G4endl;
421                   FatalException, "Proxy node  << 421       G4Exception("ERROR - G4SmartVoxelHeader::BuildConsumedNodes");
422     }                                             422     }
423     fslices.push_back(pProxyNode);                423     fslices.push_back(pProxyNode);
424   }                                               424   }
425 }                                                 425 }
426                                                   426 
427 // *******************************************    427 // ***************************************************************************
428 // Builds and refines voxels between specified    428 // Builds and refines voxels between specified limits, considering only
429 // the physical volumes numbered `pCandidates'    429 // the physical volumes numbered `pCandidates'.
430 // o Chooses axis                                 430 // o Chooses axis
431 // o Determines min and max extents (of mother    431 // o Determines min and max extents (of mother solid) within limits.
432 // *******************************************    432 // ***************************************************************************
433 //                                                433 //
434 void                                              434 void
435 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4    435 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4LogicalVolume* pVolume,
436                                             G4    436                                             G4VoxelLimits pLimits,
437                                       const G4    437                                       const G4VolumeNosVector* pCandidates)
438 {                                                 438 {
439   // Choose best axis for slicing by:             439   // Choose best axis for slicing by:
440   // 1. Trying all unlimited cartesian axes       440   // 1. Trying all unlimited cartesian axes
441   // 2. Select axis which gives greatest no sl    441   // 2. Select axis which gives greatest no slices
442                                                   442 
443   G4ProxyVector *pGoodSlices=nullptr, *pTestSl << 443   G4ProxyVector *pGoodSlices=0, *pTestSlices, *tmpSlices;
444   G4double goodSliceScore=kInfinity, testSlice    444   G4double goodSliceScore=kInfinity, testSliceScore;
445   EAxis goodSliceAxis = kXAxis;                   445   EAxis goodSliceAxis = kXAxis;
446   std::size_t node, maxNode;                   << 446   EAxis testAxis      = kXAxis;
                                                   >> 447   G4int node, maxNode, iaxis;
447   G4VoxelLimits noLimits;                         448   G4VoxelLimits noLimits;
448                                                   449 
449   // Try all non-limited cartesian axes           450   // Try all non-limited cartesian axes
450   //                                              451   //
451   for ( EAxis testAxis : { kXAxis, kYAxis, kZA << 452   for (iaxis=0; iaxis<3; iaxis++)
452   {                                               453   {
                                                   >> 454     switch(iaxis)
                                                   >> 455     {
                                                   >> 456       case 0:
                                                   >> 457         testAxis = kXAxis;
                                                   >> 458         break;
                                                   >> 459       case 1:
                                                   >> 460         testAxis = kYAxis;
                                                   >> 461         break;
                                                   >> 462       case 2:
                                                   >> 463         testAxis = kZAxis;
                                                   >> 464         break;
                                                   >> 465     }
453     if (!pLimits.IsLimited(testAxis))             466     if (!pLimits.IsLimited(testAxis))
454     {                                             467     {
455       pTestSlices = BuildNodes(pVolume,pLimits    468       pTestSlices = BuildNodes(pVolume,pLimits,pCandidates,testAxis);
456       testSliceScore = CalculateQuality(pTestS    469       testSliceScore = CalculateQuality(pTestSlices);
457       if ( (pGoodSlices == nullptr) || (testSl << 470       if ( (!pGoodSlices) || (testSliceScore<goodSliceScore) )
458       {                                           471       {
459         goodSliceAxis  = testAxis;                472         goodSliceAxis  = testAxis;
460         goodSliceScore = testSliceScore;          473         goodSliceScore = testSliceScore;
461         std::swap( pGoodSlices, pTestSlices);  << 474         tmpSlices      = pGoodSlices;
                                                   >> 475         pGoodSlices    = pTestSlices;
                                                   >> 476         pTestSlices    = tmpSlices;
462       }                                           477       }
463       if (pTestSlices != nullptr)              << 478       if (pTestSlices)
464       {                                           479       {
465         // Destroy pTestSlices and all its con    480         // Destroy pTestSlices and all its contents
466         //                                        481         //
467         maxNode=pTestSlices->size();              482         maxNode=pTestSlices->size();
468         for (node=0; node<maxNode; ++node)     << 483         for (node=0; node<maxNode; node++)
469         {                                         484         {
470           delete (*pTestSlices)[node]->GetNode    485           delete (*pTestSlices)[node]->GetNode();
471         }                                         486         }
472         G4SmartVoxelProxy* tmpProx;               487         G4SmartVoxelProxy* tmpProx;
473         while (!pTestSlices->empty())  // Loop << 488         while (pTestSlices->size()>0)
474         {                                         489         {
475           tmpProx = pTestSlices->back();          490           tmpProx = pTestSlices->back();
476           pTestSlices->pop_back();                491           pTestSlices->pop_back();
477           for (auto i=pTestSlices->cbegin(); i << 492           for (G4ProxyVector::iterator i=pTestSlices->begin();
                                                   >> 493                                        i!=pTestSlices->end(); i++)
478           {                                       494           {
479             if (*i==tmpProx)                      495             if (*i==tmpProx)
480             {                                     496             {
481               i = pTestSlices->erase(i);       << 497               pTestSlices->erase(i); i--;
482             }                                  << 
483             else                               << 
484             {                                  << 
485               ++i;                             << 
486             }                                     498             }
487           }                                       499           }
488           delete tmpProx;                      << 500           if ( tmpProx ) { delete tmpProx; }
489         }                                      << 501         } 
490         delete pTestSlices;                       502         delete pTestSlices;
491       }                                           503       }
492     }                                             504     }
493   }                                               505   }
494   // Check for error case.. when limits alread    506   // Check for error case.. when limits already 3d,
495   // so cannot select a new axis                  507   // so cannot select a new axis
496   //                                              508   //
497   if (pGoodSlices == nullptr)                  << 509   if (!pGoodSlices)
498   {                                               510   {
499     G4Exception("G4SmartVoxelHeader::BuildVoxe << 511     G4cout << "ERROR - Illegal limits: already 3 dimensions of limits !" << G4endl;
500                 "GeomMgt0002", FatalException, << 512     G4Exception("ERROR - G4SmartVoxelHeader::BuildVoxelsWithinLimits");
501                 "Cannot select more than 3 axi << 
502     return;                                    << 
503   }                                               513   }
504                                                   514 
505   //                                              515   // 
506   // We have selected pGoodSlices, with a scor    516   // We have selected pGoodSlices, with a score testSliceScore
507   //                                              517   //
508                                                   518 
509   // Store chosen axis, slice ptr                 519   // Store chosen axis, slice ptr
510   //                                              520   //
511   fslices =* pGoodSlices; // Set slice informa << 521   fslices=*pGoodSlices; // Set slice information, copy ptrs in collection
512   delete pGoodSlices;     // Destroy slices ve << 522   delete pGoodSlices;   // Destroy slices vector, but not contained
513                           // proxies or nodes  << 523                         // proxies or nodes
514   faxis = goodSliceAxis;                       << 524   faxis=goodSliceAxis;
515                                                   525 
516 #ifdef G4GEOMETRY_VOXELDEBUG                      526 #ifdef G4GEOMETRY_VOXELDEBUG
517   G4cout << G4endl << "     Volume = " << pVol << 527   G4cout << G4endl << "     Selected axis = " << faxis << G4endl;
518          << G4endl << "     Selected axis = "  << 528   for (size_t islice=0; islice<fslices.size(); islice++)
519   for (auto islice=0; islice<fslices.size(); + << 
520   {                                               529   {
521     G4cout << "     Node #" << islice << " = {    530     G4cout << "     Node #" << islice << " = {";
522     for (auto j=0; j<fslices[islice]->GetNode( << 531     for (G4int j=0; j<fslices[islice]->GetNode()->GetNoContained(); j++)
523     {                                             532     {
524       G4cout << " " << fslices[islice]->GetNod    533       G4cout << " " << fslices[islice]->GetNode()->GetVolume(j);
525     }                                             534     }
526     G4cout << " }" << G4endl;                     535     G4cout << " }" << G4endl;
527   }                                               536   }
528   G4cout << G4endl;                               537   G4cout << G4endl;
529 #endif                                            538 #endif
530                                                   539 
531   // Calculate and set min and max extents giv    540   // Calculate and set min and max extents given our axis
532   //                                              541   //
533   G4VSolid* outerSolid = pVolume->GetSolid();     542   G4VSolid* outerSolid = pVolume->GetSolid();
534   const G4AffineTransform origin;                 543   const G4AffineTransform origin;
535   if(!outerSolid->CalculateExtent(faxis,pLimit    544   if(!outerSolid->CalculateExtent(faxis,pLimits,origin,fminExtent,fmaxExtent))
536   {                                               545   {
537     outerSolid->CalculateExtent(faxis,noLimits    546     outerSolid->CalculateExtent(faxis,noLimits,origin,fminExtent,fmaxExtent);
538   }                                               547   }
539                                                   548 
540   // Calculate equivalent nos                     549   // Calculate equivalent nos
541   //                                              550   //
542   BuildEquivalentSliceNos();                      551   BuildEquivalentSliceNos();
543   CollectEquivalentNodes();      // Collect co << 552   CollectEquivalentNodes();     // Collect common nodes
544   RefineNodes(pVolume, pLimits); // Refine nod << 553   RefineNodes(pVolume,pLimits); // Refine nodes creating headers
545                                                   554 
546   // No common headers can exist because colla    555   // No common headers can exist because collapsed by construction
547 }                                                 556 }
548                                                   557 
549 // *******************************************    558 // ***************************************************************************
550 // Calculates and stores the minimum and maxim    559 // Calculates and stores the minimum and maximum equivalent neighbour
551 // values for all slices at our level.            560 // values for all slices at our level.
