Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/management/src/G4SmartVoxelHeader.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/management/src/G4SmartVoxelHeader.cc (Version 11.3.0) and /geometry/management/src/G4SmartVoxelHeader.cc (Version 10.0)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
                                                   >>  25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4SmartVoxelHeader.cc 66356 2012-12-18 09:02:32Z gcosmo $
                                                   >>  28 //
 25 //                                                 29 // 
 26 // class G4SmartVoxelHeader implementation     <<  30 // class G4SmartVoxelHeader
                                                   >>  31 //
                                                   >>  32 // Implementation
 27 //                                                 33 //
 28 // Define G4GEOMETRY_VOXELDEBUG for debugging      34 // Define G4GEOMETRY_VOXELDEBUG for debugging information on G4cout
 29 //                                                 35 //
                                                   >>  36 // History:
 30 // 29.04.02 Use 3D voxelisation for non consum     37 // 29.04.02 Use 3D voxelisation for non consuming replication - G.C.
 31 // 18.04.01 Migrated to STL vector - G.C.          38 // 18.04.01 Migrated to STL vector - G.C.
 32 // 12.02.99 Introduction of new quality/smartl <<  39 // 12.02.99 Introduction of new quality/smartless: max for (slices/candid) S.G.
 33 // 11.02.99 Voxels at lower levels are now bui <<  40 // 11.02.99 Voxels at lower levels are now built for collapsed slices      S.G.
 34 // 21.07.95 Full implementation, supporting no <<  41 // 21.07.95 Full implementation, supporting non divided physical volumes
 35 // 14.07.95 Initial version - stubb definition <<  42 // 14.07.95 Initial version - stubb definitions only
 36 // -------------------------------------------     43 // --------------------------------------------------------------------
 37                                                    44 
 38 #include "G4SmartVoxelHeader.hh"                   45 #include "G4SmartVoxelHeader.hh"
 39                                                    46 
 40 #include "G4ios.hh"                                47 #include "G4ios.hh"
 41                                                    48 
 42 #include "G4LogicalVolume.hh"                      49 #include "G4LogicalVolume.hh"
 43 #include "G4VPhysicalVolume.hh"                    50 #include "G4VPhysicalVolume.hh"
 44 #include "G4VoxelLimits.hh"                        51 #include "G4VoxelLimits.hh"
 45                                                    52 
 46 #include "voxeldefs.hh"                            53 #include "voxeldefs.hh"
 47 #include "G4AffineTransform.hh"                    54 #include "G4AffineTransform.hh"
 48 #include "G4VSolid.hh"                             55 #include "G4VSolid.hh"
 49 #include "G4VPVParameterisation.hh"                56 #include "G4VPVParameterisation.hh"
 50                                                    57 
 51 // *******************************************     58 // ***************************************************************************
 52 // Constructor for topmost header, to begin vo     59 // Constructor for topmost header, to begin voxel construction at a
 53 // given logical volume.                           60 // given logical volume.
 54 // Constructs target List of volumes, calls "B     61 // Constructs target List of volumes, calls "Build and refine" constructor.
 55 // Assumes all daughters represent single volu     62 // Assumes all daughters represent single volumes (ie. no divisions
 56 // or parametric)                                  63 // or parametric)
 57 // *******************************************     64 // ***************************************************************************
 58 //                                                 65 //
 59 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic     66 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 60                                        G4int p     67                                        G4int pSlice)
 61   : fminEquivalent(pSlice),                        68   : fminEquivalent(pSlice),
 62     fmaxEquivalent(pSlice),                        69     fmaxEquivalent(pSlice),
 63     fparamAxis(kUndefined)                         70     fparamAxis(kUndefined)
 64 {                                                  71 {
 65   std::size_t nDaughters = pVolume->GetNoDaugh <<  72   G4int nDaughters = pVolume->GetNoDaughters();
                                                   >>  73   G4VoxelLimits limits;   // Create `unlimited' limits object
 66                                                    74 
 67   // Determine whether daughter is replicated      75   // Determine whether daughter is replicated
 68   //                                               76   //
 69   if ((nDaughters!=1) || (!pVolume->GetDaughte     77   if ((nDaughters!=1) || (!pVolume->GetDaughter(0)->IsReplicated()))
 70   {                                                78   {
 71     // Daughter not replicated => conventional     79     // Daughter not replicated => conventional voxel Build
 72     // where each daughters extents are comput     80     // where each daughters extents are computed
 73     //                                             81     //
 74     BuildVoxels(pVolume);                          82     BuildVoxels(pVolume);
 75   }                                                83   }
 76   else                                             84   else
 77   {                                                85   {
 78     // Single replicated daughter                  86     // Single replicated daughter
 79     //                                             87     //
 80     BuildReplicaVoxels(pVolume);                   88     BuildReplicaVoxels(pVolume);
 81   }                                                89   }
 82 }                                                  90 }
 83                                                    91 
 84 // *******************************************     92 // ***************************************************************************
 85 // Protected constructor:                          93 // Protected constructor:
 86 // builds and refines voxels between specified     94 // builds and refines voxels between specified limits, considering only
 87 // the physical volumes numbered `pCandidates'     95 // the physical volumes numbered `pCandidates'. `pSlice' is used to set max
 88 // and min equivalent slice nos for the header     96 // and min equivalent slice nos for the header - they apply to the level
 89 // of the header, not its nodes.                   97 // of the header, not its nodes.
 90 // *******************************************     98 // ***************************************************************************
 91 //                                                 99 //
 92 G4SmartVoxelHeader::G4SmartVoxelHeader(G4Logic    100 G4SmartVoxelHeader::G4SmartVoxelHeader(G4LogicalVolume* pVolume,
 93                                  const G4Voxel    101                                  const G4VoxelLimits& pLimits,
 94                                  const G4Volum    102                                  const G4VolumeNosVector* pCandidates,
 95                                        G4int p    103                                        G4int pSlice)
 96   : fminEquivalent(pSlice),                       104   : fminEquivalent(pSlice),
 97     fmaxEquivalent(pSlice),                       105     fmaxEquivalent(pSlice),
 98     fparamAxis(kUndefined)                        106     fparamAxis(kUndefined)
 99 {                                                 107 {
100 #ifdef G4GEOMETRY_VOXELDEBUG                      108 #ifdef G4GEOMETRY_VOXELDEBUG
101   G4cout << "**** G4SmartVoxelHeader::G4SmartV    109   G4cout << "**** G4SmartVoxelHeader::G4SmartVoxelHeader" << G4endl
102          << "     Limits " << pLimits << G4end    110          << "     Limits " << pLimits << G4endl
103          << "     Candidate #s = " ;              111          << "     Candidate #s = " ;
104   for (auto i=0; i<pCandidates->size(); ++i)   << 112   for (size_t i=0;i<pCandidates->size();i++)
105   {                                               113   {
106     G4cout << (*pCandidates)[i] << " ";           114     G4cout << (*pCandidates)[i] << " ";
107   }                                               115   }
108   G4cout << G4endl;                               116   G4cout << G4endl;
109 #endif                                            117 #endif   
110                                                   118 
111   BuildVoxelsWithinLimits(pVolume,pLimits,pCan    119   BuildVoxelsWithinLimits(pVolume,pLimits,pCandidates);
112 }                                                 120 }
113                                                   121 
114 // *******************************************    122 // ***************************************************************************
115 // Destructor:                                    123 // Destructor:
116 // deletes all proxies and underlying objects.    124 // deletes all proxies and underlying objects.
