Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // class G4SmartVoxelHeader implementation 26 // class G4SmartVoxelHeader implementation 27 // 27 // 28 // Define G4GEOMETRY_VOXELDEBUG for debugging 28 // Define G4GEOMETRY_VOXELDEBUG for debugging information on G4cout 29 // 29 // 30 // 29.04.02 Use 3D voxelisation for non consum 30 // 29.04.02 Use 3D voxelisation for non consuming replication - G.C. 31 // 18.04.01 Migrated to STL vector - G.C. 31 // 18.04.01 Migrated to STL vector - G.C. 32 // 12.02.99 Introduction of new quality/smartl 32 // 12.02.99 Introduction of new quality/smartless: max for (slices/cand) - S.G. 33 // 11.02.99 Voxels at lower levels are now bui 33 // 11.02.99 Voxels at lower levels are now built for collapsed slices - S.G. 34 // 21.07.95 Full implementation, supporting no 34 // 21.07.95 Full implementation, supporting non divided physical volumes - P.K. 35 // 14.07.95 Initial version - stubb definition 35 // 14.07.95 Initial version - stubb definitions only - P.K. 36 // ------------------------------------------- 36 // -------------------------------------------------------------------- 37 37 38 #include "G4SmartVoxelHeader.hh" 38 #include "G4SmartVoxelHeader.hh" 39 39 40 #include "G4ios.hh" 40 #include "G4ios.hh" 41 41 42 #include "G4LogicalVolume.hh" 42 #include "G4LogicalVolume.hh" 43 #include "G4VPhysicalVolume.hh" 43 #include "G4VPhysicalVolume.hh" 44 #include "G4VoxelLimits.hh" 44 #include "G4VoxelLimits.hh" 45 45 46 #include "voxeldefs.hh" 46 #include "voxeldefs.hh" 47 #include "G4AffineTransform.hh" 47 #include "G4AffineTransform.hh" 48 #include "G4VSolid.hh" 48 #include "G4VSolid.hh" 49 #include "G4VPVParameterisation.hh" 49 #include "G4VPVParameterisation.hh" 50 50 51 // ******************************************* 51 // *************************************************************************** 52 // Constructor for topmost header, to begin vo 52 // Constructor for topmost header, to begin voxel construction at a 53 // given logical volume. 53 // given logical volume. 54 // Constructs target List of volumes, calls "B 54 // Constructs target List of volumes, calls "Build and refine" constructor. 55 // Assumes all daughters represent single volu 55 // Assumes all daughters represent single volumes (ie. no divisions 56 // or parametric) 56 // or parametric) 57 // ******************************************* 57 // *************************************************************************** 58 // 58 // 59 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic 59 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume, 60 G4int p 60 G4int pSlice) 61 : fminEquivalent(pSlice), 61 : fminEquivalent(pSlice), 62 fmaxEquivalent(pSlice), 62 fmaxEquivalent(pSlice), 63 fparamAxis(kUndefined) 63 fparamAxis(kUndefined) 64 { 64 { 65 std::size_t nDaughters = pVolume->GetNoDaugh << 65 size_t nDaughters = pVolume->GetNoDaughters(); >> 66 G4VoxelLimits limits; // Create `unlimited' limits object 66 67 67 // Determine whether daughter is replicated 68 // Determine whether daughter is replicated 68 // 69 // 69 if ((nDaughters!=1) || (!pVolume->GetDaughte 70 if ((nDaughters!=1) || (!pVolume->GetDaughter(0)->IsReplicated())) 70 { 71 { 71 // Daughter not replicated => conventional 72 // Daughter not replicated => conventional voxel Build 72 // where each daughters extents are comput 73 // where each daughters extents are computed 73 // 74 // 74 BuildVoxels(pVolume); 75 BuildVoxels(pVolume); 75 } 76 } 76 else 77 else 77 { 78 { 78 // Single replicated daughter 79 // Single replicated daughter 79 // 80 // 80 BuildReplicaVoxels(pVolume); 81 BuildReplicaVoxels(pVolume); 81 } 82 } 82 } 83 } 83 84 84 // ******************************************* 85 // *************************************************************************** 85 // Protected constructor: 86 // Protected constructor: 86 // builds and refines voxels between specified 87 // builds and refines voxels between specified limits, considering only 87 // the physical volumes numbered `pCandidates' 88 // the physical volumes numbered `pCandidates'. `pSlice' is used to set max 88 // and min equivalent slice nos for the header 89 // and min equivalent slice nos for the header - they apply to the level 89 // of the header, not its nodes. 90 // of the header, not its nodes. 90 // ******************************************* 91 // *************************************************************************** 91 // 92 // 92 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic 93 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume, 93 const G4Voxel 94 const G4VoxelLimits& pLimits, 94 const G4Volum 95 const G4VolumeNosVector* pCandidates, 95 G4int p 96 G4int pSlice) 96 : fminEquivalent(pSlice), 97 : fminEquivalent(pSlice), 97 fmaxEquivalent(pSlice), 98 fmaxEquivalent(pSlice), 98 fparamAxis(kUndefined) 99 fparamAxis(kUndefined) 99 { 100 { 100 #ifdef G4GEOMETRY_VOXELDEBUG 101 #ifdef G4GEOMETRY_VOXELDEBUG 101 G4cout << "**** G4SmartVoxelHeader::G4SmartV 102 G4cout << "**** G4SmartVoxelHeader::G4SmartVoxelHeader" << G4endl 102 << " Limits " << pLimits << G4end 103 << " Limits " << pLimits << G4endl 103 << " Candidate #s = " ; 104 << " Candidate #s = " ; 104 for (auto i=0; i<pCandidates->size(); ++i) 105 for (auto i=0; i<pCandidates->size(); ++i) 105 { 106 { 106 G4cout << (*pCandidates)[i] << " "; 107 G4cout << (*pCandidates)[i] << " "; 107 } 108 } 108 G4cout << G4endl; 109 G4cout << G4endl; 109 #endif 110 #endif 110 111 111 BuildVoxelsWithinLimits(pVolume,pLimits,pCan 112 BuildVoxelsWithinLimits(pVolume,pLimits,pCandidates); 112 } 113 } 113 114 114 // ******************************************* 115 // *************************************************************************** 115 // Destructor: 116 // Destructor: 116 // deletes all proxies and underlying objects. 117 // deletes all proxies and underlying objects. 117 // ******************************************* 118 // *************************************************************************** 118 // 119 // 119 G4SmartVoxelHeader::~G4SmartVoxelHeader() 120 G4SmartVoxelHeader::~G4SmartVoxelHeader() 120 { 121 { 121 // Manually destroy underlying nodes/headers 122 // Manually destroy underlying nodes/headers 122 // Delete collected headers and nodes once o 123 // Delete collected headers and nodes once only 123 // 124 // 124 std::size_t node, proxy, maxNode=fslices.siz << 125 size_t node, proxy, maxNode=fslices.size(); 125 G4SmartVoxelProxy* lastProxy = nullptr; 126 G4SmartVoxelProxy* lastProxy = nullptr; 126 G4SmartVoxelNode *dyingNode, *lastNode=nullp 127 G4SmartVoxelNode *dyingNode, *lastNode=nullptr; 127 G4SmartVoxelHeader *dyingHeader, *lastHeader 128 G4SmartVoxelHeader *dyingHeader, *lastHeader=nullptr; 128 129 129 for (node=0; node<maxNode; ++node) 130 for (node=0; node<maxNode; ++node) 130 { 131 { 131 if (fslices[node]->IsHeader()) 132 if (fslices[node]->IsHeader()) 132 { 133 { 133 dyingHeader = fslices[node]->GetHeader() 134 dyingHeader = fslices[node]->GetHeader(); 134 if (lastHeader != dyingHeader) 135 if (lastHeader != dyingHeader) 135 { 136 { 136 lastHeader = dyingHeader; 137 lastHeader = dyingHeader; 137 lastNode = nullptr; 138 lastNode = nullptr; 138 delete dyingHeader; 139 delete dyingHeader; 139 } 140 } 140 } 141 } 141 else 142 else 142 { 143 { 143 dyingNode = fslices[node]->GetNode(); 144 dyingNode = fslices[node]->GetNode(); 144 if (dyingNode != lastNode) 145 if (dyingNode != lastNode) 145 { 146 { 146 lastNode = dyingNode; 147 lastNode = dyingNode; 147 lastHeader = nullptr; 148 lastHeader = nullptr; 148 delete dyingNode; 149 delete dyingNode; 149 } 150 } 150 } 151 } 151 } 152 } 152 // Delete proxies 153 // Delete proxies 153 // 154 // 154 for (proxy=0; proxy<maxNode; ++proxy) 155 for (proxy=0; proxy<maxNode; ++proxy) 155 { 156 { 156 if (fslices[proxy] != lastProxy) 157 if (fslices[proxy] != lastProxy) 157 { 158 { 158 lastProxy = fslices[proxy]; 159 lastProxy = fslices[proxy]; 159 delete lastProxy; 160 delete lastProxy; 160 } 161 } 161 } 162 } 162 // Don't need to clear slices 163 // Don't need to clear slices 163 // fslices.clear(); 164 // fslices.clear(); 164 } 165 } 165 166 166 // ******************************************* 167 // *************************************************************************** 167 // Equality operator: returns true if contents 168 // Equality operator: returns true if contents are equivalent. 168 // Implies a deep search through contained nod 169 // Implies a deep search through contained nodes/header. 169 // Compares headers' axes,sizes,extents. Retur 170 // Compares headers' axes,sizes,extents. Returns false if different. 170 // For each contained proxy, determines whethe 171 // For each contained proxy, determines whether node/header, compares and 171 // returns if different. Compares and returns 172 // returns if different. Compares and returns if proxied nodes/headers 172 // are different. 173 // are different. 