552 //                                                561 //
553 // Precondition: all slices are nodes.            562 // Precondition: all slices are nodes.
554 // For each potential start of a group of equi    563 // For each potential start of a group of equivalent nodes:
555 // o searches forwards in fslices to find grou    564 // o searches forwards in fslices to find group end
556 // o loops from start to end setting start and    565 // o loops from start to end setting start and end slices.
557 // *******************************************    566 // ***************************************************************************
558 //                                                567 //
559 void G4SmartVoxelHeader::BuildEquivalentSliceN    568 void G4SmartVoxelHeader::BuildEquivalentSliceNos()
560 {                                                 569 {
561   std::size_t sliceNo, minNo, maxNo, equivNo;  << 570   G4int sliceNo, minNo, maxNo, equivNo;
562   std::size_t maxNode = fslices.size();        << 571   G4int maxNode = fslices.size();
563   G4SmartVoxelNode *startNode, *sampleNode;       572   G4SmartVoxelNode *startNode, *sampleNode;
564   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 573   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
565   {                                               574   {
566     minNo = sliceNo;                              575     minNo = sliceNo;
567                                                   576 
568     // Get first node (see preconditions - wil    577     // Get first node (see preconditions - will throw exception if a header)
569     //                                            578     //
570     startNode = fslices[minNo]->GetNode();        579     startNode = fslices[minNo]->GetNode();
571                                                   580 
572     // Find max equivalent                        581     // Find max equivalent
573     //                                            582     //
574     for (equivNo=minNo+1; equivNo<maxNode; ++e << 583     for (equivNo=minNo+1; equivNo<maxNode; equivNo++)
575     {                                             584     {
576       sampleNode = fslices[equivNo]->GetNode()    585       sampleNode = fslices[equivNo]->GetNode();
577       if (!((*startNode) == (*sampleNode))) {     586       if (!((*startNode) == (*sampleNode))) { break; }
578     }                                             587     }
579     maxNo = equivNo-1;                            588     maxNo = equivNo-1;
580     if (maxNo != minNo)                           589     if (maxNo != minNo)
581     {                                             590     {
582       // Set min and max nos                      591       // Set min and max nos
583       //                                          592       //
584       for (equivNo=minNo; equivNo<=maxNo; ++eq << 593       for (equivNo=minNo; equivNo<=maxNo; equivNo++)
585       {                                           594       {
586         sampleNode = fslices[equivNo]->GetNode    595         sampleNode = fslices[equivNo]->GetNode();
587         sampleNode->SetMinEquivalentSliceNo((G << 596         sampleNode->SetMinEquivalentSliceNo(minNo);
588         sampleNode->SetMaxEquivalentSliceNo((G << 597         sampleNode->SetMaxEquivalentSliceNo(maxNo);
589       }                                           598       }
590       // Advance outer loop to end of equivale    599       // Advance outer loop to end of equivalent group
591       //                                          600       //
592       sliceNo = maxNo;                            601       sliceNo = maxNo;
593     }                                             602     }
594   }                                               603   }
595 }                                                 604 }
596                                                   605 
597 // *******************************************    606 // ***************************************************************************
598 // Collects common nodes at our level, deletin    607 // Collects common nodes at our level, deleting all but one to save
599 // memory, and adjusting stored slice pointers    608 // memory, and adjusting stored slice pointers appropriately.
600 //                                                609 //
601 // Preconditions:                                 610 // Preconditions:
602 // o the slices have not previously be "collec    611 // o the slices have not previously be "collected"
603 // o all of the slices are nodes.                 612 // o all of the slices are nodes.
604 // *******************************************    613 // ***************************************************************************
605 //                                                614 //
606 void G4SmartVoxelHeader::CollectEquivalentNode    615 void G4SmartVoxelHeader::CollectEquivalentNodes()
607 {                                                 616 {
608   std::size_t sliceNo, maxNo, equivNo;         << 617   G4int sliceNo, maxNo, equivNo;
609   std::size_t maxNode=fslices.size();          << 618   G4int maxNode=fslices.size();
610   G4SmartVoxelNode* equivNode;                 << 619   G4SmartVoxelNode *equivNode;
611   G4SmartVoxelProxy* equivProxy;               << 620   G4SmartVoxelProxy *equivProxy;
612                                                   621 
613   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 622   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
614   {                                               623   {
615     equivProxy=fslices[sliceNo];                  624     equivProxy=fslices[sliceNo];
616                                                   625 
617     // Assumption (see preconditions): all sli    626     // Assumption (see preconditions): all slices are nodes
618     //                                            627     //
619     equivNode = equivProxy->GetNode();            628     equivNode = equivProxy->GetNode();
620     maxNo = equivNode->GetMaxEquivalentSliceNo    629     maxNo = equivNode->GetMaxEquivalentSliceNo();
621     if (maxNo != sliceNo)                         630     if (maxNo != sliceNo)
622     {                                             631     {
623 #ifdef G4GEOMETRY_VOXELDEBUG                      632 #ifdef G4GEOMETRY_VOXELDEBUG
624       G4cout << "**** G4SmartVoxelHeader::Coll    633       G4cout << "**** G4SmartVoxelHeader::CollectEquivalentNodes" << G4endl
625              << "     Collecting Nodes = "        634              << "     Collecting Nodes = " 
626              << sliceNo << " - " << maxNo << G    635              << sliceNo << " - " << maxNo << G4endl;
627 #endif                                            636 #endif
628       // Do collection between sliceNo and max    637       // Do collection between sliceNo and maxNo inclusive
629       //                                          638       //
630       for (equivNo=sliceNo+1; equivNo<=maxNo;  << 639       for (equivNo=sliceNo+1; equivNo<=maxNo; equivNo++)
631       {                                           640       {
632         delete fslices[equivNo]->GetNode();       641         delete fslices[equivNo]->GetNode();
633         delete fslices[equivNo];                  642         delete fslices[equivNo];
634         fslices[equivNo] = equivProxy;            643         fslices[equivNo] = equivProxy;
635       }                                           644       }
636       sliceNo = maxNo;                            645       sliceNo = maxNo;
637     }                                             646     }
638   }                                               647   }
639 }                                                 648 }
640                                                   649 
641 // *******************************************    650 // ***************************************************************************
642 // Collects common headers at our level, delet    651 // Collects common headers at our level, deleting all but one to save
643 // memory, and adjusting stored slice pointers    652 // memory, and adjusting stored slice pointers appropriately.
644 //                                                653 // 
645 // Preconditions:                                 654 // Preconditions:
646 // o if a header forms part of a range of equi    655 // o if a header forms part of a range of equivalent slices
647 //   (ie. GetMaxEquivalentSliceNo()>GetMinEqui    656 //   (ie. GetMaxEquivalentSliceNo()>GetMinEquivalentSliceNo()),
648 //   it is assumed that all slices in the rang    657 //   it is assumed that all slices in the range are headers.