117 // *******************************************    125 // ***************************************************************************
118 //                                                126 //
119 G4SmartVoxelHeader::~G4SmartVoxelHeader()         127 G4SmartVoxelHeader::~G4SmartVoxelHeader()
120 {                                                 128 {
121   // Manually destroy underlying nodes/headers    129   // Manually destroy underlying nodes/headers
122   // Delete collected headers and nodes once o    130   // Delete collected headers and nodes once only
123   //                                              131   //
124   std::size_t node, proxy, maxNode=fslices.siz << 132   G4int node, proxy, maxNode=fslices.size();
125   G4SmartVoxelProxy* lastProxy = nullptr;      << 133   G4SmartVoxelProxy *lastProxy=0;
126   G4SmartVoxelNode *dyingNode, *lastNode=nullp << 134   G4SmartVoxelNode *dyingNode, *lastNode=0;
127   G4SmartVoxelHeader *dyingHeader, *lastHeader << 135   G4SmartVoxelHeader *dyingHeader, *lastHeader=0;
128                                                   136 
129   for (node=0; node<maxNode; ++node)           << 137   for (node=0; node<maxNode; node++)
130   {                                               138   {
131     if (fslices[node]->IsHeader())                139     if (fslices[node]->IsHeader())
132     {                                             140     {
133       dyingHeader = fslices[node]->GetHeader()    141       dyingHeader = fslices[node]->GetHeader();
134       if (lastHeader != dyingHeader)           << 142       if (lastHeader!=dyingHeader)
135       {                                           143       {
136         lastHeader = dyingHeader;                 144         lastHeader = dyingHeader;
137         lastNode = nullptr;                    << 145         lastNode = 0;
138         delete dyingHeader;                       146         delete dyingHeader;
139       }                                           147       }
140     }                                             148     }
141     else                                          149     else
142     {                                             150     {
143       dyingNode = fslices[node]->GetNode();       151       dyingNode = fslices[node]->GetNode();
144       if (dyingNode != lastNode)               << 152       if (dyingNode!=lastNode)
145       {                                           153       {
146         lastNode = dyingNode;                  << 154         lastNode=dyingNode;
147         lastHeader = nullptr;                  << 155         lastHeader=0;
148         delete dyingNode;                         156         delete dyingNode;
149       }                                           157       }
150     }                                             158     }
151   }                                               159   }
152   // Delete proxies                               160   // Delete proxies
153   //                                              161   //
154   for (proxy=0; proxy<maxNode; ++proxy)        << 162   for (proxy=0; proxy<maxNode; proxy++)
155   {                                               163   {
156     if (fslices[proxy] != lastProxy)           << 164     if (fslices[proxy]!=lastProxy)
157     {                                             165     {
158       lastProxy = fslices[proxy];                 166       lastProxy = fslices[proxy];
159       delete lastProxy;                           167       delete lastProxy;
160     }                                             168     }
161   }                                               169   }
162   // Don't need to clear slices                   170   // Don't need to clear slices
163   // fslices.clear();                             171   // fslices.clear();
164 }                                                 172 }
165                                                   173 
166 // *******************************************    174 // ***************************************************************************
167 // Equality operator: returns true if contents    175 // Equality operator: returns true if contents are equivalent.
168 // Implies a deep search through contained nod    176 // Implies a deep search through contained nodes/header.
169 // Compares headers' axes,sizes,extents. Retur    177 // Compares headers' axes,sizes,extents. Returns false if different.
170 // For each contained proxy, determines whethe    178 // For each contained proxy, determines whether node/header, compares and
171 // returns if different. Compares and returns     179 // returns if different. Compares and returns if proxied nodes/headers
172 // are different.                                 180 // are different.
173 // *******************************************    181 // ***************************************************************************
174 //                                                182 //
175 G4bool G4SmartVoxelHeader::operator == (const     183 G4bool G4SmartVoxelHeader::operator == (const G4SmartVoxelHeader& pHead) const
176 {                                                 184 {
177   if ( (GetAxis()      == pHead.GetAxis())        185   if ( (GetAxis()      == pHead.GetAxis())
178     && (GetNoSlices()  == pHead.GetNoSlices())    186     && (GetNoSlices()  == pHead.GetNoSlices())
179     && (GetMinExtent() == pHead.GetMinExtent()    187     && (GetMinExtent() == pHead.GetMinExtent())
180     && (GetMaxExtent() == pHead.GetMaxExtent()    188     && (GetMaxExtent() == pHead.GetMaxExtent()) )
181   {                                               189   {
182     std::size_t node, maxNode;                 << 190     G4int node, maxNode;
183     G4SmartVoxelProxy *leftProxy, *rightProxy;    191     G4SmartVoxelProxy *leftProxy, *rightProxy;
184     G4SmartVoxelHeader *leftHeader, *rightHead    192     G4SmartVoxelHeader *leftHeader, *rightHeader;
185     G4SmartVoxelNode *leftNode, *rightNode;       193     G4SmartVoxelNode *leftNode, *rightNode;
186                                                   194 
187     maxNode = GetNoSlices();                   << 195     maxNode=GetNoSlices();
188     for (node=0; node<maxNode; ++node)         << 196     for (node=0; node<maxNode; node++)
189     {                                             197     {
190       leftProxy  = GetSlice(node);                198       leftProxy  = GetSlice(node);
191       rightProxy = pHead.GetSlice(node);          199       rightProxy = pHead.GetSlice(node);
192       if (leftProxy->IsHeader())                  200       if (leftProxy->IsHeader())
193       {                                           201       {
194         if (rightProxy->IsNode())                 202         if (rightProxy->IsNode())
195         {                                         203         {
196           return false;                           204           return false;
197         }                                         205         }
198         else                                      206         else
199         {                                         207         {
200           leftHeader  = leftProxy->GetHeader()    208           leftHeader  = leftProxy->GetHeader();
201           rightHeader = rightProxy->GetHeader(    209           rightHeader = rightProxy->GetHeader();
202           if (!(*leftHeader == *rightHeader))  << 210           if (!(*leftHeader==*rightHeader))
203           {                                       211           {
204             return false;                         212             return false;
205           }                                       213           }
206         }                                         214         }
207       }                                           215       }
208       else                                        216       else
209       {                                           217       {
210         if (rightProxy->IsHeader())               218         if (rightProxy->IsHeader())
211         {                                         219         {
212           return false;                           220           return false;
213         }                                         221         }
214         else                                      222         else
215         {                                         223         {
216           leftNode  = leftProxy->GetNode();       224           leftNode  = leftProxy->GetNode();
217           rightNode = rightProxy->GetNode();      225           rightNode = rightProxy->GetNode();
218           if (!(*leftNode == *rightNode))      << 226           if (!(*leftNode==*rightNode))
219           {                                       227           {
220             return false;                         228             return false;
221           }                                       229           }
222         }                                         230         }
223       }                                           231       }
224     }                                             232     }
225     return true;                                  233     return true;
226   }                                               234   }
227   else                                            235   else
228   {                                               236   {
229     return false;                                 237     return false;
230   }                                               238   }
231 }                                                 239 }
232                                                   240 
233 // *******************************************    241 // ***************************************************************************
234 // Builds voxels for daughters specified volum    242 // Builds voxels for daughters specified volume, in NON-REPLICATED case
235 // o Create List of target volume nos (all dau    243 // o Create List of target volume nos (all daughters; 0->noDaughters-1)
236 // o BuildWithinLimits does Build & also deter    244 // o BuildWithinLimits does Build & also determines mother dimensions.