173 // ******************************************* 174 // *************************************************************************** 174 // 175 // 175 G4bool G4SmartVoxelHeader::operator == (const 176 G4bool G4SmartVoxelHeader::operator == (const G4SmartVoxelHeader& pHead) const 176 { 177 { 177 if ( (GetAxis() == pHead.GetAxis()) 178 if ( (GetAxis() == pHead.GetAxis()) 178 && (GetNoSlices() == pHead.GetNoSlices()) 179 && (GetNoSlices() == pHead.GetNoSlices()) 179 && (GetMinExtent() == pHead.GetMinExtent() 180 && (GetMinExtent() == pHead.GetMinExtent()) 180 && (GetMaxExtent() == pHead.GetMaxExtent() 181 && (GetMaxExtent() == pHead.GetMaxExtent()) ) 181 { 182 { 182 std::size_t node, maxNode; << 183 size_t node, maxNode; 183 G4SmartVoxelProxy *leftProxy, *rightProxy; 184 G4SmartVoxelProxy *leftProxy, *rightProxy; 184 G4SmartVoxelHeader *leftHeader, *rightHead 185 G4SmartVoxelHeader *leftHeader, *rightHeader; 185 G4SmartVoxelNode *leftNode, *rightNode; 186 G4SmartVoxelNode *leftNode, *rightNode; 186 187 187 maxNode = GetNoSlices(); 188 maxNode = GetNoSlices(); 188 for (node=0; node<maxNode; ++node) 189 for (node=0; node<maxNode; ++node) 189 { 190 { 190 leftProxy = GetSlice(node); 191 leftProxy = GetSlice(node); 191 rightProxy = pHead.GetSlice(node); 192 rightProxy = pHead.GetSlice(node); 192 if (leftProxy->IsHeader()) 193 if (leftProxy->IsHeader()) 193 { 194 { 194 if (rightProxy->IsNode()) 195 if (rightProxy->IsNode()) 195 { 196 { 196 return false; 197 return false; 197 } 198 } 198 else 199 else 199 { 200 { 200 leftHeader = leftProxy->GetHeader() 201 leftHeader = leftProxy->GetHeader(); 201 rightHeader = rightProxy->GetHeader( 202 rightHeader = rightProxy->GetHeader(); 202 if (!(*leftHeader == *rightHeader)) 203 if (!(*leftHeader == *rightHeader)) 203 { 204 { 204 return false; 205 return false; 205 } 206 } 206 } 207 } 207 } 208 } 208 else 209 else 209 { 210 { 210 if (rightProxy->IsHeader()) 211 if (rightProxy->IsHeader()) 211 { 212 { 212 return false; 213 return false; 213 } 214 } 214 else 215 else 215 { 216 { 216 leftNode = leftProxy->GetNode(); 217 leftNode = leftProxy->GetNode(); 217 rightNode = rightProxy->GetNode(); 218 rightNode = rightProxy->GetNode(); 218 if (!(*leftNode == *rightNode)) 219 if (!(*leftNode == *rightNode)) 219 { 220 { 220 return false; 221 return false; 221 } 222 } 222 } 223 } 223 } 224 } 224 } 225 } 225 return true; 226 return true; 226 } 227 } 227 else 228 else 228 { 229 { 229 return false; 230 return false; 230 } 231 } 231 } 232 } 232 233 233 // ******************************************* 234 // *************************************************************************** 234 // Builds voxels for daughters specified volum 235 // Builds voxels for daughters specified volume, in NON-REPLICATED case 235 // o Create List of target volume nos (all dau 236 // o Create List of target volume nos (all daughters; 0->noDaughters-1) 236 // o BuildWithinLimits does Build & also deter 237 // o BuildWithinLimits does Build & also determines mother dimensions. 237 // ******************************************* 238 // *************************************************************************** 238 // 239 // 239 void G4SmartVoxelHeader::BuildVoxels(G4Logical 240 void G4SmartVoxelHeader::BuildVoxels(G4LogicalVolume* pVolume) 240 { 241 { 241 G4VoxelLimits limits; // Create `unlimited 242 G4VoxelLimits limits; // Create `unlimited' limits object 242 std::size_t nDaughters = pVolume->GetNoDaugh << 243 size_t nDaughters = pVolume->GetNoDaughters(); 243 244 244 G4VolumeNosVector targetList; 245 G4VolumeNosVector targetList; 245 targetList.reserve(nDaughters); 246 targetList.reserve(nDaughters); 246 for (std::size_t i=0; i<nDaughters; ++i) << 247 for (size_t i=0; i<nDaughters; ++i) 247 { 248 { 248 targetList.push_back((G4int)i); << 249 targetList.push_back(i); 249 } 250 } 250 BuildVoxelsWithinLimits(pVolume, limits, &ta 251 BuildVoxelsWithinLimits(pVolume, limits, &targetList); 251 } 252 } 252 253 253 // ******************************************* 254 // *************************************************************************** 254 // Builds voxels for specified volume containi 255 // Builds voxels for specified volume containing a single replicated volume. 255 // If axis is not specified (i.e. "kUndefined" 256 // If axis is not specified (i.e. "kUndefined"), 3D voxelisation is applied, 256 // and the best axis is determined according t 257 // and the best axis is determined according to heuristics as for placements. 257 // ******************************************* 258 // *************************************************************************** 258 // 259 // 259 void G4SmartVoxelHeader::BuildReplicaVoxels(G4 260 void G4SmartVoxelHeader::BuildReplicaVoxels(G4LogicalVolume* pVolume) 260 { 261 { 261 G4VPhysicalVolume* pDaughter = nullptr; 262 G4VPhysicalVolume* pDaughter = nullptr; 262 263 263 // Replication data 264 // Replication data 264 // 265 // 265 EAxis axis; 266 EAxis axis; 266 G4int nReplicas; 267 G4int nReplicas; 267 G4double width,offset; 268 G4double width,offset; 268 G4bool consuming; 269 G4bool consuming; 269 270 270 // Consistency check: pVolume should contain 271 // Consistency check: pVolume should contain single replicated volume 271 // 272 // 272 if ( (pVolume->GetNoDaughters()==1) 273 if ( (pVolume->GetNoDaughters()==1) 273 && (pVolume->GetDaughter(0)->IsReplicated( << 274 && (pVolume->GetDaughter(0)->IsReplicated()==true) ) 274 { 275 { 275 // Obtain replication data 276 // Obtain replication data 276 // 277 // 277 pDaughter = pVolume->GetDaughter(0); 278 pDaughter = pVolume->GetDaughter(0); 278 pDaughter->GetReplicationData(axis,nReplic 279 pDaughter->GetReplicationData(axis,nReplicas,width,offset,consuming); 279 fparamAxis = axis; 280 fparamAxis = axis; 280 if ( !consuming ) << 281 if ( consuming == false ) 281 { 282 { 282 G4VoxelLimits limits; // Create `unlim 283 G4VoxelLimits limits; // Create `unlimited' limits object 283 G4VolumeNosVector targetList; 284 G4VolumeNosVector targetList; 284 targetList.reserve(nReplicas); 285 targetList.reserve(nReplicas); 285 for (auto i=0; i<nReplicas; ++i) 286 for (auto i=0; i<nReplicas; ++i) 286 { 287 { 287 targetList.push_back(i); 288 targetList.push_back(i); 288 } 289 } 289 if (axis != kUndefined) 290 if (axis != kUndefined) 290 { 291 { 291 // Apply voxelisation along the specif 292 // Apply voxelisation along the specified axis only 292 293 293 G4ProxyVector* pSlices=BuildNodes(pVol 294 G4ProxyVector* pSlices=BuildNodes(pVolume,limits,&targetList,axis); 294 faxis = axis; 295 faxis = axis; 295 fslices = *pSlices; 296 fslices = *pSlices; 296 delete pSlices; 297 delete pSlices; 297 298 298 // Calculate and set min and max exten 299 // Calculate and set min and max extents given our axis 299 // 300 // 300 const G4AffineTransform origin; 301 const G4AffineTransform origin; 301 pVolume->GetSolid()->CalculateExtent(f 302 pVolume->GetSolid()->CalculateExtent(faxis, limits, origin, 302 f 303 fminExtent, fmaxExtent); 303 // Calculate equivalent nos 304 // Calculate equivalent nos 304 // 305 // 305 BuildEquivalentSliceNos(); 306 BuildEquivalentSliceNos(); 306 CollectEquivalentNodes(); // Collect 307 CollectEquivalentNodes(); // Collect common nodes 307 } 308 } 308 else 309 else 309 { 310 { 310 // Build voxels similarly as for norma 311 // Build voxels similarly as for normal placements considering 311 // all three cartesian axes. 312 // all three cartesian axes. 312 313 313 BuildVoxelsWithinLimits(pVolume, limit 314 BuildVoxelsWithinLimits(pVolume, limits, &targetList); 314 } 315 } 315 } 316 } 316 else 317 else 317 { 318 { 318 // Replication is consuming -> Build vox 319 // Replication is consuming -> Build voxels directly 319 // 320 // 320 // o Cartesian axes - range is -width*nR 321 // o Cartesian axes - range is -width*nREplicas/2 to +width*nREplicas/2 321 // nReplicas replicat 322 // nReplicas replications result 322 // o Radial axis (rho) = range is 0 to w 323 // o Radial axis (rho) = range is 0 to width*nReplicas 323 // nReplicas replicat 324 // nReplicas replications result 324 // o Phi axi - range is offset to 325 // o Phi axi - range is offset to offset+width*nReplicas radians 325 // 326 // 326 // Equivalent slices no computation & co 327 // Equivalent slices no computation & collection not required - all 327 // slices are different 328 // slices are different 328 // 329 // 329 switch (axis) 330 switch (axis) 330 { 331 { 331 case kXAxis: 332 case kXAxis: 332 case kYAxis: 333 case kYAxis: 333 case kZAxis: 334 case kZAxis: 334 fminExtent = -width*nReplicas*0.5; 335 fminExtent = -width*nReplicas*0.5; 335 fmaxExtent = width*nReplicas*0.5; 336 fmaxExtent = width*nReplicas*0.5; 336 break; 337 break; 337 case kRho: 338 case kRho: 338 fminExtent = offset; 339 fminExtent = offset; 339 fmaxExtent = width*nReplicas+offset; 340 fmaxExtent = width*nReplicas+offset; 340 break; 341 break; 341 case kPhi: 342 case kPhi: 342 fminExtent = offset; 343 fminExtent = offset; 343 fmaxExtent = offset+width*nReplicas; 344 fmaxExtent = offset+width*nReplicas; 344 break; 345 break; 345 default: 346 default: 346 G4Exception("G4SmartVoxelHeader::Bui 347 G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels()", 347 "GeomMgt0002", FatalExce 348 "GeomMgt0002", FatalException, "Illegal axis."); 348 break; 349 break; 349 } 350 } 350 faxis = axis; // Set axis 351 faxis = axis; // Set axis 351 BuildConsumedNodes(nReplicas); 352 BuildConsumedNodes(nReplicas); 352 if ( (axis==kXAxis) || (axis==kYAxis) || 353 if ( (axis==kXAxis) || (axis==kYAxis) || (axis==kZAxis) ) 353 { 354 { 354 // Sanity check on extent 355 // Sanity check on extent 355 // 356 // 356 G4double emin = kInfinity, emax = -kIn 357 G4double emin = kInfinity, emax = -kInfinity; 357 G4VoxelLimits limits; 358 G4VoxelLimits limits; 358 G4AffineTransform origin; 359 G4AffineTransform origin; 359 pVolume->GetSolid()->CalculateExtent(a 360 pVolume->GetSolid()->CalculateExtent(axis, limits, origin, emin, emax); 360 if ( (std::fabs((emin-fminExtent)/fmin 361 if ( (std::fabs((emin-fminExtent)/fminExtent) + 361 std::fabs((emax-fmaxExtent)/fmax 362 std::fabs((emax-fmaxExtent)/fmaxExtent)) > 0.05) 362 { 363 { 363 std::ostringstream message; 364 std::ostringstream message; 364 message << "Sanity check: wrong soli 365 message << "Sanity check: wrong solid extent." << G4endl 365 << " Replicated geome 366 << " Replicated geometry, logical volume: " 366 << pVolume->GetName(); 367 << pVolume->GetName(); 367 G4Exception("G4SmartVoxelHeader::Bui 368 G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels", 368 "GeomMgt0002", FatalExce 369 "GeomMgt0002", FatalException, message); 369 } 370 } 370 } 371 } 371 } 372 } 372 } 373 } 373 else 374 else 374 { 375 { 375 G4Exception("G4SmartVoxelHeader::BuildRepl 376 G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels", "GeomMgt0002", 376 FatalException, "Only one repl 377 FatalException, "Only one replicated daughter is allowed !"); 377 } 378 } 378 } 379 } 379 380 380 // ******************************************* 381 // *************************************************************************** 381 // Builds `consumed nodes': nReplicas nodes ea 382 // Builds `consumed nodes': nReplicas nodes each containing one replication, 382 // numbered in sequence 0->nReplicas-1 383 // numbered in sequence 0->nReplicas-1 383 // o Modifies fslices `in place' 384 // o Modifies fslices `in place' 384 // o faxis,fminExtent,fmaxExtent NOT modified. 