649 // o this will be true if a constant Expressio    658 // o this will be true if a constant Expression is used to evaluate
650 //   when to refine nodes.                        659 //   when to refine nodes.
651 // *******************************************    660 // ***************************************************************************
652 //                                                661 //
653 void G4SmartVoxelHeader::CollectEquivalentHead    662 void G4SmartVoxelHeader::CollectEquivalentHeaders()
654 {                                                 663 {
655   std::size_t sliceNo, maxNo, equivNo;         << 664   G4int sliceNo, maxNo, equivNo;
656   std::size_t maxNode = fslices.size();        << 665   G4int maxNode = fslices.size();
657   G4SmartVoxelHeader *equivHeader, *sampleHead    666   G4SmartVoxelHeader *equivHeader, *sampleHeader;
658   G4SmartVoxelProxy *equivProxy;                  667   G4SmartVoxelProxy *equivProxy;
659                                                   668 
660   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 669   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
661   {                                               670   {
662     equivProxy = fslices[sliceNo];                671     equivProxy = fslices[sliceNo];
663     if (equivProxy->IsHeader())                   672     if (equivProxy->IsHeader())
664     {                                             673     {
665       equivHeader = equivProxy->GetHeader();      674       equivHeader = equivProxy->GetHeader();
666       maxNo = equivHeader->GetMaxEquivalentSli    675       maxNo = equivHeader->GetMaxEquivalentSliceNo();
667       if (maxNo != sliceNo)                       676       if (maxNo != sliceNo)
668       {                                           677       {
669         // Attempt collection between sliceNo     678         // Attempt collection between sliceNo and maxNo inclusive:
670         // look for common headers. All slices    679         // look for common headers. All slices between sliceNo and maxNo
671         // are guaranteed to be headers but ma    680         // are guaranteed to be headers but may not have equal contents
672         //                                        681         //
673 #ifdef G4GEOMETRY_VOXELDEBUG                      682 #ifdef G4GEOMETRY_VOXELDEBUG
674         G4cout << "**** G4SmartVoxelHeader::Co    683         G4cout << "**** G4SmartVoxelHeader::CollectEquivalentHeaders" << G4endl
675                << "     Collecting Headers =";    684                << "     Collecting Headers =";
676 #endif                                            685 #endif
677         for (equivNo=sliceNo+1; equivNo<=maxNo << 686         for (equivNo=sliceNo+1; equivNo<=maxNo; equivNo++)
678         {                                         687         {
679           sampleHeader = fslices[equivNo]->Get    688           sampleHeader = fslices[equivNo]->GetHeader();
680           if ( (*sampleHeader) == (*equivHeade    689           if ( (*sampleHeader) == (*equivHeader) )
681           {                                       690           {
682 #ifdef G4GEOMETRY_VOXELDEBUG                      691 #ifdef G4GEOMETRY_VOXELDEBUG
683             G4cout << " " << equivNo;             692             G4cout << " " << equivNo;
684 #endif                                            693 #endif
685             // Delete sampleHeader + proxy and    694             // Delete sampleHeader + proxy and replace with equivHeader/Proxy
686             //                                    695             //
687             delete sampleHeader;                  696             delete sampleHeader;
688             delete fslices[equivNo];              697             delete fslices[equivNo];
689             fslices[equivNo] = equivProxy;        698             fslices[equivNo] = equivProxy;
690           }                                       699           }
691           else                                    700           else
692           {                                       701           {
693             // Not equal. Set this header to b    702             // Not equal. Set this header to be
694             // the current header for comparis    703             // the current header for comparisons
695             //                                    704             //
696             equivProxy  = fslices[equivNo];       705             equivProxy  = fslices[equivNo];
697             equivHeader = equivProxy->GetHeade    706             equivHeader = equivProxy->GetHeader();
698           }                                       707           }
699                                                   708 
700         }                                         709         }
701 #ifdef G4GEOMETRY_VOXELDEBUG                      710 #ifdef G4GEOMETRY_VOXELDEBUG
702         G4cout << G4endl;                         711         G4cout << G4endl;
703 #endif                                            712 #endif
704         // Skip past examined slices              713         // Skip past examined slices
705         //                                        714         //
706         sliceNo = maxNo;                          715         sliceNo = maxNo;
707       }                                           716       }
708     }                                             717     }
709   }                                               718   }
710 }                                                 719 }
711                                                   720 
712 // *******************************************    721 // ***************************************************************************
713 // Builds the nodes corresponding to slices be    722 // Builds the nodes corresponding to slices between the specified limits
714 // and along the specified axis, using candida    723 // and along the specified axis, using candidate volume no.s in the vector
715 // pCandidates. If the `daughters' are replica    724 // pCandidates. If the `daughters' are replicated volumes (ie. the logical
716 // volume has a single replicated/parameterise    725 // volume has a single replicated/parameterised volume for a daughter)
717 // the candidate no.s are interpreted as PARAM    726 // the candidate no.s are interpreted as PARAMETERISED volume no.s & 
718 // PARAMETERISATIONs are applied to compute tr    727 // PARAMETERISATIONs are applied to compute transformations & solid
719 // dimensions appropriately. The volume must b    728 // dimensions appropriately. The volume must be parameterised - ie. has a
720 // parameterisation object & non-consuming) -     729 // parameterisation object & non-consuming) - in this case.
721 //                                                730 // 
722 // Returns pointer to built node "structure" (    731 // Returns pointer to built node "structure" (guaranteed non NULL) consisting
723 // of G4SmartVoxelNodeProxies referring to G4S    732 // of G4SmartVoxelNodeProxies referring to G4SmartVoxelNodes.
724 // *******************************************    733 // ***************************************************************************
725 //                                                734 //
726 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(    735 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(G4LogicalVolume* pVolume,
727                                                   736                                               G4VoxelLimits pLimits,
728                                         const     737                                         const G4VolumeNosVector* pCandidates,
729                                                   738                                               EAxis pAxis)
730 {                                                 739 {
731   G4double motherMinExtent= kInfinity, motherM << 740   G4double motherMinExtent, motherMaxExtent, targetMinExtent, targetMaxExtent;
732            targetMinExtent= kInfinity, targetM << 741   G4VPhysicalVolume *pDaughter=0;
733   G4VPhysicalVolume* pDaughter = nullptr;      << 742   G4VPVParameterisation *pParam=0;
734   G4VPVParameterisation* pParam = nullptr;     << 
735   G4VSolid *targetSolid;                          743   G4VSolid *targetSolid;
736   G4AffineTransform targetTransform;              744   G4AffineTransform targetTransform;
737   G4bool replicated;                              745   G4bool replicated;
738   std::size_t nCandidates = pCandidates->size( << 746   G4int nCandidates = pCandidates->size();
739   std::size_t nVol, nNode, targetVolNo;        << 747   G4int nVol, nNode, targetVolNo;
740   G4VoxelLimits noLimits;                         748   G4VoxelLimits noLimits;
741                                                << 749     
742 #ifdef G4GEOMETRY_VOXELDEBUG                      750 #ifdef G4GEOMETRY_VOXELDEBUG
743   G4cout << "**** G4SmartVoxelHeader::BuildNod    751   G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
744          << "     Limits = " << pLimits << G4e    752          << "     Limits = " << pLimits << G4endl
745          << "       Axis = " << pAxis << G4end    753          << "       Axis = " << pAxis << G4endl
746          << " Candidates = " << nCandidates <<    754          << " Candidates = " << nCandidates << G4endl;
747 #endif                                            755 #endif
748                                                   756 
749   // Compute extent of logical volume's solid     757   // Compute extent of logical volume's solid along this axis
750   // NOTE: results stored locally and not pres    758   // NOTE: results stored locally and not preserved/reused
751   //                                              759   //
752   G4VSolid* outerSolid = pVolume->GetSolid();     760   G4VSolid* outerSolid = pVolume->GetSolid();
753   const G4AffineTransform origin;                 761   const G4AffineTransform origin;
754   if( !outerSolid->CalculateExtent(pAxis, pLim    762   if( !outerSolid->CalculateExtent(pAxis, pLimits, origin,
755                                    motherMinEx    763                                    motherMinExtent, motherMaxExtent) )
756   {                                               764   {
757     outerSolid->CalculateExtent(pAxis, noLimit    765     outerSolid->CalculateExtent(pAxis, noLimits, origin,
758                                 motherMinExten    766                                 motherMinExtent, motherMaxExtent);
759   }                                               767   }
760   G4VolumeExtentVector minExtents(nCandidates,    768   G4VolumeExtentVector minExtents(nCandidates,0.);
761   G4VolumeExtentVector maxExtents(nCandidates,    769   G4VolumeExtentVector maxExtents(nCandidates,0.);
762                                                   770 
763   if ( (pVolume->GetNoDaughters() == 1)        << 771   if ( (pVolume->GetNoDaughters()==1)
764     && (pVolume->GetDaughter(0)->IsReplicated( << 772     && (pVolume->GetDaughter(0)->IsReplicated()==true) )
765   {                                               773   {
766     // Replication data not required: only par    774     // Replication data not required: only parameterisation object 
767     // and volume no. List used                   775     // and volume no. List used
768     //                                            776     //
769     pDaughter = pVolume->GetDaughter(0);          777     pDaughter = pVolume->GetDaughter(0);
770     pParam = pDaughter->GetParameterisation();    778     pParam = pDaughter->GetParameterisation();
771     if (pParam == nullptr)                     << 779     if (!pParam)
772     {                                             780     {
773       std::ostringstream message;              << 781       G4cout << "PANIC! Replicated volume with no parameterisation object !"