237 // *******************************************    245 // ***************************************************************************
238 //                                                246 //
239 void G4SmartVoxelHeader::BuildVoxels(G4Logical    247 void G4SmartVoxelHeader::BuildVoxels(G4LogicalVolume* pVolume)
240 {                                                 248 {
241   G4VoxelLimits limits;   // Create `unlimited    249   G4VoxelLimits limits;   // Create `unlimited' limits object
242   std::size_t nDaughters = pVolume->GetNoDaugh << 250   G4int nDaughters = pVolume->GetNoDaughters();
243                                                   251 
244   G4VolumeNosVector targetList;                   252   G4VolumeNosVector targetList;
245   targetList.reserve(nDaughters);                 253   targetList.reserve(nDaughters);
246   for (std::size_t i=0; i<nDaughters; ++i)     << 254   for (G4int i=0; i<nDaughters; i++)
247   {                                               255   {
248     targetList.push_back((G4int)i);            << 256     targetList.push_back(i);
249   }                                               257   }
250   BuildVoxelsWithinLimits(pVolume, limits, &ta    258   BuildVoxelsWithinLimits(pVolume, limits, &targetList);
251 }                                                 259 }
252                                                   260 
253 // *******************************************    261 // ***************************************************************************
254 // Builds voxels for specified volume containi    262 // Builds voxels for specified volume containing a single replicated volume.
255 // If axis is not specified (i.e. "kUndefined"    263 // If axis is not specified (i.e. "kUndefined"), 3D voxelisation is applied,
256 // and the best axis is determined according t    264 // and the best axis is determined according to heuristics as for placements.
257 // *******************************************    265 // ***************************************************************************
258 //                                                266 //
259 void G4SmartVoxelHeader::BuildReplicaVoxels(G4    267 void G4SmartVoxelHeader::BuildReplicaVoxels(G4LogicalVolume* pVolume)
260 {                                                 268 {
261   G4VPhysicalVolume* pDaughter = nullptr;      << 269   G4VPhysicalVolume *pDaughter=0;
262                                                   270 
263   // Replication data                             271   // Replication data
264   //                                              272   //
265   EAxis axis;                                     273   EAxis axis;
266   G4int nReplicas;                                274   G4int nReplicas;
267   G4double width,offset;                          275   G4double width,offset;
268   G4bool consuming;                               276   G4bool consuming;
269                                                   277 
270   // Consistency check: pVolume should contain    278   // Consistency check: pVolume should contain single replicated volume
271   //                                              279   //
272   if ( (pVolume->GetNoDaughters()==1)             280   if ( (pVolume->GetNoDaughters()==1)
273     && (pVolume->GetDaughter(0)->IsReplicated( << 281     && (pVolume->GetDaughter(0)->IsReplicated()==true) )
274   {                                               282   {
275     // Obtain replication data                    283     // Obtain replication data
276     //                                            284     //
277     pDaughter = pVolume->GetDaughter(0);       << 285     pDaughter=pVolume->GetDaughter(0);
278     pDaughter->GetReplicationData(axis,nReplic    286     pDaughter->GetReplicationData(axis,nReplicas,width,offset,consuming);
279     fparamAxis = axis;                            287     fparamAxis = axis;
280     if ( !consuming )                          << 288     if ( consuming==false )
281     {                                             289     {
282       G4VoxelLimits limits;   // Create `unlim    290       G4VoxelLimits limits;   // Create `unlimited' limits object
283       G4VolumeNosVector targetList;               291       G4VolumeNosVector targetList;
284       targetList.reserve(nReplicas);              292       targetList.reserve(nReplicas);
285       for (auto i=0; i<nReplicas; ++i)         << 293       for (G4int i=0; i<nReplicas; i++)
286       {                                           294       {
287         targetList.push_back(i);                  295         targetList.push_back(i);
288       }                                           296       }
289       if (axis != kUndefined)                     297       if (axis != kUndefined)
290       {                                           298       {
291         // Apply voxelisation along the specif    299         // Apply voxelisation along the specified axis only
292                                                   300 
293         G4ProxyVector* pSlices=BuildNodes(pVol    301         G4ProxyVector* pSlices=BuildNodes(pVolume,limits,&targetList,axis);
294         faxis = axis;                             302         faxis = axis;
295         fslices = *pSlices;                       303         fslices = *pSlices;
296         delete pSlices;                           304         delete pSlices;
297                                                   305 
298         // Calculate and set min and max exten    306         // Calculate and set min and max extents given our axis
299         //                                        307         //
300         const G4AffineTransform origin;           308         const G4AffineTransform origin;
301         pVolume->GetSolid()->CalculateExtent(f    309         pVolume->GetSolid()->CalculateExtent(faxis, limits, origin,
302                                              f    310                                              fminExtent, fmaxExtent);
303         // Calculate equivalent nos               311         // Calculate equivalent nos
304         //                                        312         //
305         BuildEquivalentSliceNos();                313         BuildEquivalentSliceNos();
306         CollectEquivalentNodes();   // Collect    314         CollectEquivalentNodes();   // Collect common nodes
307       }                                           315       }
308       else                                        316       else
309       {                                           317       {
310         // Build voxels similarly as for norma    318         // Build voxels similarly as for normal placements considering
311         // all three cartesian axes.              319         // all three cartesian axes.