385 // o faxis,fminExtent,fmaxExtent NOT modified. 385 // ******************************************* 386 // *************************************************************************** 386 // 387 // 387 void G4SmartVoxelHeader::BuildConsumedNodes(G4 388 void G4SmartVoxelHeader::BuildConsumedNodes(G4int nReplicas) 388 { 389 { 389 G4int nNode, nVol; 390 G4int nNode, nVol; 390 G4SmartVoxelNode* pNode; 391 G4SmartVoxelNode* pNode; 391 G4SmartVoxelProxy* pProxyNode; 392 G4SmartVoxelProxy* pProxyNode; 392 393 393 // Create and fill nodes in temporary G4Node 394 // Create and fill nodes in temporary G4NodeVector (on stack) 394 // 395 // 395 G4NodeVector nodeList; 396 G4NodeVector nodeList; 396 nodeList.reserve(nReplicas); 397 nodeList.reserve(nReplicas); 397 for (nNode=0; nNode<nReplicas; ++nNode) 398 for (nNode=0; nNode<nReplicas; ++nNode) 398 { 399 { 399 pNode = new G4SmartVoxelNode(nNode); 400 pNode = new G4SmartVoxelNode(nNode); 400 if (pNode == nullptr) 401 if (pNode == nullptr) 401 { 402 { 402 G4Exception("G4SmartVoxelHeader::BuildCo 403 G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003", 403 FatalException, "Node alloca 404 FatalException, "Node allocation error."); 404 } 405 } 405 nodeList.push_back(pNode); 406 nodeList.push_back(pNode); 406 } 407 } 407 for (nVol=0; nVol<nReplicas; ++nVol) 408 for (nVol=0; nVol<nReplicas; ++nVol) 408 { 409 { 409 nodeList[nVol]->Insert(nVol); // Insert 410 nodeList[nVol]->Insert(nVol); // Insert replication of number 410 } // identic 411 } // identical to voxel number 411 412 412 // Create & fill proxy List `in place' by mo 413 // Create & fill proxy List `in place' by modifying instance data fslices 413 // 414 // 414 fslices.clear(); 415 fslices.clear(); 415 for (nNode=0; nNode<nReplicas; ++nNode) 416 for (nNode=0; nNode<nReplicas; ++nNode) 416 { 417 { 417 pProxyNode = new G4SmartVoxelProxy(nodeLis 418 pProxyNode = new G4SmartVoxelProxy(nodeList[nNode]); 418 if (pProxyNode == nullptr) << 419 if (!pProxyNode) 419 { 420 { 420 G4Exception("G4SmartVoxelHeader::BuildCo 421 G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003", 421 FatalException, "Proxy node 422 FatalException, "Proxy node allocation error."); 422 } 423 } 423 fslices.push_back(pProxyNode); 424 fslices.push_back(pProxyNode); 424 } 425 } 425 } 426 } 426 427 427 // ******************************************* 428 // *************************************************************************** 428 // Builds and refines voxels between specified 429 // Builds and refines voxels between specified limits, considering only 429 // the physical volumes numbered `pCandidates' 430 // the physical volumes numbered `pCandidates'. 430 // o Chooses axis 431 // o Chooses axis 431 // o Determines min and max extents (of mother 432 // o Determines min and max extents (of mother solid) within limits. 432 // ******************************************* 433 // *************************************************************************** 433 // 434 // 434 void 435 void 435 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4 436 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4LogicalVolume* pVolume, 436 G4 437 G4VoxelLimits pLimits, 437 const G4 438 const G4VolumeNosVector* pCandidates) 438 { 439 { 439 // Choose best axis for slicing by: 440 // Choose best axis for slicing by: 440 // 1. Trying all unlimited cartesian axes 441 // 1. Trying all unlimited cartesian axes 441 // 2. Select axis which gives greatest no sl 442 // 2. Select axis which gives greatest no slices 442 443 443 G4ProxyVector *pGoodSlices=nullptr, *pTestSl << 444 G4ProxyVector *pGoodSlices=nullptr, *pTestSlices, *tmpSlices; 444 G4double goodSliceScore=kInfinity, testSlice 445 G4double goodSliceScore=kInfinity, testSliceScore; 445 EAxis goodSliceAxis = kXAxis; 446 EAxis goodSliceAxis = kXAxis; 446 std::size_t node, maxNode; << 447 EAxis testAxis = kXAxis; >> 448 size_t node, maxNode, iaxis; 447 G4VoxelLimits noLimits; 449 G4VoxelLimits noLimits; 448 450 449 // Try all non-limited cartesian axes 451 // Try all non-limited cartesian axes 450 // 452 // 451 for ( EAxis testAxis : { kXAxis, kYAxis, kZA << 453 for (iaxis=0; iaxis<3; ++iaxis) 452 { 454 { >> 455 switch(iaxis) >> 456 { >> 457 case 0: >> 458 testAxis = kXAxis; >> 459 break; >> 460 case 1: >> 461 testAxis = kYAxis; >> 462 break; >> 463 case 2: >> 464 testAxis = kZAxis; >> 465 break; >> 466 } 453 if (!pLimits.IsLimited(testAxis)) 467 if (!pLimits.IsLimited(testAxis)) 454 { 468 { 455 pTestSlices = BuildNodes(pVolume,pLimits 469 pTestSlices = BuildNodes(pVolume,pLimits,pCandidates,testAxis); 456 testSliceScore = CalculateQuality(pTestS 470 testSliceScore = CalculateQuality(pTestSlices); 457 if ( (pGoodSlices == nullptr) || (testSl << 471 if ( (!pGoodSlices) || (testSliceScore<goodSliceScore) ) 458 { 472 { 459 goodSliceAxis = testAxis; 473 goodSliceAxis = testAxis; 460 goodSliceScore = testSliceScore; 474 goodSliceScore = testSliceScore; 461 std::swap( pGoodSlices, pTestSlices); << 475 tmpSlices = pGoodSlices; >> 476 pGoodSlices = pTestSlices; >> 477 pTestSlices = tmpSlices; 462 } 478 } 463 if (pTestSlices != nullptr) << 479 if (pTestSlices) 464 { 480 { 465 // Destroy pTestSlices and all its con 481 // Destroy pTestSlices and all its contents 466 // 482 // 467 maxNode=pTestSlices->size(); 483 maxNode=pTestSlices->size(); 468 for (node=0; node<maxNode; ++node) 484 for (node=0; node<maxNode; ++node) 469 { 485 { 470 delete (*pTestSlices)[node]->GetNode 486 delete (*pTestSlices)[node]->GetNode(); 471 } 487 } 472 G4SmartVoxelProxy* tmpProx; 488 G4SmartVoxelProxy* tmpProx; 473 while (!pTestSlices->empty()) // Loop << 489 while (pTestSlices->size()>0) // Loop checking, 06.08.2015, G.Cosmo 474 { 490 { 475 tmpProx = pTestSlices->back(); 491 tmpProx = pTestSlices->back(); 476 pTestSlices->pop_back(); 492 pTestSlices->pop_back(); 477 for (auto i=pTestSlices->cbegin(); i 493 for (auto i=pTestSlices->cbegin(); i!=pTestSlices->cend(); ) 478 { 494 { 479 if (*i==tmpProx) 495 if (*i==tmpProx) 480 { 496 { 481 i = pTestSlices->erase(i); 497 i = pTestSlices->erase(i); 482 } 498 } 483 else 499 else 484 { 500 { 485 ++i; 501 ++i; 486 } 502 } 487 } 503 } 488 delete tmpProx; << 504 if ( tmpProx ) { delete tmpProx; } 489 } 505 } 490 delete pTestSlices; 506 delete pTestSlices; 491 } 507 } 492 } 508 } 493 } 509 } 494 // Check for error case.. when limits alread 510 // Check for error case.. when limits already 3d, 495 // so cannot select a new axis 511 // so cannot select a new axis 496 // 512 // 497 if (pGoodSlices == nullptr) << 513 if (!pGoodSlices) 498 { 514 { 499 G4Exception("G4SmartVoxelHeader::BuildVoxe 515 G4Exception("G4SmartVoxelHeader::BuildVoxelsWithinLimits()", 500 "GeomMgt0002", FatalException, 516 "GeomMgt0002", FatalException, 501 "Cannot select more than 3 axi 517 "Cannot select more than 3 axis for optimisation."); 502 return; 518 return; 503 } 519 } 504 520 505 // 521 // 506 // We have selected pGoodSlices, with a scor 522 // We have selected pGoodSlices, with a score testSliceScore 507 // 523 // 508 524 509 // Store chosen axis, slice ptr 525 // Store chosen axis, slice ptr 510 // 526 // 511 fslices =* pGoodSlices; // Set slice informa 527 fslices =* pGoodSlices; // Set slice information, copy ptrs in collection 512 delete pGoodSlices; // Destroy slices ve 528 delete pGoodSlices; // Destroy slices vector, but not contained 513 // proxies or nodes 529 // proxies or nodes 514 faxis = goodSliceAxis; 530 faxis = goodSliceAxis; 515 531 516 #ifdef G4GEOMETRY_VOXELDEBUG 532 #ifdef G4GEOMETRY_VOXELDEBUG 517 G4cout << G4endl << " Volume = " << pVol 533 G4cout << G4endl << " Volume = " << pVolume->GetName() 518 << G4endl << " Selected axis = " 534 << G4endl << " Selected axis = " << faxis << G4endl; 519 for (auto islice=0; islice<fslices.size(); + 535 for (auto islice=0; islice<fslices.size(); ++islice) 520 { 536 { 521 G4cout << " Node #" << islice << " = { 537 G4cout << " Node #" << islice << " = {"; 522 for (auto j=0; j<fslices[islice]->GetNode( 538 for (auto j=0; j<fslices[islice]->GetNode()->GetNoContained(); ++j) 523 { 539 { 