774       message << "PANIC! - Missing parameteris << 782              << G4endl;
775               << "         Replicated volume w << 783       G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
776       G4Exception("G4SmartVoxelHeader::BuildNo << 
777                   FatalException, message);    << 
778       return nullptr;                          << 
779     }                                             784     }
780                                                   785 
781     // Setup daughter's transformations        << 786     // Setup volume, preserving current mother link
782     //                                            787     //
                                                   >> 788     pDaughter->Setup(pDaughter->GetMother());
783     targetTransform = G4AffineTransform(pDaugh    789     targetTransform = G4AffineTransform(pDaughter->GetRotation(),
784                                         pDaugh    790                                         pDaughter->GetTranslation());
785     replicated = true;                            791     replicated = true;
786   }                                               792   }
787     else                                          793     else
788   {                                               794   {
789     replicated = false;                           795     replicated = false;
790   }                                               796   }
791                                                   797     
792   // Compute extents                              798   // Compute extents
793   //                                              799   //
794   for (nVol=0; nVol<nCandidates; ++nVol)       << 800   for (nVol=0; nVol<nCandidates; nVol++)
795   {                                               801   {
796     targetVolNo = (*pCandidates)[nVol];        << 802     targetVolNo=(*pCandidates)[nVol];
797     if (!replicated)                           << 803     if (replicated == false)
798     {                                             804     {
799       pDaughter = pVolume->GetDaughter(targetV << 805       pDaughter=pVolume->GetDaughter(targetVolNo);
800                                                   806 
801       // Setup daughter's transformations      << 807       // Setup volume, preserving current mother link
802       //                                          808       //
                                                   >> 809       pDaughter->Setup(pDaughter->GetMother());
803       targetTransform = G4AffineTransform(pDau    810       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
804                                           pDau    811                                           pDaughter->GetTranslation());
805       // Get underlying (and setup) solid         812       // Get underlying (and setup) solid
806       //                                          813       //
807       targetSolid = pDaughter->GetLogicalVolum    814       targetSolid = pDaughter->GetLogicalVolume()->GetSolid();
808     }                                             815     }
809     else                                          816     else
810     {                                             817     {
811       // Find  solid                              818       // Find  solid
812       //                                          819       //
813       targetSolid = pParam->ComputeSolid((G4in << 820       targetSolid = pParam->ComputeSolid(targetVolNo,pDaughter);
814                                                   821 
815       // Setup solid                              822       // Setup solid
816       //                                          823       //
817       targetSolid->ComputeDimensions(pParam,(G << 824       targetSolid->ComputeDimensions(pParam,targetVolNo,pDaughter);
818                                                   825 
819       // Setup transform                          826       // Setup transform
820       //                                          827       //
821       pParam->ComputeTransformation((G4int)tar << 828       pParam->ComputeTransformation(targetVolNo,pDaughter);
822       targetTransform = G4AffineTransform(pDau    829       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
823                                           pDau    830                                           pDaughter->GetTranslation());
824     }                                             831     }
825     // Calculate extents                          832     // Calculate extents
826     //                                            833     //
827     if(!targetSolid->CalculateExtent(pAxis, pL    834     if(!targetSolid->CalculateExtent(pAxis, pLimits, targetTransform,
828                                      targetMin    835                                      targetMinExtent, targetMaxExtent))
829     {                                             836     {
830       targetSolid->CalculateExtent(pAxis, noLi    837       targetSolid->CalculateExtent(pAxis, noLimits, targetTransform,
831                                    targetMinEx    838                                    targetMinExtent,targetMaxExtent);
832     }                                             839     }
833     minExtents[nVol] = targetMinExtent;           840     minExtents[nVol] = targetMinExtent;
834     maxExtents[nVol] = targetMaxExtent;           841     maxExtents[nVol] = targetMaxExtent;
835                                                   842 
836 #ifdef G4GEOMETRY_VOXELDEBUG                   << 
837    G4cout << "-------------------------------- << 
838           << "     Volume = " << pDaughter->Ge << 
839           << " Min Extent = " << targetMinExte << 
840           << " Max Extent = " << targetMaxExte << 
841           << "-------------------------------- << 
842 #endif                                         << 
843                                                << 
844     // Check not entirely outside mother when     843     // Check not entirely outside mother when processing toplevel nodes
845     //                                            844     //
846     if ( (!pLimits.IsLimited()) && ((targetMax    845     if ( (!pLimits.IsLimited()) && ((targetMaxExtent<=motherMinExtent)
847                                   ||(targetMin    846                                   ||(targetMinExtent>=motherMaxExtent)) )
848     {                                             847     {
849       std::ostringstream message;              << 848       G4cout << "PANIC! Daughter physical volume "
850       message << "PANIC! - Overlapping daughte << 849              << pDaughter->GetName() << G4endl
851               << "         Daughter physical v << 850        << "is entirely outside mother logical volume "
852               << pDaughter->GetName() << G4end << 851        << pVolume->GetName() << " !!" << G4endl;
853               << "         is entirely outside << 852       G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
854               << pVolume->GetName() << " !!";  << 
855       G4Exception("G4SmartVoxelHeader::BuildNo << 
856                   FatalException, message);    << 
857     }                                             853     }
858                                                   854 
859 #ifdef G4GEOMETRY_VOXELDEBUG                      855 #ifdef G4GEOMETRY_VOXELDEBUG
860     // Check for straddling volumes when debug    856     // Check for straddling volumes when debugging.
861     // If a volume is >kStraddlePercent percen    857     // If a volume is >kStraddlePercent percent over the mother
862     // boundary, print a warning.                 858     // boundary, print a warning.