312                                                   320 
313         BuildVoxelsWithinLimits(pVolume, limit    321         BuildVoxelsWithinLimits(pVolume, limits, &targetList);
314       }                                           322       }
315     }                                             323     }
316     else                                          324     else
317     {                                             325     {
318       // Replication is consuming -> Build vox    326       // Replication is consuming -> Build voxels directly
319       //                                          327       //
320       // o Cartesian axes - range is -width*nR    328       // o Cartesian axes - range is -width*nREplicas/2 to +width*nREplicas/2
321       //                    nReplicas replicat    329       //                    nReplicas replications result
322       // o Radial axis (rho) = range is 0 to w    330       // o Radial axis (rho) = range is 0 to width*nReplicas
323       //                    nReplicas replicat    331       //                    nReplicas replications result
324       // o Phi axi       - range is offset to     332       // o Phi axi       - range is offset to offset+width*nReplicas radians
325       //                                          333       //
326       // Equivalent slices no computation & co    334       // Equivalent slices no computation & collection not required - all
327       // slices are different                     335       // slices are different
328       //                                          336       //
329       switch (axis)                               337       switch (axis)
330       {                                           338       {
331         case kXAxis:                              339         case kXAxis:
332         case kYAxis:                              340         case kYAxis:
333         case kZAxis:                              341         case kZAxis:
334           fminExtent = -width*nReplicas*0.5;      342           fminExtent = -width*nReplicas*0.5;
335           fmaxExtent =  width*nReplicas*0.5;      343           fmaxExtent =  width*nReplicas*0.5;
336           break;                                  344           break;
337         case kRho:                                345         case kRho:
338           fminExtent = offset;                    346           fminExtent = offset;
339           fmaxExtent = width*nReplicas+offset;    347           fmaxExtent = width*nReplicas+offset;
340           break;                                  348           break;
341         case kPhi:                                349         case kPhi:
342           fminExtent = offset;                    350           fminExtent = offset;
343           fmaxExtent = offset+width*nReplicas;    351           fmaxExtent = offset+width*nReplicas;
344           break;                                  352           break;
345         default:                                  353         default:
346           G4Exception("G4SmartVoxelHeader::Bui    354           G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels()",
347                       "GeomMgt0002", FatalExce    355                       "GeomMgt0002", FatalException, "Illegal axis.");
348           break;                                  356           break;
349       }                                           357       }  
350       faxis = axis;   // Set axis                 358       faxis = axis;   // Set axis
351       BuildConsumedNodes(nReplicas);              359       BuildConsumedNodes(nReplicas);
352       if ( (axis==kXAxis) || (axis==kYAxis) ||    360       if ( (axis==kXAxis) || (axis==kYAxis) || (axis==kZAxis) )
353       {                                           361       {
354         // Sanity check on extent                 362         // Sanity check on extent
355         //                                        363         //
356         G4double emin = kInfinity, emax = -kIn    364         G4double emin = kInfinity, emax = -kInfinity;
357         G4VoxelLimits limits;                     365         G4VoxelLimits limits;
358         G4AffineTransform origin;                 366         G4AffineTransform origin;
359         pVolume->GetSolid()->CalculateExtent(a    367         pVolume->GetSolid()->CalculateExtent(axis, limits, origin, emin, emax);
360         if ( (std::fabs((emin-fminExtent)/fmin    368         if ( (std::fabs((emin-fminExtent)/fminExtent) +
361               std::fabs((emax-fmaxExtent)/fmax    369               std::fabs((emax-fmaxExtent)/fmaxExtent)) > 0.05)
362         {                                         370         {
363           std::ostringstream message;             371           std::ostringstream message;
364           message << "Sanity check: wrong soli    372           message << "Sanity check: wrong solid extent." << G4endl
365                   << "        Replicated geome    373                   << "        Replicated geometry, logical volume: "
366                   << pVolume->GetName();          374                   << pVolume->GetName();
367           G4Exception("G4SmartVoxelHeader::Bui    375           G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels",
368                       "GeomMgt0002", FatalExce    376                       "GeomMgt0002", FatalException, message);
369         }                                         377         }
370       }                                           378       }
371     }                                             379     }
372   }                                               380   }
373   else                                            381   else
374   {                                               382   {
375     G4Exception("G4SmartVoxelHeader::BuildRepl    383     G4Exception("G4SmartVoxelHeader::BuildReplicaVoxels", "GeomMgt0002",
376                 FatalException, "Only one repl    384                 FatalException, "Only one replicated daughter is allowed !");
377   }                                               385   }
378 }                                                 386 }
379                                                   387 
380 // *******************************************    388 // ***************************************************************************
381 // Builds `consumed nodes': nReplicas nodes ea    389 // Builds `consumed nodes': nReplicas nodes each containing one replication,
382 // numbered in sequence 0->nReplicas-1            390 // numbered in sequence 0->nReplicas-1
383 // o Modifies fslices `in place'                  391 // o Modifies fslices `in place'
384 // o faxis,fminExtent,fmaxExtent NOT modified.    392 // o faxis,fminExtent,fmaxExtent NOT modified.
385 // *******************************************    393 // ***************************************************************************
386 //                                                394 //
387 void G4SmartVoxelHeader::BuildConsumedNodes(G4    395 void G4SmartVoxelHeader::BuildConsumedNodes(G4int nReplicas)
388 {                                                 396 {
389   G4int nNode, nVol;                              397   G4int nNode, nVol;
390   G4SmartVoxelNode* pNode;                     << 398   G4SmartVoxelNode *pNode;
391   G4SmartVoxelProxy* pProxyNode;               << 399   G4SmartVoxelProxy *pProxyNode;
392                                                   400 
393   // Create and fill nodes in temporary G4Node    401   // Create and fill nodes in temporary G4NodeVector (on stack)
394   //                                              402   //
395   G4NodeVector nodeList;                          403   G4NodeVector nodeList;
396   nodeList.reserve(nReplicas);                    404   nodeList.reserve(nReplicas);
397   for (nNode=0; nNode<nReplicas; ++nNode)      << 405   for (nNode=0; nNode<nReplicas; nNode++)
398   {                                               406   {
399     pNode = new G4SmartVoxelNode(nNode);       << 407     pNode=new G4SmartVoxelNode(nNode);
400     if (pNode == nullptr)                      << 408     if (!pNode)
401     {                                             409     {
402       G4Exception("G4SmartVoxelHeader::BuildCo    410       G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003",
403                   FatalException, "Node alloca    411                   FatalException, "Node allocation error.");
404     }                                             412     }
405     nodeList.push_back(pNode);                    413     nodeList.push_back(pNode);
406   }                                               414   }
407   for (nVol=0; nVol<nReplicas; ++nVol)         << 415   for (nVol=0; nVol<nReplicas; nVol++)
408   {                                               416   {
409     nodeList[nVol]->Insert(nVol);   // Insert     417     nodeList[nVol]->Insert(nVol);   // Insert replication of number
410   }                                 // identic    418   }                                 // identical to voxel number
411                                                   419 
412   // Create & fill proxy List `in place' by mo    420   // Create & fill proxy List `in place' by modifying instance data fslices
413   //                                              421   //
414   fslices.clear();                                422   fslices.clear();
415   for (nNode=0; nNode<nReplicas; ++nNode)      << 423   for (nNode=0; nNode<nReplicas; nNode++)
416   {                                               424   {
417     pProxyNode = new G4SmartVoxelProxy(nodeLis    425     pProxyNode = new G4SmartVoxelProxy(nodeList[nNode]);
418     if (pProxyNode == nullptr)                 << 426     if (!pProxyNode)
419     {                                             427     {
420       G4Exception("G4SmartVoxelHeader::BuildCo    428       G4Exception("G4SmartVoxelHeader::BuildConsumedNodes()", "GeomMgt0003",
421                   FatalException, "Proxy node     429                   FatalException, "Proxy node allocation error.");
422     }                                             430     }
423     fslices.push_back(pProxyNode);                431     fslices.push_back(pProxyNode);
424   }                                               432   }
425 }                                                 433 }
426                                                   434 
427 // *******************************************    435 // ***************************************************************************
428 // Builds and refines voxels between specified    436 // Builds and refines voxels between specified limits, considering only
429 // the physical volumes numbered `pCandidates'    437 // the physical volumes numbered `pCandidates'.