524 G4cout << " " << fslices[islice]->GetNod 540 G4cout << " " << fslices[islice]->GetNode()->GetVolume(j); 525 } 541 } 526 G4cout << " }" << G4endl; 542 G4cout << " }" << G4endl; 527 } 543 } 528 G4cout << G4endl; 544 G4cout << G4endl; 529 #endif 545 #endif 530 546 531 // Calculate and set min and max extents giv 547 // Calculate and set min and max extents given our axis 532 // 548 // 533 G4VSolid* outerSolid = pVolume->GetSolid(); 549 G4VSolid* outerSolid = pVolume->GetSolid(); 534 const G4AffineTransform origin; 550 const G4AffineTransform origin; 535 if(!outerSolid->CalculateExtent(faxis,pLimit 551 if(!outerSolid->CalculateExtent(faxis,pLimits,origin,fminExtent,fmaxExtent)) 536 { 552 { 537 outerSolid->CalculateExtent(faxis,noLimits 553 outerSolid->CalculateExtent(faxis,noLimits,origin,fminExtent,fmaxExtent); 538 } 554 } 539 555 540 // Calculate equivalent nos 556 // Calculate equivalent nos 541 // 557 // 542 BuildEquivalentSliceNos(); 558 BuildEquivalentSliceNos(); 543 CollectEquivalentNodes(); // Collect co 559 CollectEquivalentNodes(); // Collect common nodes 544 RefineNodes(pVolume, pLimits); // Refine nod 560 RefineNodes(pVolume, pLimits); // Refine nodes creating headers 545 561 546 // No common headers can exist because colla 562 // No common headers can exist because collapsed by construction 547 } 563 } 548 564 549 // ******************************************* 565 // *************************************************************************** 550 // Calculates and stores the minimum and maxim 566 // Calculates and stores the minimum and maximum equivalent neighbour 551 // values for all slices at our level. 567 // values for all slices at our level. 552 // 568 // 553 // Precondition: all slices are nodes. 569 // Precondition: all slices are nodes. 554 // For each potential start of a group of equi 570 // For each potential start of a group of equivalent nodes: 555 // o searches forwards in fslices to find grou 571 // o searches forwards in fslices to find group end 556 // o loops from start to end setting start and 572 // o loops from start to end setting start and end slices. 557 // ******************************************* 573 // *************************************************************************** 558 // 574 // 559 void G4SmartVoxelHeader::BuildEquivalentSliceN 575 void G4SmartVoxelHeader::BuildEquivalentSliceNos() 560 { 576 { 561 std::size_t sliceNo, minNo, maxNo, equivNo; << 577 size_t sliceNo, minNo, maxNo, equivNo; 562 std::size_t maxNode = fslices.size(); << 578 size_t maxNode = fslices.size(); 563 G4SmartVoxelNode *startNode, *sampleNode; 579 G4SmartVoxelNode *startNode, *sampleNode; 564 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 580 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 565 { 581 { 566 minNo = sliceNo; 582 minNo = sliceNo; 567 583 568 // Get first node (see preconditions - wil 584 // Get first node (see preconditions - will throw exception if a header) 569 // 585 // 570 startNode = fslices[minNo]->GetNode(); 586 startNode = fslices[minNo]->GetNode(); 571 587 572 // Find max equivalent 588 // Find max equivalent 573 // 589 // 574 for (equivNo=minNo+1; equivNo<maxNode; ++e 590 for (equivNo=minNo+1; equivNo<maxNode; ++equivNo) 575 { 591 { 576 sampleNode = fslices[equivNo]->GetNode() 592 sampleNode = fslices[equivNo]->GetNode(); 577 if (!((*startNode) == (*sampleNode))) { 593 if (!((*startNode) == (*sampleNode))) { break; } 578 } 594 } 579 maxNo = equivNo-1; 595 maxNo = equivNo-1; 580 if (maxNo != minNo) 596 if (maxNo != minNo) 581 { 597 { 582 // Set min and max nos 598 // Set min and max nos 583 // 599 // 584 for (equivNo=minNo; equivNo<=maxNo; ++eq 600 for (equivNo=minNo; equivNo<=maxNo; ++equivNo) 585 { 601 { 586 sampleNode = fslices[equivNo]->GetNode 602 sampleNode = fslices[equivNo]->GetNode(); 587 sampleNode->SetMinEquivalentSliceNo((G << 603 sampleNode->SetMinEquivalentSliceNo(minNo); 588 sampleNode->SetMaxEquivalentSliceNo((G << 604 sampleNode->SetMaxEquivalentSliceNo(maxNo); 589 } 605 } 590 // Advance outer loop to end of equivale 606 // Advance outer loop to end of equivalent group 591 // 607 // 592 sliceNo = maxNo; 608 sliceNo = maxNo; 593 } 609 } 594 } 610 } 595 } 611 } 596 612 597 // ******************************************* 613 // *************************************************************************** 598 // Collects common nodes at our level, deletin 614 // Collects common nodes at our level, deleting all but one to save 599 // memory, and adjusting stored slice pointers 615 // memory, and adjusting stored slice pointers appropriately. 600 // 616 // 601 // Preconditions: 617 // Preconditions: 602 // o the slices have not previously be "collec 618 // o the slices have not previously be "collected" 603 // o all of the slices are nodes. 619 // o all of the slices are nodes. 604 // ******************************************* 620 // *************************************************************************** 605 // 621 // 606 void G4SmartVoxelHeader::CollectEquivalentNode 622 void G4SmartVoxelHeader::CollectEquivalentNodes() 607 { 623 { 608 std::size_t sliceNo, maxNo, equivNo; << 624 size_t sliceNo, maxNo, equivNo; 609 std::size_t maxNode=fslices.size(); << 625 size_t maxNode=fslices.size(); 610 G4SmartVoxelNode* equivNode; 626 G4SmartVoxelNode* equivNode; 611 G4SmartVoxelProxy* equivProxy; 627 G4SmartVoxelProxy* equivProxy; 612 628 613 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 629 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 614 { 630 { 615 equivProxy=fslices[sliceNo]; 631 equivProxy=fslices[sliceNo]; 616 632 617 // Assumption (see preconditions): all sli 633 // Assumption (see preconditions): all slices are nodes 618 // 634 // 619 equivNode = equivProxy->GetNode(); 635 equivNode = equivProxy->GetNode(); 620 maxNo = equivNode->GetMaxEquivalentSliceNo 636 maxNo = equivNode->GetMaxEquivalentSliceNo(); 621 if (maxNo != sliceNo) 637 if (maxNo != sliceNo) 622 { 638 { 623 #ifdef G4GEOMETRY_VOXELDEBUG 639 #ifdef G4GEOMETRY_VOXELDEBUG 624 G4cout << "**** G4SmartVoxelHeader::Coll 640 G4cout << "**** G4SmartVoxelHeader::CollectEquivalentNodes" << G4endl 625 << " Collecting Nodes = " 641 << " Collecting Nodes = " 626 << sliceNo << " - " << maxNo << G 642 << sliceNo << " - " << maxNo << G4endl; 627 #endif 643 #endif 628 // Do collection between sliceNo and max 644 // Do collection between sliceNo and maxNo inclusive 629 // 645 // 630 for (equivNo=sliceNo+1; equivNo<=maxNo; 646 for (equivNo=sliceNo+1; equivNo<=maxNo; ++equivNo) 631 { 647 { 632 delete fslices[equivNo]->GetNode(); 648 delete fslices[equivNo]->GetNode(); 633 delete fslices[equivNo]; 649 delete fslices[equivNo]; 634 fslices[equivNo] = equivProxy; 650 fslices[equivNo] = equivProxy; 635 } 651 } 636 sliceNo = maxNo; 652 sliceNo = maxNo; 637 } 653 } 638 } 654 } 639 } 655 } 640 656 641 // ******************************************* 657 // *************************************************************************** 642 // Collects common headers at our level, delet 658 // Collects common headers at our level, deleting all but one to save 643 // memory, and adjusting stored slice pointers 659 // memory, and adjusting stored slice pointers appropriately. 644 // 660 // 645 // Preconditions: 661 // Preconditions: 646 // o if a header forms part of a range of equi 662 // o if a header forms part of a range of equivalent slices 647 // (ie. GetMaxEquivalentSliceNo()>GetMinEqui 663 // (ie. GetMaxEquivalentSliceNo()>GetMinEquivalentSliceNo()), 648 // it is assumed that all slices in the rang 664 // it is assumed that all slices in the range are headers. 649 // o this will be true if a constant Expressio 665 // o this will be true if a constant Expression is used to evaluate 650 // when to refine nodes. 666 // when to refine nodes. 651 // ******************************************* 667 // *************************************************************************** 652 // 668 // 653 void G4SmartVoxelHeader::CollectEquivalentHead 669 void G4SmartVoxelHeader::CollectEquivalentHeaders() 654 { 670 { 655 std::size_t sliceNo, maxNo, equivNo; << 671 size_t sliceNo, maxNo, equivNo; 656 std::size_t maxNode = fslices.size(); << 672 size_t maxNode = fslices.size(); 657 G4SmartVoxelHeader *equivHeader, *sampleHead 673 G4SmartVoxelHeader *equivHeader, *sampleHeader; 658 G4SmartVoxelProxy *equivProxy; 674 G4SmartVoxelProxy *equivProxy; 659 675 660 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 676 for (sliceNo=0; sliceNo<maxNode; ++sliceNo) 661 { 677 { 662 equivProxy = fslices[sliceNo]; 678 equivProxy = fslices[sliceNo]; 663 if (equivProxy->IsHeader()) 679 if (equivProxy->IsHeader()) 664 { 680 { 665 equivHeader = equivProxy->GetHeader(); 681 equivHeader = equivProxy->GetHeader(); 666 maxNo = equivHeader->GetMaxEquivalentSli 682 maxNo = equivHeader->GetMaxEquivalentSliceNo(); 667 if (maxNo != sliceNo) 683 if (maxNo != sliceNo) 668 { 684 { 669 // Attempt collection between sliceNo 685 // Attempt collection between sliceNo and maxNo inclusive: 670 // look for common headers. All slices 686 // look for common headers. All slices between sliceNo and maxNo 671 // are guaranteed to be headers but ma 687 // are guaranteed to be headers but may not have equal contents 672 // 688 // 673 #ifdef G4GEOMETRY_VOXELDEBUG 689 #ifdef G4GEOMETRY_VOXELDEBUG 674 G4cout << "**** G4SmartVoxelHeader::Co 690 G4cout << "**** G4SmartVoxelHeader::CollectEquivalentHeaders" << G4endl 675 << " Collecting Headers ="; 691 << " Collecting Headers ="; 676 #endif 692 #endif 677 for (equivNo=sliceNo+1; equivNo<=maxNo 693 for (equivNo=sliceNo+1; equivNo<=maxNo; ++equivNo) 678 { 694 { 679 sampleHeader = fslices[equivNo]->Get 695 sampleHeader = fslices[equivNo]->GetHeader(); 680 if ( (*sampleHeader) == (*equivHeade 696 if ( (*sampleHeader) == (*equivHeader) ) 681 { 697 { 682 #ifdef G4GEOMETRY_VOXELDEBUG 698 #ifdef G4GEOMETRY_VOXELDEBUG 683 G4cout << " " << equivNo; 699 G4cout << " " << equivNo; 684 #endif 700 #endif 685 // Delete sampleHeader + proxy and 701 // Delete sampleHeader + proxy and replace with equivHeader/Proxy 686 // 702 // 687 delete sampleHeader; 703 delete sampleHeader; 688 delete fslices[equivNo]; 704 delete fslices[equivNo]; 689 fslices[equivNo] = equivProxy; 705 fslices[equivNo] = equivProxy; 690 } 706 } 691 else 707 else 692 { 708 { 693 // Not equal. Set this header to b 709 // Not equal. Set this header to be 694 // the current header for comparis 710 // the current header for comparisons 695 // 711 // 696 equivProxy = fslices[equivNo]; 712 equivProxy = fslices[equivNo]; 697 equivHeader = equivProxy->GetHeade 713 equivHeader = equivProxy->GetHeader(); 698 } 714 } 699 715 700 } 716 } 701 #ifdef G4GEOMETRY_VOXELDEBUG 717 #ifdef G4GEOMETRY_VOXELDEBUG 702 G4cout << G4endl; 718 G4cout << G4endl; 703 #endif 719 #endif 704 // Skip past examined slices 720 // Skip past examined slices 705 // 721 // 706 sliceNo = maxNo; 722 sliceNo = maxNo; 707 } 723 } 708 } 724 } 709 } 725 } 710 } 726 } 711 727 712 // ******************************************* 728 // *************************************************************************** 713 // Builds the nodes corresponding to slices be 729 // Builds the nodes corresponding to slices between the specified limits 714 // and along the specified axis, using candida 730 // and along the specified axis, using candidate volume no.s in the vector 715 // pCandidates. If the `daughters' are replica 731 // pCandidates. If the `daughters' are replicated volumes (ie. the logical 716 // volume has a single replicated/parameterise 732 // volume has a single replicated/parameterised volume for a daughter) 717 // the candidate no.s are interpreted as PARAM 733 // the candidate no.s are interpreted as PARAMETERISED volume no.s & 718 // PARAMETERISATIONs are applied to compute tr 734 // PARAMETERISATIONs are applied to compute transformations & solid 719 // dimensions appropriately. The volume must b 735 // dimensions appropriately. The volume must be parameterised - ie. has a 720 // parameterisation object & non-consuming) - 736 // parameterisation object & non-consuming) - in this case. 721 // 737 // 722 // Returns pointer to built node "structure" ( 738 // Returns pointer to built node "structure" (guaranteed non NULL) consisting 723 // of G4SmartVoxelNodeProxies referring to G4S 739 // of G4SmartVoxelNodeProxies referring to G4SmartVoxelNodes. 724 // ******************************************* 740 // *************************************************************************** 725 // 741 // 726 G4ProxyVector* G4SmartVoxelHeader::BuildNodes( 742 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(G4LogicalVolume* pVolume, 727 743 G4VoxelLimits pLimits, 728 const 744 const G4VolumeNosVector* pCandidates, 729 745 EAxis pAxis) 730 { 746 { 731 G4double motherMinExtent= kInfinity, motherM 747 G4double motherMinExtent= kInfinity, motherMaxExtent= -kInfinity, 732 targetMinExtent= kInfinity, targetM 748 targetMinExtent= kInfinity, targetMaxExtent= -kInfinity; 733 G4VPhysicalVolume* pDaughter = nullptr; 749 G4VPhysicalVolume* pDaughter = nullptr; 734 G4VPVParameterisation* pParam = nullptr; 750 G4VPVParameterisation* pParam = nullptr; 735 G4VSolid *targetSolid; 751 G4VSolid *targetSolid; 736 G4AffineTransform targetTransform; 752 G4AffineTransform targetTransform; 737 G4bool replicated; 753 G4bool replicated; 738 std::size_t nCandidates = pCandidates->size( << 754 size_t nCandidates = pCandidates->size(); 739 std::size_t nVol, nNode, targetVolNo; << 755 size_t nVol, nNode, targetVolNo; 740 G4VoxelLimits noLimits; 756 G4VoxelLimits noLimits; 741 << 757 742 #ifdef G4GEOMETRY_VOXELDEBUG 758 #ifdef G4GEOMETRY_VOXELDEBUG 743 G4cout << "**** G4SmartVoxelHeader::BuildNod 759 G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl 744 << " Limits = " << pLimits << G4e 760 << " Limits = " << pLimits << G4endl 745 << " Axis = " << pAxis << G4end 761 << " Axis = " << pAxis << G4endl 746 << " Candidates = " << nCandidates << 762 << " Candidates = " << nCandidates << G4endl; 747 #endif 763 #endif 748 764 749 // Compute extent of logical volume's solid 765 // Compute extent of logical volume's solid along this axis 750 // NOTE: results stored locally and not pres 766 // NOTE: results stored locally and not preserved/reused 751 // 767 // 752 G4VSolid* outerSolid = pVolume->GetSolid(); 768 G4VSolid* outerSolid = pVolume->GetSolid(); 753 const G4AffineTransform origin; 769 const G4AffineTransform origin; 754 if( !outerSolid->CalculateExtent(pAxis, pLim 770 if( !outerSolid->CalculateExtent(pAxis, pLimits, origin, 755 motherMinEx 771 motherMinExtent, motherMaxExtent) ) 756 { 772 { 757 outerSolid->CalculateExtent(pAxis, noLimit 773 outerSolid->CalculateExtent(pAxis, noLimits, origin, 758 motherMinExten 774 motherMinExtent, motherMaxExtent); 759 } 775 } 760 G4VolumeExtentVector minExtents(nCandidates, 776 G4VolumeExtentVector minExtents(nCandidates,0.); 761 G4VolumeExtentVector maxExtents(nCandidates, 777 G4VolumeExtentVector maxExtents(nCandidates,0.); 762 778 763 if ( (pVolume->GetNoDaughters() == 1) 779 if ( (pVolume->GetNoDaughters() == 1) 764 && (pVolume->GetDaughter(0)->IsReplicated( << 780 && (pVolume->GetDaughter(0)->IsReplicated() == true) ) 765 { 781 { 766 // Replication data not required: only par 782 // Replication data not required: only parameterisation object 767 // and volume no. List used 783 // and volume no. List used 768 // 784 // 769 pDaughter = pVolume->GetDaughter(0); 785 pDaughter = pVolume->GetDaughter(0); 770 pParam = pDaughter->GetParameterisation(); 786 pParam = pDaughter->GetParameterisation(); 771 if (pParam == nullptr) 787 if (pParam == nullptr) 772 { 788 { 773 std::ostringstream message; 789 std::ostringstream message; 774 message << "PANIC! - Missing parameteris 790 message << "PANIC! - Missing parameterisation." << G4endl 775 << " Replicated volume w 791 << " Replicated volume with no parameterisation object !"; 776 G4Exception("G4SmartVoxelHeader::BuildNo 792 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003", 777 FatalException, message); 793 FatalException, message); 778 return nullptr; 794 return nullptr; 779 } 795 } 780 796 781 // Setup daughter's transformations 797 // Setup daughter's transformations 782 // 798 // 783 targetTransform = G4AffineTransform(pDaugh 799 targetTransform = G4AffineTransform(pDaughter->GetRotation(), 784 pDaugh 800 pDaughter->GetTranslation()); 785 replicated = true; 801 replicated = true; 786 } 802 } 787 else 803 else 788 { 804 { 789 replicated = false; 805 replicated = false; 790 } 806 } 791 807 792 // Compute extents 808 // Compute extents 793 // 809 // 794 for (nVol=0; nVol<nCandidates; ++nVol) 810 for (nVol=0; nVol<nCandidates; ++nVol) 795 { 811 { 796 targetVolNo = (*pCandidates)[nVol]; 812 targetVolNo = (*pCandidates)[nVol]; 797 if (!replicated) << 813 if (replicated == false) 798 { 814 { 799 pDaughter = pVolume->GetDaughter(targetV 815 pDaughter = pVolume->GetDaughter(targetVolNo); 800 816 801 // Setup daughter's transformations 817 // Setup daughter's transformations 802 // 818 // 803 targetTransform = G4AffineTransform(pDau 819 targetTransform = G4AffineTransform(pDaughter->GetRotation(), 804 pDau 820 pDaughter->GetTranslation()); 805 // Get underlying (and setup) solid 821 // Get underlying (and setup) solid 806 // 822 // 807 targetSolid = pDaughter->GetLogicalVolum 823 targetSolid = pDaughter->GetLogicalVolume()->GetSolid(); 808 } 824 } 809 else 825 else 810 { 826 { 811 // Find solid 827 // Find solid 812 // 828 // 813 targetSolid = pParam->ComputeSolid((G4in << 829 targetSolid = pParam->ComputeSolid(targetVolNo,pDaughter); 814 830 815 // Setup solid 831 // Setup solid 816 // 832 // 817 targetSolid->ComputeDimensions(pParam,(G << 833 targetSolid->ComputeDimensions(pParam,targetVolNo,pDaughter); 818 834 819 // Setup transform 835 // Setup transform 820 // 836 // 821 pParam->ComputeTransformation((G4int)tar << 837 pParam->ComputeTransformation(targetVolNo,pDaughter); 822 targetTransform = G4AffineTransform(pDau 838 targetTransform = G4AffineTransform(pDaughter->GetRotation(), 823 pDau 839 pDaughter->GetTranslation()); 824 } 840 } 825 // Calculate extents 841 // Calculate extents 826 // 842 // 827 if(!targetSolid->CalculateExtent(pAxis, pL 843 if(!targetSolid->CalculateExtent(pAxis, pLimits, targetTransform, 828 targetMin 844 targetMinExtent, targetMaxExtent)) 829 { 845 { 830 targetSolid->CalculateExtent(pAxis, noLi 846 targetSolid->CalculateExtent(pAxis, noLimits, targetTransform, 831 targetMinEx 847 targetMinExtent,targetMaxExtent); 832 } 848 } 833 minExtents[nVol] = targetMinExtent; 849 minExtents[nVol] = targetMinExtent; 834 maxExtents[nVol] = targetMaxExtent; 850 maxExtents[nVol] = targetMaxExtent; 835 851 836 #ifdef G4GEOMETRY_VOXELDEBUG 852 #ifdef G4GEOMETRY_VOXELDEBUG 837 G4cout << "-------------------------------- 853 G4cout << "---------------------------------------------------" << G4endl 838 << " Volume = " << pDaughter->Ge 854 << " Volume = " << pDaughter->GetName() << G4endl 839 << " Min Extent = " << targetMinExte 855 << " Min Extent = " << targetMinExtent << G4endl 840 << " Max Extent = " << targetMaxExte 856 << " Max Extent = " << targetMaxExtent << G4endl 841 << "-------------------------------- 857 << "---------------------------------------------------" << G4endl; 842 #endif 858 #endif 843 859 844 // Check not entirely outside mother when 860 // Check not entirely outside mother when processing toplevel nodes 845 // 861 // 846 if ( (!pLimits.IsLimited()) && ((targetMax 862 if ( (!pLimits.IsLimited()) && ((targetMaxExtent<=motherMinExtent) 847 ||(targetMin 863 ||(targetMinExtent>=motherMaxExtent)) ) 848 { 864 { 849 std::ostringstream message; 865 std::ostringstream message; 850 message << "PANIC! - Overlapping daughte 866 message << "PANIC! - Overlapping daughter with mother volume." << G4endl 851 << " Daughter physical v 867 << " Daughter physical volume " 852 << pDaughter->GetName() << G4end 868 << pDaughter->GetName() << G4endl 853 << " is entirely outside 869 << " is entirely outside mother logical volume " 854 << pVolume->GetName() << " !!"; 870 << pVolume->GetName() << " !!"; 855 G4Exception("G4SmartVoxelHeader::BuildNo 871 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0002", 856 FatalException, message); 872 FatalException, message); 857 } 873 } 858 874 859 #ifdef G4GEOMETRY_VOXELDEBUG 875 #ifdef G4GEOMETRY_VOXELDEBUG 860 // Check for straddling volumes when debug 876 // Check for straddling volumes when debugging. 861 // If a volume is >kStraddlePercent percen 877 // If a volume is >kStraddlePercent percent over the mother 862 // boundary, print a warning. 878 // boundary, print a warning. 863 // 879 // 864 if (!pLimits.IsLimited()) 880 if (!pLimits.IsLimited()) 865 { 881 { 866 G4double width; 882 G4double width; 867 G4int kStraddlePercent = 5; 883 G4int kStraddlePercent = 5; 868 width = maxExtents[nVol]-minExtents[nVol 884 width = maxExtents[nVol]-minExtents[nVol]; 869 if ( (((motherMinExtent-minExtents[nVol] 885 if ( (((motherMinExtent-minExtents[nVol])*100/width) > kStraddlePercent) 870 ||(((maxExtents[nVol]-motherMaxExtent 886 ||(((maxExtents[nVol]-motherMaxExtent)*100/width) > kStraddlePercent) ) 871 { 887 { 872 G4cout << "**** G4SmartVoxelHeader::Bu 888 G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl 873 << " WARNING : Daughter # " 889 << " WARNING : Daughter # " << nVol 874 << " name = " << pDaughter->Get 890 << " name = " << pDaughter->GetName() << G4endl 875 << " Crosses mother boundar 891 << " Crosses mother boundary of logical volume, name = " 876 << pVolume->GetName() << G4endl 892 << pVolume->GetName() << G4endl 877 << " by more than " << kStr 893 << " by more than " << kStraddlePercent 878 << "%" << G4endl; 894 << "%" << G4endl; 879 } 895 } 880 } 896 } 881 #endif 897 #endif 882 } 898 } 883 899 884 // Extents of all daughters known 900 // Extents of all daughters known 885 901 886 // Calculate minimum slice width, only inclu 902 // Calculate minimum slice width, only including volumes inside the limits 887 // 903 // 888 G4double minWidth = kInfinity; 904 G4double minWidth = kInfinity; 889 G4double currentWidth; 905 G4double currentWidth; 890 for (nVol=0; nVol<nCandidates; ++nVol) 906 for (nVol=0; nVol<nCandidates; ++nVol) 891 { 907 { 892 // currentWidth should -always- be a posit 908 // currentWidth should -always- be a positive value. Inaccurate computed extent 893 // from the solid or situations of malform 909 // from the solid or situations of malformed geometries (overlaps) may lead to 894 // negative values and therefore unpredict 910 // negative values and therefore unpredictable crashes ! 895 // 911 // 896 currentWidth = std::abs(maxExtents[nVol]-m 912 currentWidth = std::abs(maxExtents[nVol]-minExtents[nVol]); 897 if ( (currentWidth<minWidth) 913 if ( (currentWidth<minWidth) 898 && (maxExtents[nVol]>=pLimits.GetMinExte 914 && (maxExtents[nVol]>=pLimits.GetMinExtent(pAxis)) 899 && (minExtents[nVol]<=pLimits.GetMaxExte 915 && (minExtents[nVol]<=pLimits.GetMaxExtent(pAxis)) ) 900 { 916 { 901 minWidth = currentWidth; 917 minWidth = currentWidth; 902 } 918 } 903 } 919 } 904 920 905 // No. of Nodes formula - nearest integer to 921 // No. of Nodes formula - nearest integer to 906 // mother width/half min daughter width +1 922 // mother width/half min daughter width +1 907 // 923 // 908 G4double noNodesExactD = ((motherMaxExtent-m 924 G4double noNodesExactD = ((motherMaxExtent-motherMinExtent)*2.0/minWidth)+1.0; 909 925 910 // Compare with "smartless quality", i.e. th 926 // Compare with "smartless quality", i.e. the average number of slices 911 // used per contained volume. 927 // used per contained volume. 912 // 928 // 913 G4double smartlessComputed = noNodesExactD / 929 G4double smartlessComputed = noNodesExactD / nCandidates; 914 G4double smartlessUser = pVolume->GetSmartle 930 G4double smartlessUser = pVolume->GetSmartless(); 915 G4double smartless = (smartlessComputed <= s 931 G4double smartless = (smartlessComputed <= smartlessUser) 916 ? smartlessComputed : s 932 ? smartlessComputed : smartlessUser; 917 G4double noNodesSmart = smartless*nCandidate 933 G4double noNodesSmart = smartless*nCandidates; 918 auto noNodesExactI = G4int(noNodesSmart) << 934 G4int noNodesExactI = G4int(noNodesSmart); 919 G4long noNodes = ((noNodesSmart-noNodesExa 935 G4long noNodes = ((noNodesSmart-noNodesExactI)>=0.5) 920 ? noNodesExactI+1 : noNod 936 ? noNodesExactI+1 : noNodesExactI; 921 if( noNodes == 0 ) { noNodes=1; } 937 if( noNodes == 0 ) { noNodes=1; } 922 938 923 #ifdef G4GEOMETRY_VOXELDEBUG 939 #ifdef G4GEOMETRY_VOXELDEBUG 924 G4cout << " Smartless computed = " << sm 940 G4cout << " Smartless computed = " << smartlessComputed << G4endl 925 << " Smartless volume = " << smar 941 << " Smartless volume = " << smartlessUser 926 << " => # Smartless = " << smartless 942 << " => # Smartless = " << smartless << G4endl; 927 G4cout << " Min width = " << minWidth 943 G4cout << " Min width = " << minWidth 928 << " => # Nodes = " << noNodes << G4e 944 << " => # Nodes = " << noNodes << G4endl; 929 #endif 945 #endif 930 946 931 if (noNodes>kMaxVoxelNodes) 947 if (noNodes>kMaxVoxelNodes) 932 { 948 { 933 noNodes=kMaxVoxelNodes; 949 noNodes=kMaxVoxelNodes; 934 #ifdef G4GEOMETRY_VOXELDEBUG 950 #ifdef G4GEOMETRY_VOXELDEBUG 935 G4cout << " Nodes Clipped to = " << kM 951 G4cout << " Nodes Clipped to = " << kMaxVoxelNodes << G4endl; 936 #endif 952 #endif 937 } 953 } 938 G4double nodeWidth = (motherMaxExtent-mother 954 G4double nodeWidth = (motherMaxExtent-motherMinExtent)/noNodes; 939 955 940 // Create G4VoxelNodes. Will Add proxies bef 956 // Create G4VoxelNodes. Will Add proxies before setting fslices 941 // 957 // 942 auto* nodeList = new G4NodeVector(); << 958 G4NodeVector* nodeList = new G4NodeVector(); 943 if (nodeList == nullptr) 959 if (nodeList == nullptr) 944 { 960 { 945 G4Exception("G4SmartVoxelHeader::BuildNode 961 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003", 946 FatalException, "NodeList allo 962 FatalException, "NodeList allocation error."); 947 return nullptr; 963 return nullptr; 948 } 964 } 949 nodeList->reserve(noNodes); 965 nodeList->reserve(noNodes); 950 966 951 for (nNode=0; G4long(nNode)<noNodes; ++nNode 967 for (nNode=0; G4long(nNode)<noNodes; ++nNode) 952 { 968 { 953 G4SmartVoxelNode *pNode; 969 G4SmartVoxelNode *pNode; 954 pNode = new G4SmartVoxelNode((G4int)nNode) << 970 pNode = new G4SmartVoxelNode(nNode); 955 if (pNode == nullptr) 971 if (pNode == nullptr) 956 { 972 { 957 G4Exception("G4SmartVoxelHeader::BuildNo 973 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003", 958 FatalException, "Node alloca 974 FatalException, "Node allocation error."); 959 return nullptr; 975 return nullptr; 960 } 976 } 961 nodeList->push_back(pNode); 977 nodeList->push_back(pNode); 962 } 978 } 963 979 964 // All nodes created (empty) 980 // All nodes created (empty) 965 981 966 // Fill nodes: Step through extent lists 982 // Fill nodes: Step through extent lists 967 // 983 // 968 for (nVol=0; nVol<nCandidates; ++nVol) 984 for (nVol=0; nVol<nCandidates; ++nVol) 969 { 985 { 970 G4long nodeNo, minContainingNode, maxConta 986 G4long nodeNo, minContainingNode, maxContainingNode; 971 minContainingNode = (minExtents[nVol]-moth 987 minContainingNode = (minExtents[nVol]-motherMinExtent)/nodeWidth; 972 maxContainingNode = (maxExtents[nVol]-moth 988 maxContainingNode = (maxExtents[nVol]-motherMinExtent)/nodeWidth; 973 989 974 // Only add nodes that are inside the limi 990 // Only add nodes that are inside the limits of the axis 975 // 991 // 976 if ( (maxContainingNode>=0) && (minContain 992 if ( (maxContainingNode>=0) && (minContainingNode<noNodes) ) 977 { 993 { 978 // If max extent is on max boundary => m 994 // If max extent is on max boundary => maxContainingNode=noNodes: 979 // should be one less as nodeList has no 995 // should be one less as nodeList has noNodes entries 980 // 996 // 981 if (maxContainingNode>=noNodes) 997 if (maxContainingNode>=noNodes) 982 { 998 { 983 maxContainingNode = noNodes-1; 999 maxContainingNode = noNodes-1; 984 } 1000 } 985 // 1001 // 986 // Protection against protruding volumes 1002 // Protection against protruding volumes 987 // 1003 // 988 if (minContainingNode<0) 1004 if (minContainingNode<0) 989 { 1005 { 990 minContainingNode = 0; 1006 minContainingNode = 0; 991 } 1007 } 992 for (nodeNo=minContainingNode; nodeNo<=m 1008 for (nodeNo=minContainingNode; nodeNo<=maxContainingNode; ++nodeNo) 