863     //                                            859     //
864     if (!pLimits.IsLimited())                     860     if (!pLimits.IsLimited())
865     {                                             861     {
866       G4double width;                             862       G4double width;
867       G4int kStraddlePercent = 5;              << 863       G4int kStraddlePercent=5;
868       width = maxExtents[nVol]-minExtents[nVol    864       width = maxExtents[nVol]-minExtents[nVol];
869       if ( (((motherMinExtent-minExtents[nVol]    865       if ( (((motherMinExtent-minExtents[nVol])*100/width) > kStraddlePercent)
870          ||(((maxExtents[nVol]-motherMaxExtent    866          ||(((maxExtents[nVol]-motherMaxExtent)*100/width) > kStraddlePercent) )
871       {                                           867       {
872         G4cout << "**** G4SmartVoxelHeader::Bu    868         G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
873                << "     WARNING : Daughter # "    869                << "     WARNING : Daughter # " << nVol
874                << " name = " << pDaughter->Get    870                << " name = " << pDaughter->GetName() << G4endl
875                << "     Crosses mother boundar    871                << "     Crosses mother boundary of logical volume, name = " 
876                << pVolume->GetName() << G4endl    872                << pVolume->GetName() << G4endl
877                << "     by more than " << kStr    873                << "     by more than " << kStraddlePercent 
878                << "%" << G4endl;                  874                << "%" << G4endl;
879       }                                           875       }
880     }                                             876     }
881 #endif                                            877 #endif
                                                   >> 878 
882   }                                               879   }
883                                                   880 
884   // Extents of all daughters known               881   // Extents of all daughters known
885                                                   882 
886   // Calculate minimum slice width, only inclu    883   // Calculate minimum slice width, only including volumes inside the limits
887   //                                              884   //
888   G4double minWidth = kInfinity;                  885   G4double minWidth = kInfinity;
889   G4double currentWidth;                          886   G4double currentWidth;
890   for (nVol=0; nVol<nCandidates; ++nVol)       << 887   for (nVol=0; nVol<nCandidates; nVol++)
891   {                                               888   {
892     // currentWidth should -always- be a posit << 889     currentWidth = maxExtents[nVol]-minExtents[nVol];
893     // from the solid or situations of malform << 
894     // negative values and therefore unpredict << 
895     //                                         << 
896     currentWidth = std::abs(maxExtents[nVol]-m << 
897     if ( (currentWidth<minWidth)                  890     if ( (currentWidth<minWidth)
898       && (maxExtents[nVol]>=pLimits.GetMinExte    891       && (maxExtents[nVol]>=pLimits.GetMinExtent(pAxis))
899       && (minExtents[nVol]<=pLimits.GetMaxExte    892       && (minExtents[nVol]<=pLimits.GetMaxExtent(pAxis)) )
900     {                                             893     {
901       minWidth = currentWidth;                    894       minWidth = currentWidth;
902     }                                             895     }
903   }                                               896   }
904                                                   897 
905   // No. of Nodes formula - nearest integer to    898   // No. of Nodes formula - nearest integer to
906   // mother width/half min daughter width +1      899   // mother width/half min daughter width +1
907   //                                              900   //
908   G4double noNodesExactD = ((motherMaxExtent-m    901   G4double noNodesExactD = ((motherMaxExtent-motherMinExtent)*2.0/minWidth)+1.0;
909                                                   902 
910   // Compare with "smartless quality", i.e. th    903   // Compare with "smartless quality", i.e. the average number of slices
911   // used per contained volume.                   904   // used per contained volume.
912   //                                              905   //
913   G4double smartlessComputed = noNodesExactD /    906   G4double smartlessComputed = noNodesExactD / nCandidates;
914   G4double smartlessUser = pVolume->GetSmartle    907   G4double smartlessUser = pVolume->GetSmartless();
915   G4double smartless = (smartlessComputed <= s    908   G4double smartless = (smartlessComputed <= smartlessUser)
916                        ? smartlessComputed : s    909                        ? smartlessComputed : smartlessUser;
917   G4double noNodesSmart = smartless*nCandidate    910   G4double noNodesSmart = smartless*nCandidates;
918   auto     noNodesExactI = G4int(noNodesSmart) << 911   G4int    noNodesExactI = G4int(noNodesSmart);
919   G4long   noNodes = ((noNodesSmart-noNodesExa << 912   G4int    noNodes = ((noNodesSmart-noNodesExactI)>=0.5)
920                      ? noNodesExactI+1 : noNod    913                      ? noNodesExactI+1 : noNodesExactI;
921   if( noNodes == 0 ) { noNodes=1; }               914   if( noNodes == 0 ) { noNodes=1; }
922                                                   915 
923 #ifdef G4GEOMETRY_VOXELDEBUG                      916 #ifdef G4GEOMETRY_VOXELDEBUG
924   G4cout << "     Smartless computed = " << sm << 
925          << "     Smartless volume = " << smar << 
926          << " => # Smartless = " << smartless  << 
927   G4cout << "     Min width = " << minWidth       917   G4cout << "     Min width = " << minWidth
928          << " => # Nodes = " << noNodes << G4e    918          << " => # Nodes = " << noNodes << G4endl;
929 #endif                                            919 #endif
930                                                   920 
931   if (noNodes>kMaxVoxelNodes)                     921   if (noNodes>kMaxVoxelNodes)
932   {                                               922   {
933     noNodes=kMaxVoxelNodes;                       923     noNodes=kMaxVoxelNodes;
934 #ifdef G4GEOMETRY_VOXELDEBUG                      924 #ifdef G4GEOMETRY_VOXELDEBUG
935     G4cout << "     Nodes Clipped to = " << kM    925     G4cout << "     Nodes Clipped to = " << kMaxVoxelNodes << G4endl;
936 #endif                                            926 #endif   
937   }                                               927   }
938   G4double nodeWidth = (motherMaxExtent-mother    928   G4double nodeWidth = (motherMaxExtent-motherMinExtent)/noNodes;
939                                                   929 
940   // Create G4VoxelNodes. Will Add proxies bef << 930 // Create G4VoxelNodes. Will Add proxies before setting fslices
941   //                                           << 931 //
942   auto* nodeList = new G4NodeVector();         << 932   G4NodeVector* nodeList = new G4NodeVector();
943   if (nodeList == nullptr)                     << 933   nodeList->reserve(noNodes);
                                                   >> 934   if (!nodeList)
944   {                                               935   {
945     G4Exception("G4SmartVoxelHeader::BuildNode << 936     G4cout << "ERROR - NodeList allocation failed." << G4endl;
946                 FatalException, "NodeList allo << 937     G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
947     return nullptr;                            << 
948   }                                               938   }
949   nodeList->reserve(noNodes);                  << 939   for (nNode=0; nNode<noNodes; nNode++)
950                                                << 
951   for (nNode=0; G4long(nNode)<noNodes; ++nNode << 
952   {                                               940   {
953     G4SmartVoxelNode *pNode;                      941     G4SmartVoxelNode *pNode;
954     pNode = new G4SmartVoxelNode((G4int)nNode) << 942     pNode = new G4SmartVoxelNode(nNode);
955     if (pNode == nullptr)                      << 943     if (!pNode)
956     {                                             944     {
957       G4Exception("G4SmartVoxelHeader::BuildNo << 945       G4cout << "ERROR - Node allocation failed." << G4endl;
958                   FatalException, "Node alloca << 946       G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
959       return nullptr;                          << 
960     }                                             947     }
961     nodeList->push_back(pNode);                   948     nodeList->push_back(pNode);
962   }                                               949   }
963                                                   950 
964   // All nodes created (empty)                    951   // All nodes created (empty)
965                                                   952 
966   // Fill nodes: Step through extent lists        953   // Fill nodes: Step through extent lists
967   //                                              954   //
968   for (nVol=0; nVol<nCandidates; ++nVol)       << 955   for (nVol=0; nVol<nCandidates; nVol++)
969   {                                               956   {
970     G4long nodeNo, minContainingNode, maxConta << 957     G4int nodeNo, minContainingNode, maxContainingNode;
971     minContainingNode = (minExtents[nVol]-moth << 958     minContainingNode = G4int((minExtents[nVol]-motherMinExtent)/nodeWidth);
972     maxContainingNode = (maxExtents[nVol]-moth << 959     maxContainingNode = G4int((maxExtents[nVol]-motherMinExtent)/nodeWidth);
973                                                   960 
974     // Only add nodes that are inside the limi    961     // Only add nodes that are inside the limits of the axis
975     //                                            962     //
976     if ( (maxContainingNode>=0) && (minContain    963     if ( (maxContainingNode>=0) && (minContainingNode<noNodes) )
977     {                                             964     {
978       // If max extent is on max boundary => m    965       // If max extent is on max boundary => maxContainingNode=noNodes:
979       // should be one less as nodeList has no    966       // should be one less as nodeList has noNodes entries
980       //                                          967       //
981       if (maxContainingNode>=noNodes)             968       if (maxContainingNode>=noNodes)
982       {                                           969       {
983         maxContainingNode = noNodes-1;            970         maxContainingNode = noNodes-1;
984       }                                           971       }
985       //                                          972       //
986       // Protection against protruding volumes    973       // Protection against protruding volumes