430 // o Chooses axis                                 438 // o Chooses axis
431 // o Determines min and max extents (of mother    439 // o Determines min and max extents (of mother solid) within limits.
432 // *******************************************    440 // ***************************************************************************
433 //                                                441 //
434 void                                              442 void
435 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4    443 G4SmartVoxelHeader::BuildVoxelsWithinLimits(G4LogicalVolume* pVolume,
436                                             G4    444                                             G4VoxelLimits pLimits,
437                                       const G4    445                                       const G4VolumeNosVector* pCandidates)
438 {                                                 446 {
439   // Choose best axis for slicing by:             447   // Choose best axis for slicing by:
440   // 1. Trying all unlimited cartesian axes       448   // 1. Trying all unlimited cartesian axes
441   // 2. Select axis which gives greatest no sl    449   // 2. Select axis which gives greatest no slices
442                                                   450 
443   G4ProxyVector *pGoodSlices=nullptr, *pTestSl << 451   G4ProxyVector *pGoodSlices=0, *pTestSlices, *tmpSlices;
444   G4double goodSliceScore=kInfinity, testSlice    452   G4double goodSliceScore=kInfinity, testSliceScore;
445   EAxis goodSliceAxis = kXAxis;                   453   EAxis goodSliceAxis = kXAxis;
446   std::size_t node, maxNode;                   << 454   EAxis testAxis      = kXAxis;
                                                   >> 455   G4int node, maxNode, iaxis;
447   G4VoxelLimits noLimits;                         456   G4VoxelLimits noLimits;
448                                                   457 
449   // Try all non-limited cartesian axes           458   // Try all non-limited cartesian axes
450   //                                              459   //
451   for ( EAxis testAxis : { kXAxis, kYAxis, kZA << 460   for (iaxis=0; iaxis<3; iaxis++)
452   {                                               461   {
                                                   >> 462     switch(iaxis)
                                                   >> 463     {
                                                   >> 464       case 0:
                                                   >> 465         testAxis = kXAxis;
                                                   >> 466         break;
                                                   >> 467       case 1:
                                                   >> 468         testAxis = kYAxis;
                                                   >> 469         break;
                                                   >> 470       case 2:
                                                   >> 471         testAxis = kZAxis;
                                                   >> 472         break;
                                                   >> 473     }
453     if (!pLimits.IsLimited(testAxis))             474     if (!pLimits.IsLimited(testAxis))
454     {                                             475     {
455       pTestSlices = BuildNodes(pVolume,pLimits    476       pTestSlices = BuildNodes(pVolume,pLimits,pCandidates,testAxis);
456       testSliceScore = CalculateQuality(pTestS    477       testSliceScore = CalculateQuality(pTestSlices);
457       if ( (pGoodSlices == nullptr) || (testSl << 478       if ( (!pGoodSlices) || (testSliceScore<goodSliceScore) )
458       {                                           479       {
459         goodSliceAxis  = testAxis;                480         goodSliceAxis  = testAxis;
460         goodSliceScore = testSliceScore;          481         goodSliceScore = testSliceScore;
461         std::swap( pGoodSlices, pTestSlices);  << 482         tmpSlices      = pGoodSlices;
                                                   >> 483         pGoodSlices    = pTestSlices;
                                                   >> 484         pTestSlices    = tmpSlices;
462       }                                           485       }
463       if (pTestSlices != nullptr)              << 486       if (pTestSlices)
464       {                                           487       {
465         // Destroy pTestSlices and all its con    488         // Destroy pTestSlices and all its contents
466         //                                        489         //
467         maxNode=pTestSlices->size();              490         maxNode=pTestSlices->size();
468         for (node=0; node<maxNode; ++node)     << 491         for (node=0; node<maxNode; node++)
469         {                                         492         {
470           delete (*pTestSlices)[node]->GetNode    493           delete (*pTestSlices)[node]->GetNode();
471         }                                         494         }
472         G4SmartVoxelProxy* tmpProx;               495         G4SmartVoxelProxy* tmpProx;
473         while (!pTestSlices->empty())  // Loop << 496         while (pTestSlices->size()>0)
474         {                                         497         {
475           tmpProx = pTestSlices->back();          498           tmpProx = pTestSlices->back();
476           pTestSlices->pop_back();                499           pTestSlices->pop_back();
477           for (auto i=pTestSlices->cbegin(); i << 500           for (G4ProxyVector::iterator i=pTestSlices->begin();
                                                   >> 501                                        i!=pTestSlices->end(); )
478           {                                       502           {
479             if (*i==tmpProx)                      503             if (*i==tmpProx)
480             {                                     504             {
481               i = pTestSlices->erase(i);          505               i = pTestSlices->erase(i);
482             }                                     506             }
483             else                                  507             else
484             {                                     508             {
485               ++i;                                509               ++i;
486             }                                     510             }
487           }                                       511           }
488           delete tmpProx;                      << 512           if ( tmpProx ) { delete tmpProx; }
489         }                                         513         }
490         delete pTestSlices;                       514         delete pTestSlices;
491       }                                           515       }
492     }                                             516     }
493   }                                               517   }
494   // Check for error case.. when limits alread    518   // Check for error case.. when limits already 3d,
495   // so cannot select a new axis                  519   // so cannot select a new axis
496   //                                              520   //
497   if (pGoodSlices == nullptr)                  << 521   if (!pGoodSlices)
498   {                                               522   {
499     G4Exception("G4SmartVoxelHeader::BuildVoxe    523     G4Exception("G4SmartVoxelHeader::BuildVoxelsWithinLimits()",
500                 "GeomMgt0002", FatalException,    524                 "GeomMgt0002", FatalException,
501                 "Cannot select more than 3 axi    525                 "Cannot select more than 3 axis for optimisation.");
502     return;                                       526     return;
503   }                                               527   }
504                                                   528 
505   //                                              529   // 
506   // We have selected pGoodSlices, with a scor    530   // We have selected pGoodSlices, with a score testSliceScore
507   //                                              531   //
508                                                   532 