993 { 1009 { 994 (*nodeList)[nodeNo]->Insert((*pCandida 1010 (*nodeList)[nodeNo]->Insert((*pCandidates)[nVol]); 995 } 1011 } 996 } 1012 } 997 } 1013 } 998 1014 999 // All nodes filled 1015 // All nodes filled 1000 1016 1001 // Create proxy List : caller has deletion 1017 // Create proxy List : caller has deletion responsibility 1002 // (but we must delete nodeList *itself* - 1018 // (but we must delete nodeList *itself* - not the contents) 1003 // 1019 // 1004 auto* proxyList = new G4ProxyVector(); << 1020 G4ProxyVector* proxyList = new G4ProxyVector(); 1005 if (proxyList == nullptr) 1021 if (proxyList == nullptr) 1006 { 1022 { 1007 G4Exception("G4SmartVoxelHeader::BuildNod 1023 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003", 1008 FatalException, "Proxy list a 1024 FatalException, "Proxy list allocation error."); 1009 return nullptr; 1025 return nullptr; 1010 } 1026 } 1011 proxyList->reserve(noNodes); 1027 proxyList->reserve(noNodes); 1012 1028 1013 // 1029 // 1014 // Fill proxy List 1030 // Fill proxy List 1015 // 1031 // 1016 for (nNode=0; G4long(nNode)<noNodes; ++nNod 1032 for (nNode=0; G4long(nNode)<noNodes; ++nNode) 1017 { 1033 { 1018 // Get rid of possible excess capacity in 1034 // Get rid of possible excess capacity in the internal node vector 1019 // 1035 // 1020 ((*nodeList)[nNode])->Shrink(); 1036 ((*nodeList)[nNode])->Shrink(); 1021 auto* pProxyNode = new G4SmartVoxelProxy( << 1037 G4SmartVoxelProxy* pProxyNode = new G4SmartVoxelProxy((*nodeList)[nNode]); 1022 if (pProxyNode == nullptr) 1038 if (pProxyNode == nullptr) 1023 { 1039 { 1024 G4Exception("G4SmartVoxelHeader::BuildN 1040 G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003", 1025 FatalException, "Proxy node 1041 FatalException, "Proxy node allocation failed."); 1026 return nullptr; 1042 return nullptr; 1027 } 1043 } 1028 proxyList->push_back(pProxyNode); 1044 proxyList->push_back(pProxyNode); 1029 } 1045 } 1030 delete nodeList; 1046 delete nodeList; 1031 return proxyList; 1047 return proxyList; 1032 } 1048 } 1033 1049 1034 // ****************************************** 1050 // *************************************************************************** 1035 // Calculate a "quality value" for the specif 1051 // Calculate a "quality value" for the specified vector of voxels. 1036 // The value returned should be >0 and such t 1052 // The value returned should be >0 and such that the smaller the number 1037 // the higher the quality of the slice. 1053 // the higher the quality of the slice. 1038 // 1054 // 1039 // Preconditions: pSlice must consist of G4Sm 1055 // Preconditions: pSlice must consist of G4SmartVoxelNodeProxies only 1040 // Process: 1056 // Process: 1041 // o Examine each node in turn, summing: 1057 // o Examine each node in turn, summing: 1042 // no. of non-empty nodes 1058 // no. of non-empty nodes 1043 // no. of volumes in each node 1059 // no. of volumes in each node 1044 // o Calculate Quality=sigma(volumes in nod)/ 1060 // o Calculate Quality=sigma(volumes in nod)/(no. of non-empty nodes) 1045 // if all nodes empty, return kInfinity 1061 // if all nodes empty, return kInfinity 1046 // o Call G4Exception on finding a G4SmartVox 1062 // o Call G4Exception on finding a G4SmartVoxelHeaderProxy 1047 // ****************************************** 1063 // *************************************************************************** 1048 // 1064 // 1049 G4double G4SmartVoxelHeader::CalculateQuality 1065 G4double G4SmartVoxelHeader::CalculateQuality(G4ProxyVector *pSlice) 1050 { 1066 { 1051 G4double quality; 1067 G4double quality; 1052 std::size_t nNodes = pSlice->size(); << 1068 size_t nNodes = pSlice->size(); 1053 std::size_t noContained, maxContained=0, su << 1069 size_t noContained, maxContained=0, sumContained=0, sumNonEmptyNodes=0; 1054 G4SmartVoxelNode *node; 1070 G4SmartVoxelNode *node; 1055 1071 1056 for (std::size_t i=0; i<nNodes; ++i) << 1072 for (size_t i=0; i<nNodes; ++i) 1057 { 1073 { 1058 if ((*pSlice)[i]->IsNode()) 1074 if ((*pSlice)[i]->IsNode()) 1059 { 1075 { 1060 // Definitely a node. Add info to runni 1076 // Definitely a node. Add info to running totals 1061 // 1077 // 1062 node = (*pSlice)[i]->GetNode(); 1078 node = (*pSlice)[i]->GetNode(); 1063 noContained = node->GetNoContained(); 1079 noContained = node->GetNoContained(); 1064 if (noContained != 0) << 1080 if (noContained) 1065 { 1081 { 1066 ++sumNonEmptyNodes; 1082 ++sumNonEmptyNodes; 1067 sumContained += noContained; 1083 sumContained += noContained; 1068 // 1084 // 1069 // Calc maxContained for statistics 1085 // Calc maxContained for statistics 1070 // 1086 // 1071 if (noContained>maxContained) 1087 if (noContained>maxContained) 1072 { 1088 { 1073 maxContained = noContained; 1089 maxContained = noContained; 1074 } 1090 } 1075 } 1091 } 1076 } 1092 } 1077 else 1093 else 1078 { 1094 { 1079 G4Exception("G4SmartVoxelHeader::Calcul 1095 G4Exception("G4SmartVoxelHeader::CalculateQuality()", "GeomMgt0001", 1080 FatalException, "Not applic 1096 FatalException, "Not applicable to replicated volumes."); 1081 } 1097 } 1082 } 1098 } 1083 1099 1084 // Calculate quality with protection agains 1100 // Calculate quality with protection against no non-empty nodes 1085 // 1101 // 1086 if (sumNonEmptyNodes != 0) << 1102 if (sumNonEmptyNodes) 1087 { 1103 { 1088 quality = sumContained/sumNonEmptyNodes; 1104 quality = sumContained/sumNonEmptyNodes; 1089 } 1105 } 1090 else 1106 else 1091 { 1107 { 1092 quality = kInfinity; 1108 quality = kInfinity; 1093 } 1109 } 1094 1110 1095 #ifdef G4GEOMETRY_VOXELDEBUG 1111 #ifdef G4GEOMETRY_VOXELDEBUG 1096 G4cout << "**** G4SmartVoxelHeader::Calcula 1112 G4cout << "**** G4SmartVoxelHeader::CalculateQuality" << G4endl 1097 << " Quality = " << quality << G 1113 << " Quality = " << quality << G4endl 1098 << " Nodes = " << nNodes 1114 << " Nodes = " << nNodes 1099 << " of which " << sumNonEmptyNodes 1115 << " of which " << sumNonEmptyNodes << " non empty" << G4endl 1100 << " Max Contained = " << maxCon 1116 << " Max Contained = " << maxContained << G4endl; 1101 #endif 1117 #endif 1102 1118 1103 return quality; 1119 return quality; 1104 } 1120 } 1105 1121 1106 // ****************************************** 1122 // *************************************************************************** 1107 // Examined each contained node, refines (cre 1123 // Examined each contained node, refines (creates a replacement additional 1108 // dimension of voxels) when there is more th 1124 // dimension of voxels) when there is more than one voxel in the slice. 1109 // Does not refine further if already limited 1125 // Does not refine further if already limited in two dimensions (=> this 1110 // is the third level of limits) 1126 // is the third level of limits) 1111 // 1127 // 1112 // Preconditions: slices (nodes) have been bu 1128 // Preconditions: slices (nodes) have been built. 1113 // ****************************************** 1129 // *************************************************************************** 1114 // 1130 // 1115 void G4SmartVoxelHeader::RefineNodes(G4Logica 1131 void G4SmartVoxelHeader::RefineNodes(G4LogicalVolume* pVolume, 1116 G4VoxelL 1132 G4VoxelLimits pLimits) 1117 { 1133 { 1118 std::size_t refinedDepth=0, minVolumes; << 1134 size_t refinedDepth=0, minVolumes; 1119 std::size_t maxNode = fslices.size(); << 1135 size_t maxNode = fslices.size(); 1120 1136 1121 if (pLimits.IsXLimited()) 1137 if (pLimits.IsXLimited()) 1122 { 1138 { 1123 ++refinedDepth; 1139 ++refinedDepth; 1124 } 1140 } 1125 if (pLimits.IsYLimited()) 1141 if (pLimits.IsYLimited()) 1126 { 1142 { 1127 ++refinedDepth; 1143 ++refinedDepth; 1128 } 1144 } 1129 if (pLimits.IsZLimited()) 1145 if (pLimits.IsZLimited()) 1130 { 1146 { 1131 ++refinedDepth; 1147 ++refinedDepth; 1132 } 1148 } 1133 1149 1134 // Calculate minimum number of volumes nece 1150 // Calculate minimum number of volumes necessary to refine 1135 // 1151 // 1136 switch (refinedDepth) 1152 switch (refinedDepth) 1137 { 1153 { 1138 case 0: 1154 case 0: 1139 minVolumes=kMinVoxelVolumesLevel2; 1155 minVolumes=kMinVoxelVolumesLevel2; 1140 break; 1156 break; 1141 case 1: 1157 case 1: 1142 minVolumes=kMinVoxelVolumesLevel3; 1158 minVolumes=kMinVoxelVolumesLevel3; 1143 break; 1159 break; 1144 default: 1160 default: 1145 minVolumes=10000; // catch refinedDep 1161 minVolumes=10000; // catch refinedDepth=3 and errors 1146 break; 1162 break; 1147 } 1163 } 1148 1164 1149 if (refinedDepth<2) 1165 if (refinedDepth<2) 1150 { 1166 { 1151 std::size_t targetNo, noContainedDaughter << 1167 size_t targetNo, noContainedDaughters, minNo, maxNo, replaceNo, i; 1152 G4double sliceWidth = (fmaxExtent-fminExt 1168 G4double sliceWidth = (fmaxExtent-fminExtent)/maxNode; 1153 G4VoxelLimits newLimits; 1169 G4VoxelLimits newLimits; 1154 G4SmartVoxelNode* targetNode; 1170 G4SmartVoxelNode* targetNode; 1155 G4SmartVoxelProxy* targetNodeProxy; 1171 G4SmartVoxelProxy* targetNodeProxy; 1156 G4SmartVoxelHeader* replaceHeader; 1172 G4SmartVoxelHeader* replaceHeader; 1157 G4SmartVoxelProxy* replaceHeaderProxy; 1173 G4SmartVoxelProxy* replaceHeaderProxy; 1158 G4VolumeNosVector* targetList; 1174 G4VolumeNosVector* targetList; 1159 G4SmartVoxelProxy* lastProxy; 1175 G4SmartVoxelProxy* lastProxy; 1160 1176 1161 for (targetNo=0; targetNo<maxNode; ++targ 1177 for (targetNo=0; targetNo<maxNode; ++targetNo) 1162 { 1178 { 1163 // Assume all slices are nodes (see pre 1179 // Assume all slices are nodes (see preconditions) 1164 // 1180 // 1165 targetNodeProxy = fslices[targetNo]; 1181 targetNodeProxy = fslices[targetNo]; 1166 targetNode = targetNodeProxy->GetNode() 1182 targetNode = targetNodeProxy->GetNode(); 1167 1183 1168 if (targetNode->GetNoContained() >= min 1184 if (targetNode->GetNoContained() >= minVolumes) 1169 { 1185 { 1170 noContainedDaughters = targetNode->Ge 1186 noContainedDaughters = targetNode->GetNoContained(); 1171 targetList = new G4VolumeNosVector(); 1187 targetList = new G4VolumeNosVector(); 1172 if (targetList == nullptr) 1188 if (targetList == nullptr) 1173 { 1189 { 1174 G4Exception("G4SmartVoxelHeader::Re 1190 G4Exception("G4SmartVoxelHeader::RefineNodes()", 1175 "GeomMgt0003", FatalExc 1191 "GeomMgt0003", FatalException, 1176 "Target volume node lis 1192 "Target volume node list allocation error."); 1177 return; 1193 return; 1178 } 1194 } 1179 targetList->reserve(noContainedDaught 1195 targetList->reserve(noContainedDaughters); 1180 for (i=0; i<noContainedDaughters; ++i 1196 for (i=0; i<noContainedDaughters; ++i) 1181 { 1197 { 1182 targetList->push_back(targetNode->G << 1198 targetList->push_back(targetNode->GetVolume(i)); 1183 } 1199 } 1184 minNo = targetNode->GetMinEquivalentS 1200 minNo = targetNode->GetMinEquivalentSliceNo(); 1185 maxNo = targetNode->GetMaxEquivalentS 1201 maxNo = targetNode->GetMaxEquivalentSliceNo(); 1186 1202 1187 #ifdef G4GEOMETRY_VOXELDEBUG 1203 #ifdef G4GEOMETRY_VOXELDEBUG 1188 G4cout << "**** G4SmartVoxelHeader::R 1204 G4cout << "**** G4SmartVoxelHeader::RefineNodes" << G4endl 1189 << " Refining nodes " << m 1205 << " Refining nodes " << minNo 1190 << " - " << maxNo << " inclusi 1206 << " - " << maxNo << " inclusive" << G4endl; 1191 #endif 1207 #endif 1192 if (minNo > maxNo) // Delete node 1208 if (minNo > maxNo) // Delete node and list to be replaced 1193 { // and avoid fu 1209 { // and avoid further action ... 1194 delete targetNode; 1210 delete targetNode; 1195 delete targetList; 1211 delete targetList; 1196 return; 1212 return; 1197 } 1213 } 1198 1214 1199 // Delete node proxies at start of co 1215 // Delete node proxies at start of collected sets of nodes/headers 1200 // 1216 // 1201 lastProxy=nullptr; << 1217 lastProxy=0; 1202 for (replaceNo=minNo; replaceNo<=maxN 1218 for (replaceNo=minNo; replaceNo<=maxNo; ++replaceNo) 1203 { 1219 { 1204 if (lastProxy != fslices[replaceNo] 1220 if (lastProxy != fslices[replaceNo]) 1205 { 1221 { 1206 lastProxy=fslices[replaceNo]; 1222 lastProxy=fslices[replaceNo]; 1207 delete lastProxy; 1223 delete lastProxy; 1208 } 1224 } 1209 } 1225 } 1210 // Delete node to be replaced 1226 // Delete node to be replaced 1211 // 1227 // 1212 delete targetNode; 1228 delete targetNode; 1213 1229 1214 // Create new headers + proxies and r 1230 // Create new headers + proxies and replace in fslices 1215 // 1231 // 1216 newLimits = pLimits; 1232 newLimits = pLimits; 1217 newLimits.AddLimit(faxis,fminExtent+s 1233 newLimits.AddLimit(faxis,fminExtent+sliceWidth*minNo, 1218 fminExtent+sliceWi 1234 fminExtent+sliceWidth*(maxNo+1)); 1219 replaceHeader = new G4SmartVoxelHeade 1235 replaceHeader = new G4SmartVoxelHeader(pVolume,newLimits, 1220 << 1236 targetList,replaceNo); 1221 if (replaceHeader == nullptr) 1237 if (replaceHeader == nullptr) 1222 { 1238 { 1223 G4Exception("G4SmartVoxelHeader::Re 1239 G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003", 1224 FatalException, "Refine 1240 FatalException, "Refined VoxelHeader allocation error."); 1225 return; 1241 return; 1226 } 1242 } 1227 replaceHeader->SetMinEquivalentSliceN << 1243 replaceHeader->SetMinEquivalentSliceNo(minNo); 1228 replaceHeader->SetMaxEquivalentSliceN << 1244 replaceHeader->SetMaxEquivalentSliceNo(maxNo); 1229 replaceHeaderProxy = new G4SmartVoxel 1245 replaceHeaderProxy = new G4SmartVoxelProxy(replaceHeader); 1230 if (replaceHeaderProxy == nullptr) 1246 if (replaceHeaderProxy == nullptr) 1231 { 1247 { 1232 G4Exception("G4SmartVoxelHeader::Re 1248 G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003", 1233 FatalException, "Refine 1249 FatalException, "Refined VoxelProxy allocation error."); 1234 return; 1250 return; 1235 } 1251 } 1236 for (replaceNo=minNo; replaceNo<=maxN 1252 for (replaceNo=minNo; replaceNo<=maxNo; ++replaceNo) 1237 { 1253 { 1238 fslices[replaceNo] = replaceHeaderP 1254 fslices[replaceNo] = replaceHeaderProxy; 1239 } 1255 } 1240 // Finished replacing current `equiva 1256 // Finished replacing current `equivalent' group 1241 // 1257 // 1242 delete targetList; 1258 delete targetList; 1243 targetNo=maxNo; 1259 targetNo=maxNo; 1244 } 1260 } 1245 } 1261 } 1246 } 1262 } 1247 } 1263 } 1248 1264 1249 // ****************************************** 1265 // *************************************************************************** 1250 // Returns true if all slices have equal cont 1266 // Returns true if all slices have equal contents. 1251 // Preconditions: all equal slices have been 1267 // Preconditions: all equal slices have been collected. 1252 // Procedure: 1268 // Procedure: 1253 // o checks all slice proxy pointers are equa 1269 // o checks all slice proxy pointers are equal 1254 // o returns true if only one slice or all sl 1270 // o returns true if only one slice or all slice proxies pointers equal. 1255 // ****************************************** 1271 // *************************************************************************** 1256 // 1272 // 1257 G4bool G4SmartVoxelHeader::AllSlicesEqual() c 1273 G4bool G4SmartVoxelHeader::AllSlicesEqual() const 1258 { 1274 { 1259 std::size_t noSlices = fslices.size(); << 1275 size_t noSlices = fslices.size(); 1260 G4SmartVoxelProxy* refProxy; 1276 G4SmartVoxelProxy* refProxy; 1261 1277 1262 if (noSlices>1) 1278 if (noSlices>1) 1263 { 1279 { 1264 refProxy=fslices[0]; 1280 refProxy=fslices[0]; 1265 for (std::size_t i=1; i<noSlices; ++i) << 1281 for (size_t i=1; i<noSlices; ++i) 1266 { 1282 { 1267 if (refProxy!=fslices[i]) 1283 if (refProxy!=fslices[i]) 1268 { 1284 { 1269 return false; 1285 return false; 1270 } 1286 } 1271 } 1287 } 1272 } 1288 } 1273 return true; 1289 return true; 1274 } 1290 } 1275 1291 1276 // ****************************************** 1292 // *************************************************************************** 1277 // Streaming operator for debugging. 1293 // Streaming operator for debugging. 1278 // ****************************************** 1294 // *************************************************************************** 1279 // 1295 // 1280 std::ostream& operator << (std::ostream& os, 1296 std::ostream& operator << (std::ostream& os, const G4SmartVoxelHeader& h) 1281 { 1297 { 1282 os << "Axis = " << G4int(h.faxis) << G4endl 1298 os << "Axis = " << G4int(h.faxis) << G4endl; 1283 G4SmartVoxelProxy *collectNode=nullptr, *co 1299 G4SmartVoxelProxy *collectNode=nullptr, *collectHead=nullptr; 1284 std::size_t collectNodeNo = 0; << 1300 G4int collectNodeNo = 0; 1285 std::size_t collectHeadNo = 0; << 1301 G4int collectHeadNo = 0; 1286 std::size_t i, j; << 1302 size_t i, j; 1287 G4bool haveHeaders = false; 1303 G4bool haveHeaders = false; 1288 1304 1289 for (i=0; i<h.fslices.size(); ++i) 1305 for (i=0; i<h.fslices.size(); ++i) 1290 { 1306 { 1291 os << "Slice #" << i << " = "; 1307 os << "Slice #" << i << " = "; 1292 if (h.fslices[i]->IsNode()) 1308 if (h.fslices[i]->IsNode()) 1293 { 1309 { 1294 if (h.fslices[i]!=collectNode) 1310 if (h.fslices[i]!=collectNode) 1295 { 1311 { 1296 os << "{"; 1312 os << "{"; 1297 for (std::size_t k=0; k<h.fslices[i]- << 1313 for (size_t k=0; k<h.fslices[i]->GetNode()->GetNoContained(); ++k) 1298 { 1314 { 1299 os << " " << h.fslices[i]->GetNode( << 1315 os << " " << h.fslices[i]->GetNode()->GetVolume(k); 1300 } 1316 } 1301 os << " }" << G4endl; 1317 os << " }" << G4endl; 1302 collectNode = h.fslices[i]; 1318 collectNode = h.fslices[i]; 1303 collectNodeNo = i; 1319 collectNodeNo = i; 1304 } 1320 } 1305 else 1321 else 1306 { 1322 { 1307 os << "As slice #" << collectNodeNo < 1323 os << "As slice #" << collectNodeNo << G4endl; 1308 } 1324 } 1309 } 1325 } 1310 else 1326 else 1311 { 1327 { 1312 haveHeaders=true; 1328 haveHeaders=true; 1313 if (h.fslices[i] != collectHead) 1329 if (h.fslices[i] != collectHead) 1314 { 1330 { 1315 os << "Header" << G4endl; 1331 os << "Header" << G4endl; 1316 collectHead = h.fslices[i]; 1332 collectHead = h.fslices[i]; 1317 collectHeadNo = i; 1333 collectHeadNo = i; 1318 } 1334 } 1319 else 1335 else 1320 { 1336 { 1321 os << "As slice #" << collectHeadNo < 1337 os << "As slice #" << collectHeadNo << G4endl; 1322 } 1338 } 1323 } 1339 } 1324 } 1340 } 1325 1341 1326 if (haveHeaders) 1342 if (haveHeaders) 1327 { 1343 { 1328 collectHead=nullptr; << 1344 collectHead=0; 1329 for (j=0; j<h.fslices.size(); ++j) 1345 for (j=0; j<h.fslices.size(); ++j) 1330 { 1346 { 1331 if (h.fslices[j]->IsHeader()) 1347 if (h.fslices[j]->IsHeader()) 1332 { 1348 { 1333 os << "Header at Slice #" << j << " = 1349 os << "Header at Slice #" << j << " = "; 1334 if (h.fslices[j] != collectHead) 1350 if (h.fslices[j] != collectHead) 1335 { 1351 { 1336 os << G4endl 1352 os << G4endl 1337 << (*(h.fslices[j]->GetHeader()) 1353 << (*(h.fslices[j]->GetHeader())); 1338 collectHead = h.fslices[j]; 1354 collectHead = h.fslices[j]; 1339 collectHeadNo = j; 1355 collectHeadNo = j; 1340 } 1356 } 1341 else 1357 else 1342 { 1358 { 1343 os << "As slice #" << collectHeadNo 1359 os << "As slice #" << collectHeadNo << G4endl; 1344 } 1360 } 1345 } 1361 } 1346 } 1362 } 1347 } 1363 } 1348 return os; 1364 return os; 1349 } 1365 } 1350 1366