987       //                                          974       //
988       if (minContainingNode<0)                    975       if (minContainingNode<0)
989       {                                           976       {
990         minContainingNode = 0;                 << 977         minContainingNode=0;
991       }                                           978       }
992       for (nodeNo=minContainingNode; nodeNo<=m << 979       for (nodeNo=minContainingNode; nodeNo<=maxContainingNode; nodeNo++)
993       {                                           980       {
994         (*nodeList)[nodeNo]->Insert((*pCandida    981         (*nodeList)[nodeNo]->Insert((*pCandidates)[nVol]);
995       }                                           982       }
996     }                                             983     }
997   }                                               984   }
998                                                   985 
999   // All nodes filled                             986   // All nodes filled
1000                                                  987 
1001   // Create proxy List : caller has deletion     988   // Create proxy List : caller has deletion responsibility
1002   // (but we must delete nodeList *itself* -     989   // (but we must delete nodeList *itself* - not the contents)
1003   //                                             990   //
1004   auto* proxyList = new G4ProxyVector();      << 991   G4ProxyVector* proxyList = new G4ProxyVector();
1005   if (proxyList == nullptr)                   << 992   proxyList->reserve(noNodes);
                                                   >> 993   if (!proxyList)
1006   {                                              994   {
1007     G4Exception("G4SmartVoxelHeader::BuildNod << 995     G4cout << "ERROR - Proxy List allocation failed." << G4endl;
1008                 FatalException, "Proxy list a << 996     G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
1009     return nullptr;                           << 
1010   }                                              997   }
1011   proxyList->reserve(noNodes);                << 
1012                                               << 
1013   //                                             998   //
1014   // Fill proxy List                             999   // Fill proxy List
1015   //                                             1000   //
1016   for (nNode=0; G4long(nNode)<noNodes; ++nNod << 1001   for (nNode=0; nNode<noNodes; nNode++)
1017   {                                              1002   {
1018     // Get rid of possible excess capacity in << 1003     G4SmartVoxelProxy* pProxyNode = new G4SmartVoxelProxy((*nodeList)[nNode]);
1019     //                                        << 1004     if (!pProxyNode)
1020     ((*nodeList)[nNode])->Shrink();           << 1005     {
1021     auto* pProxyNode = new G4SmartVoxelProxy( << 1006       G4cout << "ERROR - Proxy Node allocation failed." << G4endl;
1022     if (pProxyNode == nullptr)                << 1007       G4Exception("ERROR - G4SmartVoxelHeader::BuildNodes");
1023     {                                         << 
1024       G4Exception("G4SmartVoxelHeader::BuildN << 
1025                   FatalException, "Proxy node << 
1026       return nullptr;                         << 
1027     }                                            1008     }
1028     proxyList->push_back(pProxyNode);            1009     proxyList->push_back(pProxyNode);
1029   }                                              1010   }
1030   delete nodeList;                               1011   delete nodeList;
1031   return proxyList;                              1012   return proxyList;
1032 }                                                1013 }
1033                                                  1014 
1034 // ******************************************    1015 // ***************************************************************************
1035 // Calculate a "quality value" for the specif    1016 // Calculate a "quality value" for the specified vector of voxels.
1036 // The value returned should be >0 and such t    1017 // The value returned should be >0 and such that the smaller the number
1037 // the higher the quality of the slice.          1018 // the higher the quality of the slice.
1038 //                                               1019 //
1039 // Preconditions: pSlice must consist of G4Sm    1020 // Preconditions: pSlice must consist of G4SmartVoxelNodeProxies only
1040 // Process:                                      1021 // Process:
1041 // o Examine each node in turn, summing:         1022 // o Examine each node in turn, summing:
1042 //      no. of non-empty nodes                   1023 //      no. of non-empty nodes
1043 //      no. of volumes in each node              1024 //      no. of volumes in each node
1044 // o Calculate Quality=sigma(volumes in nod)/    1025 // o Calculate Quality=sigma(volumes in nod)/(no. of non-empty nodes)
1045 //      if all nodes empty, return kInfinity     1026 //      if all nodes empty, return kInfinity
1046 // o Call G4Exception on finding a G4SmartVox    1027 // o Call G4Exception on finding a G4SmartVoxelHeaderProxy
1047 // ******************************************    1028 // ***************************************************************************
1048 //                                               1029 //
1049 G4double G4SmartVoxelHeader::CalculateQuality    1030 G4double G4SmartVoxelHeader::CalculateQuality(G4ProxyVector *pSlice)
1050 {                                                1031 {
1051   G4double quality;                              1032   G4double quality;
1052   std::size_t nNodes = pSlice->size();        << 1033   G4int nNodes = pSlice->size();
1053   std::size_t noContained, maxContained=0, su << 1034   G4int noContained, maxContained=0, sumContained=0, sumNonEmptyNodes=0;
1054   G4SmartVoxelNode *node;                        1035   G4SmartVoxelNode *node;
1055                                                  1036 
1056   for (std::size_t i=0; i<nNodes; ++i)        << 1037   for (G4int i=0; i<nNodes; i++)
1057   {                                              1038   {
1058     if ((*pSlice)[i]->IsNode())                  1039     if ((*pSlice)[i]->IsNode())
1059     {                                            1040     {
1060       // Definitely a node. Add info to runni    1041       // Definitely a node. Add info to running totals
1061       //                                         1042       //
1062       node = (*pSlice)[i]->GetNode();            1043       node = (*pSlice)[i]->GetNode();
1063       noContained = node->GetNoContained();      1044       noContained = node->GetNoContained();
1064       if (noContained != 0)                   << 1045       if (noContained)
1065       {                                          1046       {
1066         ++sumNonEmptyNodes;                   << 1047         sumNonEmptyNodes++;
1067         sumContained += noContained;             1048         sumContained += noContained;
1068         //                                       1049         //
1069         // Calc maxContained for statistics      1050         // Calc maxContained for statistics
1070         //                                       1051         //
1071         if (noContained>maxContained)            1052         if (noContained>maxContained)
1072         {                                        1053         {
1073           maxContained = noContained;            1054           maxContained = noContained;
1074         }                                        1055         }
1075       }                                          1056       }
1076     }                                            1057     }
1077     else                                         1058     else
1078     {                                            1059     {
1079       G4Exception("G4SmartVoxelHeader::Calcul << 1060       G4cout << "ERROR - Not defined for sliced volumes." << G4endl;
1080                   FatalException, "Not applic << 1061       G4Exception("ERROR - G4SmartVoxelHeader::CalculateQuality");
1081     }                                            1062     }
1082   }                                              1063   }
1083                                                  1064 
1084   // Calculate quality with protection agains    1065   // Calculate quality with protection against no non-empty nodes
1085   //                                             1066   //
1086   if (sumNonEmptyNodes != 0)                  << 1067   if (sumNonEmptyNodes)
1087   {                                              1068   {
1088     quality = sumContained/sumNonEmptyNodes;     1069     quality = sumContained/sumNonEmptyNodes;
1089   }                                              1070   }
1090   else                                           1071   else
1091   {                                              1072   {
1092     quality = kInfinity;                         1073     quality = kInfinity;
1093   }                                              1074   }
1094                                                  1075 
1095 #ifdef G4GEOMETRY_VOXELDEBUG                     1076 #ifdef G4GEOMETRY_VOXELDEBUG
1096   G4cout << "**** G4SmartVoxelHeader::Calcula    1077   G4cout << "**** G4SmartVoxelHeader::CalculateQuality" << G4endl
1097          << "     Quality = " << quality << G    1078          << "     Quality = " << quality << G4endl
1098          << "     Nodes = " << nNodes            1079          << "     Nodes = " << nNodes 
1099          << " of which " << sumNonEmptyNodes     1080          << " of which " << sumNonEmptyNodes << " non empty" << G4endl
1100          << "     Max Contained = " << maxCon    1081          << "     Max Contained = " << maxContained << G4endl;
1101 #endif                                           1082 #endif
1102                                                  1083 
1103   return quality;                                1084   return quality;
1104 }                                                1085 }
1105                                                  1086 
1106 // ******************************************    1087 // ***************************************************************************
1107 // Examined each contained node, refines (cre    1088 // Examined each contained node, refines (creates a replacement additional
1108 // dimension of voxels) when there is more th    1089 // dimension of voxels) when there is more than one voxel in the slice.
1109 // Does not refine further if already limited    1090 // Does not refine further if already limited in two dimensions (=> this
1110 // is the third level of limits)                 1091 // is the third level of limits)
1111 //                                               1092 //
1112 // Preconditions: slices (nodes) have been bu    1093 // Preconditions: slices (nodes) have been built.