509   // Store chosen axis, slice ptr                 533   // Store chosen axis, slice ptr
510   //                                              534   //
511   fslices =* pGoodSlices; // Set slice informa << 535   fslices=*pGoodSlices; // Set slice information, copy ptrs in collection
512   delete pGoodSlices;     // Destroy slices ve << 536   delete pGoodSlices;   // Destroy slices vector, but not contained
513                           // proxies or nodes  << 537                         // proxies or nodes
514   faxis = goodSliceAxis;                       << 538   faxis=goodSliceAxis;
515                                                   539 
516 #ifdef G4GEOMETRY_VOXELDEBUG                      540 #ifdef G4GEOMETRY_VOXELDEBUG
517   G4cout << G4endl << "     Volume = " << pVol    541   G4cout << G4endl << "     Volume = " << pVolume->GetName()
518          << G4endl << "     Selected axis = "     542          << G4endl << "     Selected axis = " << faxis << G4endl;
519   for (auto islice=0; islice<fslices.size(); + << 543   for (size_t islice=0; islice<fslices.size(); islice++)
520   {                                               544   {
521     G4cout << "     Node #" << islice << " = {    545     G4cout << "     Node #" << islice << " = {";
522     for (auto j=0; j<fslices[islice]->GetNode( << 546     for (G4int j=0; j<fslices[islice]->GetNode()->GetNoContained(); j++)
523     {                                             547     {
524       G4cout << " " << fslices[islice]->GetNod    548       G4cout << " " << fslices[islice]->GetNode()->GetVolume(j);
525     }                                             549     }
526     G4cout << " }" << G4endl;                     550     G4cout << " }" << G4endl;
527   }                                               551   }
528   G4cout << G4endl;                               552   G4cout << G4endl;
529 #endif                                            553 #endif
530                                                   554 
531   // Calculate and set min and max extents giv    555   // Calculate and set min and max extents given our axis
532   //                                              556   //
533   G4VSolid* outerSolid = pVolume->GetSolid();     557   G4VSolid* outerSolid = pVolume->GetSolid();
534   const G4AffineTransform origin;                 558   const G4AffineTransform origin;
535   if(!outerSolid->CalculateExtent(faxis,pLimit    559   if(!outerSolid->CalculateExtent(faxis,pLimits,origin,fminExtent,fmaxExtent))
536   {                                               560   {
537     outerSolid->CalculateExtent(faxis,noLimits    561     outerSolid->CalculateExtent(faxis,noLimits,origin,fminExtent,fmaxExtent);
538   }                                               562   }
539                                                   563 
540   // Calculate equivalent nos                     564   // Calculate equivalent nos
541   //                                              565   //
542   BuildEquivalentSliceNos();                      566   BuildEquivalentSliceNos();
543   CollectEquivalentNodes();      // Collect co << 567   CollectEquivalentNodes();     // Collect common nodes
544   RefineNodes(pVolume, pLimits); // Refine nod << 568   RefineNodes(pVolume,pLimits); // Refine nodes creating headers
545                                                   569 
546   // No common headers can exist because colla    570   // No common headers can exist because collapsed by construction
547 }                                                 571 }
548                                                   572 
549 // *******************************************    573 // ***************************************************************************
550 // Calculates and stores the minimum and maxim    574 // Calculates and stores the minimum and maximum equivalent neighbour
551 // values for all slices at our level.            575 // values for all slices at our level.
552 //                                                576 //
553 // Precondition: all slices are nodes.            577 // Precondition: all slices are nodes.
554 // For each potential start of a group of equi    578 // For each potential start of a group of equivalent nodes:
555 // o searches forwards in fslices to find grou    579 // o searches forwards in fslices to find group end
556 // o loops from start to end setting start and    580 // o loops from start to end setting start and end slices.
557 // *******************************************    581 // ***************************************************************************
558 //                                                582 //
559 void G4SmartVoxelHeader::BuildEquivalentSliceN    583 void G4SmartVoxelHeader::BuildEquivalentSliceNos()
560 {                                                 584 {
561   std::size_t sliceNo, minNo, maxNo, equivNo;  << 585   G4int sliceNo, minNo, maxNo, equivNo;
562   std::size_t maxNode = fslices.size();        << 586   G4int maxNode = fslices.size();
563   G4SmartVoxelNode *startNode, *sampleNode;       587   G4SmartVoxelNode *startNode, *sampleNode;
564   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 588   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
565   {                                               589   {
566     minNo = sliceNo;                              590     minNo = sliceNo;
567                                                   591 
568     // Get first node (see preconditions - wil    592     // Get first node (see preconditions - will throw exception if a header)
569     //                                            593     //
570     startNode = fslices[minNo]->GetNode();        594     startNode = fslices[minNo]->GetNode();
571                                                   595 
572     // Find max equivalent                        596     // Find max equivalent
573     //                                            597     //
574     for (equivNo=minNo+1; equivNo<maxNode; ++e << 598     for (equivNo=minNo+1; equivNo<maxNode; equivNo++)
575     {                                             599     {
576       sampleNode = fslices[equivNo]->GetNode()    600       sampleNode = fslices[equivNo]->GetNode();
577       if (!((*startNode) == (*sampleNode))) {     601       if (!((*startNode) == (*sampleNode))) { break; }
578     }                                             602     }
579     maxNo = equivNo-1;                            603     maxNo = equivNo-1;
580     if (maxNo != minNo)                           604     if (maxNo != minNo)
581     {                                             605     {
582       // Set min and max nos                      606       // Set min and max nos
583       //                                          607       //
584       for (equivNo=minNo; equivNo<=maxNo; ++eq << 608       for (equivNo=minNo; equivNo<=maxNo; equivNo++)
585       {                                           609       {
586         sampleNode = fslices[equivNo]->GetNode    610         sampleNode = fslices[equivNo]->GetNode();
587         sampleNode->SetMinEquivalentSliceNo((G << 611         sampleNode->SetMinEquivalentSliceNo(minNo);
588         sampleNode->SetMaxEquivalentSliceNo((G << 612         sampleNode->SetMaxEquivalentSliceNo(maxNo);
589       }                                           613       }
590       // Advance outer loop to end of equivale    614       // Advance outer loop to end of equivalent group
591       //                                          615       //
592       sliceNo = maxNo;                            616       sliceNo = maxNo;
593     }                                             617     }
594   }                                               618   }
595 }                                                 619 }
596                                                   620 
597 // *******************************************    621 // ***************************************************************************
598 // Collects common nodes at our level, deletin    622 // Collects common nodes at our level, deleting all but one to save
599 // memory, and adjusting stored slice pointers    623 // memory, and adjusting stored slice pointers appropriately.