1113 // ******************************************    1094 // ***************************************************************************
1114 //                                               1095 //
1115 void G4SmartVoxelHeader::RefineNodes(G4Logica    1096 void G4SmartVoxelHeader::RefineNodes(G4LogicalVolume* pVolume,
1116                                      G4VoxelL    1097                                      G4VoxelLimits pLimits)
1117 {                                                1098 {
1118   std::size_t refinedDepth=0, minVolumes;     << 1099   G4int refinedDepth=0, minVolumes;
1119   std::size_t maxNode = fslices.size();       << 1100   G4int maxNode = fslices.size();
1120                                                  1101 
1121   if (pLimits.IsXLimited())                      1102   if (pLimits.IsXLimited()) 
1122   {                                              1103   {
1123     ++refinedDepth;                           << 1104     refinedDepth++;
1124   }                                              1105   }
1125   if (pLimits.IsYLimited())                      1106   if (pLimits.IsYLimited()) 
1126   {                                              1107   {
1127     ++refinedDepth;                           << 1108     refinedDepth++;
1128   }                                              1109   }
1129   if (pLimits.IsZLimited())                      1110   if (pLimits.IsZLimited()) 
1130   {                                              1111   {
1131     ++refinedDepth;                           << 1112     refinedDepth++;
1132   }                                              1113   }
1133                                                  1114 
1134   // Calculate minimum number of volumes nece    1115   // Calculate minimum number of volumes necessary to refine
1135   //                                             1116   //
1136   switch (refinedDepth)                          1117   switch (refinedDepth)
1137   {                                              1118   {
1138     case 0:                                      1119     case 0:
1139       minVolumes=kMinVoxelVolumesLevel2;         1120       minVolumes=kMinVoxelVolumesLevel2;
1140       break;                                     1121       break;
1141     case 1:                                      1122     case 1:
1142       minVolumes=kMinVoxelVolumesLevel3;         1123       minVolumes=kMinVoxelVolumesLevel3;
1143       break;                                     1124       break;
1144     default:                                     1125     default:
1145       minVolumes=10000;   // catch refinedDep    1126       minVolumes=10000;   // catch refinedDepth=3 and errors
1146       break;                                     1127       break;
1147   }                                              1128   }
1148                                                  1129 
1149   if (refinedDepth<2)                            1130   if (refinedDepth<2)
1150   {                                              1131   {
1151     std::size_t targetNo, noContainedDaughter << 1132     G4int targetNo, noContainedDaughters, minNo, maxNo, replaceNo, i;
1152     G4double sliceWidth = (fmaxExtent-fminExt    1133     G4double sliceWidth = (fmaxExtent-fminExtent)/maxNode;
1153     G4VoxelLimits newLimits;                     1134     G4VoxelLimits newLimits;
1154     G4SmartVoxelNode* targetNode;                1135     G4SmartVoxelNode* targetNode;
1155     G4SmartVoxelProxy* targetNodeProxy;          1136     G4SmartVoxelProxy* targetNodeProxy;
1156     G4SmartVoxelHeader* replaceHeader;           1137     G4SmartVoxelHeader* replaceHeader;
1157     G4SmartVoxelProxy* replaceHeaderProxy;       1138     G4SmartVoxelProxy* replaceHeaderProxy;
1158     G4VolumeNosVector* targetList;               1139     G4VolumeNosVector* targetList;
1159     G4SmartVoxelProxy* lastProxy;                1140     G4SmartVoxelProxy* lastProxy;
1160                                                  1141       
1161     for (targetNo=0; targetNo<maxNode; ++targ << 1142     for (targetNo=0; targetNo<maxNode; targetNo++)
1162     {                                            1143     {
1163       // Assume all slices are nodes (see pre    1144       // Assume all slices are nodes (see preconditions)
1164       //                                         1145       //
1165       targetNodeProxy = fslices[targetNo];       1146       targetNodeProxy = fslices[targetNo];
1166       targetNode = targetNodeProxy->GetNode()    1147       targetNode = targetNodeProxy->GetNode();
1167                                                  1148 
1168       if (targetNode->GetNoContained() >= min    1149       if (targetNode->GetNoContained() >= minVolumes)
1169       {                                          1150       {
1170         noContainedDaughters = targetNode->Ge    1151         noContainedDaughters = targetNode->GetNoContained();
1171         targetList = new G4VolumeNosVector();    1152         targetList = new G4VolumeNosVector();
1172         if (targetList == nullptr)            << 1153         targetList->reserve(noContainedDaughters);
                                                   >> 1154         if (!targetList)
1173         {                                        1155         {
1174           G4Exception("G4SmartVoxelHeader::Re << 1156           G4cout << "ERROR - Target volume no List new failed." << G4endl;
1175                       "GeomMgt0003", FatalExc << 1157           G4Exception("ERROR - G4SmartVoxelHeader::RefineNodes");
1176                       "Target volume node lis << 
1177           return;                             << 
1178         }                                        1158         }
1179         targetList->reserve(noContainedDaught << 1159         for (i=0; i<noContainedDaughters; i++)
1180         for (i=0; i<noContainedDaughters; ++i << 
1181         {                                        1160         {
1182           targetList->push_back(targetNode->G << 1161           targetList->push_back(targetNode->GetVolume(i));
1183         }                                        1162         }
1184         minNo = targetNode->GetMinEquivalentS    1163         minNo = targetNode->GetMinEquivalentSliceNo();
1185         maxNo = targetNode->GetMaxEquivalentS    1164         maxNo = targetNode->GetMaxEquivalentSliceNo();
1186                                                  1165 
1187 #ifdef G4GEOMETRY_VOXELDEBUG                     1166 #ifdef G4GEOMETRY_VOXELDEBUG
1188         G4cout << "**** G4SmartVoxelHeader::R    1167         G4cout << "**** G4SmartVoxelHeader::RefineNodes" << G4endl
1189                << "     Refining nodes " << m    1168                << "     Refining nodes " << minNo 
1190                << " - " << maxNo << " inclusi    1169                << " - " << maxNo << " inclusive" << G4endl;
1191 #endif                                           1170 #endif
1192         if (minNo > maxNo)    // Delete node  << 
1193         {                     // and avoid fu << 
1194           delete targetNode;                  << 
1195           delete targetList;                  << 
1196           return;                             << 
1197         }                                     << 
1198                                               << 
1199         // Delete node proxies at start of co    1171         // Delete node proxies at start of collected sets of nodes/headers
1200         //                                       1172         //
1201         lastProxy=nullptr;                    << 1173         lastProxy=0;
1202         for (replaceNo=minNo; replaceNo<=maxN << 1174         for (replaceNo=minNo; replaceNo<=maxNo; replaceNo++)
1203         {                                        1175         {
1204           if (lastProxy != fslices[replaceNo]    1176           if (lastProxy != fslices[replaceNo])
1205           {                                      1177           {
1206             lastProxy=fslices[replaceNo];        1178             lastProxy=fslices[replaceNo];
1207             delete lastProxy;                    1179             delete lastProxy;
1208           }                                      1180           }
1209         }                                        1181         }
1210         // Delete node to be replaced            1182         // Delete node to be replaced
1211         //                                       1183         //
1212         delete targetNode;                       1184         delete targetNode;
1213                                                  1185 
1214         // Create new headers + proxies and r    1186         // Create new headers + proxies and replace in fslices
1215         //                                       1187         //
1216         newLimits = pLimits;                     1188         newLimits = pLimits;
1217         newLimits.AddLimit(faxis,fminExtent+s    1189         newLimits.AddLimit(faxis,fminExtent+sliceWidth*minNo,
1218                            fminExtent+sliceWi    1190                            fminExtent+sliceWidth*(maxNo+1));
1219         replaceHeader = new G4SmartVoxelHeade    1191         replaceHeader = new G4SmartVoxelHeader(pVolume,newLimits,
1220                                               << 1192                                                targetList,replaceNo);
1221         if (replaceHeader == nullptr)         << 1193         if (!replaceHeader)
1222         {                                        1194         {
1223           G4Exception("G4SmartVoxelHeader::Re << 1195           G4cout << "ERROR - Refined VoxelHeader new failed." << G4endl;
1224                       FatalException, "Refine << 1196           G4Exception("ERROR - G4SmartVoxelHeader::RefineNodes");
1225           return;                             << 
1226         }                                        1197         }
1227         replaceHeader->SetMinEquivalentSliceN << 1198         replaceHeader->SetMinEquivalentSliceNo(minNo);
1228         replaceHeader->SetMaxEquivalentSliceN << 1199         replaceHeader->SetMaxEquivalentSliceNo(maxNo);
1229         replaceHeaderProxy = new G4SmartVoxel    1200         replaceHeaderProxy = new G4SmartVoxelProxy(replaceHeader);
1230         if (replaceHeaderProxy == nullptr)    << 1201         if (!replaceHeader)
1231         {                                        1202         {
1232           G4Exception("G4SmartVoxelHeader::Re << 1203           G4cout << "ERROR - Refined VoxelProxy new failed." << G4endl;
1233                       FatalException, "Refine << 1204           G4Exception("ERROR - G4SmartVoxelHeader::RefineNodes");
1234           return;                             << 
1235         }                                        1205         }
1236         for (replaceNo=minNo; replaceNo<=maxN << 1206         for (replaceNo=minNo; replaceNo<=maxNo; replaceNo++)
1237         {                                        1207         {
1238           fslices[replaceNo] = replaceHeaderP    1208           fslices[replaceNo] = replaceHeaderProxy;
1239         }                                        1209         }
1240         // Finished replacing current `equiva    1210         // Finished replacing current `equivalent' group
1241         //                                       1211         //
1242         delete targetList;                       1212         delete targetList;
1243         targetNo=maxNo;                          1213         targetNo=maxNo;
1244       }                                          1214       }
1245     }                                            1215     }
1246   }                                              1216   }
1247 }                                                1217 }
1248                                                  1218 
1249 // ******************************************    1219 // ***************************************************************************
1250 // Returns true if all slices have equal cont    1220 // Returns true if all slices have equal contents.
1251 // Preconditions: all equal slices have been     1221 // Preconditions: all equal slices have been collected.
1252 // Procedure:                                    1222 // Procedure:
1253 // o checks all slice proxy pointers are equa    1223 // o checks all slice proxy pointers are equal
1254 // o returns true if only one slice or all sl    1224 // o returns true if only one slice or all slice proxies pointers equal.
1255 // ******************************************    1225 // ***************************************************************************
1256 //                                               1226 //
1257 G4bool G4SmartVoxelHeader::AllSlicesEqual() c    1227 G4bool G4SmartVoxelHeader::AllSlicesEqual() const
1258 {                                                1228 {
1259   std::size_t noSlices = fslices.size();      << 1229   G4int noSlices = fslices.size();
1260   G4SmartVoxelProxy* refProxy;                   1230   G4SmartVoxelProxy* refProxy;
1261                                                  1231 
1262   if (noSlices>1)                                1232   if (noSlices>1)
1263   {                                              1233   {
1264     refProxy=fslices[0];                         1234     refProxy=fslices[0];
1265     for (std::size_t i=1; i<noSlices; ++i)    << 1235     for (G4int i=1; i<noSlices; i++)
1266     {                                            1236     {
1267       if (refProxy!=fslices[i])                  1237       if (refProxy!=fslices[i])
1268       {                                          1238       {
1269         return false;                            1239         return false;
1270       }                                          1240       }
1271     }                                            1241     }
1272   }                                              1242   }
1273   return true;                                   1243   return true;
1274 }                                                1244 }
1275                                                  1245 
1276 // ******************************************    1246 // ***************************************************************************
1277 // Streaming operator for debugging.             1247 // Streaming operator for debugging.
1278 // ******************************************    1248 // ***************************************************************************
1279 //                                               1249 //
1280 std::ostream& operator << (std::ostream& os,  << 1250 std::ostream& operator << (std::ostream& s, const G4SmartVoxelHeader& h)
1281 {                                                1251 {
1282   os << "Axis = " << G4int(h.faxis) << G4endl << 1252   s << "Axis = " << G4int(h.faxis) << G4endl;
1283   G4SmartVoxelProxy *collectNode=nullptr, *co << 1253   G4SmartVoxelProxy *collectNode=0, *collectHead=0;
1284   std::size_t collectNodeNo = 0;              << 1254   G4int collectNodeNo=0;
1285   std::size_t collectHeadNo = 0;              << 1255   G4int collectHeadNo=0;
1286   std::size_t i, j;                           << 1256   size_t i, j;
1287   G4bool haveHeaders = false;                 << 1257   G4bool haveHeaders=false;
1288                                                  1258 
1289   for (i=0; i<h.fslices.size(); ++i)          << 1259   for (i=0; i<h.fslices.size(); i++)
1290   {                                              1260   {
1291     os << "Slice #" << i << " = ";            << 1261     s << "Slice #" << i << " = ";
1292     if (h.fslices[i]->IsNode())                  1262     if (h.fslices[i]->IsNode())
1293     {                                            1263     {
1294       if (h.fslices[i]!=collectNode)             1264       if (h.fslices[i]!=collectNode)
1295       {                                          1265       {
1296         os << "{";                            << 1266         s << "{";
1297         for (std::size_t k=0; k<h.fslices[i]- << 1267         for (G4int j=0; j<h.fslices[i]->GetNode()->GetNoContained(); j++)
1298         {                                        1268         {
1299           os << " " << h.fslices[i]->GetNode( << 1269           s << " " << h.fslices[i]->GetNode()->GetVolume(j);
1300         }                                     << 1270   }
1301         os << " }" << G4endl;                 << 1271         s << " }" << G4endl;
1302         collectNode = h.fslices[i];              1272         collectNode = h.fslices[i];
1303         collectNodeNo = i;                       1273         collectNodeNo = i;
1304       }                                          1274       }
1305       else                                       1275       else
1306       {                                          1276       {
1307         os << "As slice #" << collectNodeNo < << 1277         s << "As slice #" << collectNodeNo << G4endl;
1308       }                                          1278       }
1309     }                                            1279     }
1310     else                                         1280     else
1311     {                                            1281     {
1312       haveHeaders=true;                          1282       haveHeaders=true;
1313       if (h.fslices[i] != collectHead)           1283       if (h.fslices[i] != collectHead)
1314       {                                          1284       {
1315         os << "Header" << G4endl;             << 1285         s << "Header" << G4endl;
1316         collectHead = h.fslices[i];              1286         collectHead = h.fslices[i];
1317         collectHeadNo = i;                       1287         collectHeadNo = i;
1318       }                                          1288       }
1319       else                                       1289       else
1320       {                                          1290       {
1321         os << "As slice #" << collectHeadNo < << 1291         s << "As slice #" << collectHeadNo << G4endl;
1322       }                                          1292       }
1323     }                                            1293     }
1324   }                                              1294   }
1325                                                  1295 
1326   if (haveHeaders)                               1296   if (haveHeaders)
1327   {                                              1297   {
1328     collectHead=nullptr;                      << 1298     collectHead=0;
1329     for (j=0; j<h.fslices.size(); ++j)        << 1299     for (j=0; j<h.fslices.size(); j++)
1330     {                                            1300     {
1331       if (h.fslices[j]->IsHeader())              1301       if (h.fslices[j]->IsHeader())
1332       {                                          1302       {
1333         os << "Header at Slice #" << j << " = << 1303         s << "Header at Slice #" << j << " = ";
1334         if (h.fslices[j] != collectHead)         1304         if (h.fslices[j] != collectHead)
1335         {                                        1305         {
1336           os << G4endl                        << 1306           s << G4endl 
1337              << (*(h.fslices[j]->GetHeader()) << 1307             << (*(h.fslices[j]->GetHeader()));
1338           collectHead = h.fslices[j];            1308           collectHead = h.fslices[j];
1339           collectHeadNo = j;                     1309           collectHeadNo = j;
1340         }                                        1310         }
1341         else                                     1311         else
1342         {                                        1312         {
1343           os << "As slice #" << collectHeadNo << 1313           s << "As slice #" << collectHeadNo << G4endl;
1344         }                                        1314         }
1345       }                                          1315       }
1346     }                                            1316     }
1347   }                                              1317   }
1348   return os;                                  << 1318   return s;
1349 }                                                1319 }
1350                                                  1320