600 //                                                624 //
601 // Preconditions:                                 625 // Preconditions:
602 // o the slices have not previously be "collec    626 // o the slices have not previously be "collected"
603 // o all of the slices are nodes.                 627 // o all of the slices are nodes.
604 // *******************************************    628 // ***************************************************************************
605 //                                                629 //
606 void G4SmartVoxelHeader::CollectEquivalentNode    630 void G4SmartVoxelHeader::CollectEquivalentNodes()
607 {                                                 631 {
608   std::size_t sliceNo, maxNo, equivNo;         << 632   G4int sliceNo, maxNo, equivNo;
609   std::size_t maxNode=fslices.size();          << 633   G4int maxNode=fslices.size();
610   G4SmartVoxelNode* equivNode;                 << 634   G4SmartVoxelNode *equivNode;
611   G4SmartVoxelProxy* equivProxy;               << 635   G4SmartVoxelProxy *equivProxy;
612                                                   636 
613   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 637   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
614   {                                               638   {
615     equivProxy=fslices[sliceNo];                  639     equivProxy=fslices[sliceNo];
616                                                   640 
617     // Assumption (see preconditions): all sli    641     // Assumption (see preconditions): all slices are nodes
618     //                                            642     //
619     equivNode = equivProxy->GetNode();            643     equivNode = equivProxy->GetNode();
620     maxNo = equivNode->GetMaxEquivalentSliceNo    644     maxNo = equivNode->GetMaxEquivalentSliceNo();
621     if (maxNo != sliceNo)                         645     if (maxNo != sliceNo)
622     {                                             646     {
623 #ifdef G4GEOMETRY_VOXELDEBUG                      647 #ifdef G4GEOMETRY_VOXELDEBUG
624       G4cout << "**** G4SmartVoxelHeader::Coll    648       G4cout << "**** G4SmartVoxelHeader::CollectEquivalentNodes" << G4endl
625              << "     Collecting Nodes = "        649              << "     Collecting Nodes = " 
626              << sliceNo << " - " << maxNo << G    650              << sliceNo << " - " << maxNo << G4endl;
627 #endif                                            651 #endif
628       // Do collection between sliceNo and max    652       // Do collection between sliceNo and maxNo inclusive
629       //                                          653       //
630       for (equivNo=sliceNo+1; equivNo<=maxNo;  << 654       for (equivNo=sliceNo+1; equivNo<=maxNo; equivNo++)
631       {                                           655       {
632         delete fslices[equivNo]->GetNode();       656         delete fslices[equivNo]->GetNode();
633         delete fslices[equivNo];                  657         delete fslices[equivNo];
634         fslices[equivNo] = equivProxy;            658         fslices[equivNo] = equivProxy;
635       }                                           659       }
636       sliceNo = maxNo;                            660       sliceNo = maxNo;
637     }                                             661     }
638   }                                               662   }
639 }                                                 663 }
640                                                   664 
641 // *******************************************    665 // ***************************************************************************
642 // Collects common headers at our level, delet    666 // Collects common headers at our level, deleting all but one to save
643 // memory, and adjusting stored slice pointers    667 // memory, and adjusting stored slice pointers appropriately.
644 //                                                668 // 
645 // Preconditions:                                 669 // Preconditions:
646 // o if a header forms part of a range of equi    670 // o if a header forms part of a range of equivalent slices
647 //   (ie. GetMaxEquivalentSliceNo()>GetMinEqui    671 //   (ie. GetMaxEquivalentSliceNo()>GetMinEquivalentSliceNo()),
648 //   it is assumed that all slices in the rang    672 //   it is assumed that all slices in the range are headers.
649 // o this will be true if a constant Expressio    673 // o this will be true if a constant Expression is used to evaluate
650 //   when to refine nodes.                        674 //   when to refine nodes.
651 // *******************************************    675 // ***************************************************************************
652 //                                                676 //
653 void G4SmartVoxelHeader::CollectEquivalentHead    677 void G4SmartVoxelHeader::CollectEquivalentHeaders()
654 {                                                 678 {
655   std::size_t sliceNo, maxNo, equivNo;         << 679   G4int sliceNo, maxNo, equivNo;
656   std::size_t maxNode = fslices.size();        << 680   G4int maxNode = fslices.size();
657   G4SmartVoxelHeader *equivHeader, *sampleHead    681   G4SmartVoxelHeader *equivHeader, *sampleHeader;
658   G4SmartVoxelProxy *equivProxy;                  682   G4SmartVoxelProxy *equivProxy;
659                                                   683 
660   for (sliceNo=0; sliceNo<maxNode; ++sliceNo)  << 684   for (sliceNo=0; sliceNo<maxNode; sliceNo++)
661   {                                               685   {
662     equivProxy = fslices[sliceNo];                686     equivProxy = fslices[sliceNo];
663     if (equivProxy->IsHeader())                   687     if (equivProxy->IsHeader())
664     {                                             688     {
665       equivHeader = equivProxy->GetHeader();      689       equivHeader = equivProxy->GetHeader();
666       maxNo = equivHeader->GetMaxEquivalentSli    690       maxNo = equivHeader->GetMaxEquivalentSliceNo();
667       if (maxNo != sliceNo)                       691       if (maxNo != sliceNo)
668       {                                           692       {
669         // Attempt collection between sliceNo     693         // Attempt collection between sliceNo and maxNo inclusive:
670         // look for common headers. All slices    694         // look for common headers. All slices between sliceNo and maxNo
671         // are guaranteed to be headers but ma    695         // are guaranteed to be headers but may not have equal contents
672         //                                        696         //
673 #ifdef G4GEOMETRY_VOXELDEBUG                      697 #ifdef G4GEOMETRY_VOXELDEBUG
674         G4cout << "**** G4SmartVoxelHeader::Co    698         G4cout << "**** G4SmartVoxelHeader::CollectEquivalentHeaders" << G4endl
675                << "     Collecting Headers =";    699                << "     Collecting Headers =";
676 #endif                                            700 #endif
677         for (equivNo=sliceNo+1; equivNo<=maxNo << 701         for (equivNo=sliceNo+1; equivNo<=maxNo; equivNo++)
678         {                                         702         {
679           sampleHeader = fslices[equivNo]->Get    703           sampleHeader = fslices[equivNo]->GetHeader();
680           if ( (*sampleHeader) == (*equivHeade    704           if ( (*sampleHeader) == (*equivHeader) )
681           {                                       705           {
682 #ifdef G4GEOMETRY_VOXELDEBUG                      706 #ifdef G4GEOMETRY_VOXELDEBUG
683             G4cout << " " << equivNo;             707             G4cout << " " << equivNo;
684 #endif                                            708 #endif
685             // Delete sampleHeader + proxy and    709             // Delete sampleHeader + proxy and replace with equivHeader/Proxy
686             //                                    710             //
687             delete sampleHeader;                  711             delete sampleHeader;
688             delete fslices[equivNo];              712             delete fslices[equivNo];
689             fslices[equivNo] = equivProxy;        713             fslices[equivNo] = equivProxy;
690           }                                       714           }
691           else                                    715           else
692           {                                       716           {
693             // Not equal. Set this header to b    717             // Not equal. Set this header to be
694             // the current header for comparis    718             // the current header for comparisons
695             //                                    719             //
696             equivProxy  = fslices[equivNo];       720             equivProxy  = fslices[equivNo];
697             equivHeader = equivProxy->GetHeade    721             equivHeader = equivProxy->GetHeader();
698           }                                       722           }
699                                                   723 
700         }                                         724         }
701 #ifdef G4GEOMETRY_VOXELDEBUG                      725 #ifdef G4GEOMETRY_VOXELDEBUG
702         G4cout << G4endl;                         726         G4cout << G4endl;
703 #endif                                            727 #endif
704         // Skip past examined slices              728         // Skip past examined slices
705         //                                        729         //
706         sliceNo = maxNo;                          730         sliceNo = maxNo;
707       }                                           731       }
708     }                                             732     }
709   }                                               733   }
710 }                                                 734 }
711                                                   735 
712 // *******************************************    736 // ***************************************************************************
713 // Builds the nodes corresponding to slices be    737 // Builds the nodes corresponding to slices between the specified limits
714 // and along the specified axis, using candida    738 // and along the specified axis, using candidate volume no.s in the vector
715 // pCandidates. If the `daughters' are replica    739 // pCandidates. If the `daughters' are replicated volumes (ie. the logical
716 // volume has a single replicated/parameterise    740 // volume has a single replicated/parameterised volume for a daughter)
717 // the candidate no.s are interpreted as PARAM    741 // the candidate no.s are interpreted as PARAMETERISED volume no.s & 
718 // PARAMETERISATIONs are applied to compute tr    742 // PARAMETERISATIONs are applied to compute transformations & solid
719 // dimensions appropriately. The volume must b    743 // dimensions appropriately. The volume must be parameterised - ie. has a
720 // parameterisation object & non-consuming) -     744 // parameterisation object & non-consuming) - in this case.
721 //                                                745 // 
722 // Returns pointer to built node "structure" (    746 // Returns pointer to built node "structure" (guaranteed non NULL) consisting
723 // of G4SmartVoxelNodeProxies referring to G4S    747 // of G4SmartVoxelNodeProxies referring to G4SmartVoxelNodes.
724 // *******************************************    748 // ***************************************************************************
725 //                                                749 //
726 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(    750 G4ProxyVector* G4SmartVoxelHeader::BuildNodes(G4LogicalVolume* pVolume,
727                                                   751                                               G4VoxelLimits pLimits,
728                                         const     752                                         const G4VolumeNosVector* pCandidates,
729                                                   753                                               EAxis pAxis)
730 {                                                 754 {
731   G4double motherMinExtent= kInfinity, motherM    755   G4double motherMinExtent= kInfinity, motherMaxExtent= -kInfinity,
732            targetMinExtent= kInfinity, targetM    756            targetMinExtent= kInfinity, targetMaxExtent= -kInfinity;
733   G4VPhysicalVolume* pDaughter = nullptr;      << 757   G4VPhysicalVolume *pDaughter=0;
734   G4VPVParameterisation* pParam = nullptr;     << 758   G4VPVParameterisation *pParam=0;
735   G4VSolid *targetSolid;                          759   G4VSolid *targetSolid;
736   G4AffineTransform targetTransform;              760   G4AffineTransform targetTransform;
737   G4bool replicated;                              761   G4bool replicated;
738   std::size_t nCandidates = pCandidates->size( << 762   G4int nCandidates = pCandidates->size();
739   std::size_t nVol, nNode, targetVolNo;        << 763   G4int nVol, nNode, targetVolNo;
740   G4VoxelLimits noLimits;                         764   G4VoxelLimits noLimits;
741                                                << 765     
742 #ifdef G4GEOMETRY_VOXELDEBUG                      766 #ifdef G4GEOMETRY_VOXELDEBUG
743   G4cout << "**** G4SmartVoxelHeader::BuildNod    767   G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
744          << "     Limits = " << pLimits << G4e    768          << "     Limits = " << pLimits << G4endl
745          << "       Axis = " << pAxis << G4end    769          << "       Axis = " << pAxis << G4endl
746          << " Candidates = " << nCandidates <<    770          << " Candidates = " << nCandidates << G4endl;
747 #endif                                            771 #endif
748                                                   772 
749   // Compute extent of logical volume's solid     773   // Compute extent of logical volume's solid along this axis
750   // NOTE: results stored locally and not pres    774   // NOTE: results stored locally and not preserved/reused
751   //                                              775   //
752   G4VSolid* outerSolid = pVolume->GetSolid();     776   G4VSolid* outerSolid = pVolume->GetSolid();
753   const G4AffineTransform origin;                 777   const G4AffineTransform origin;
754   if( !outerSolid->CalculateExtent(pAxis, pLim    778   if( !outerSolid->CalculateExtent(pAxis, pLimits, origin,
755                                    motherMinEx    779                                    motherMinExtent, motherMaxExtent) )
756   {                                               780   {
757     outerSolid->CalculateExtent(pAxis, noLimit    781     outerSolid->CalculateExtent(pAxis, noLimits, origin,
758                                 motherMinExten    782                                 motherMinExtent, motherMaxExtent);
759   }                                               783   }
760   G4VolumeExtentVector minExtents(nCandidates,    784   G4VolumeExtentVector minExtents(nCandidates,0.);
761   G4VolumeExtentVector maxExtents(nCandidates,    785   G4VolumeExtentVector maxExtents(nCandidates,0.);
762                                                   786 
763   if ( (pVolume->GetNoDaughters() == 1)        << 787   if ( (pVolume->GetNoDaughters()==1)
764     && (pVolume->GetDaughter(0)->IsReplicated( << 788     && (pVolume->GetDaughter(0)->IsReplicated()==true) )
765   {                                               789   {
766     // Replication data not required: only par    790     // Replication data not required: only parameterisation object 
767     // and volume no. List used                   791     // and volume no. List used
768     //                                            792     //
769     pDaughter = pVolume->GetDaughter(0);          793     pDaughter = pVolume->GetDaughter(0);
770     pParam = pDaughter->GetParameterisation();    794     pParam = pDaughter->GetParameterisation();
771     if (pParam == nullptr)                     << 795     if (!pParam)
772     {                                             796     {
773       std::ostringstream message;                 797       std::ostringstream message;
774       message << "PANIC! - Missing parameteris    798       message << "PANIC! - Missing parameterisation." << G4endl
775               << "         Replicated volume w    799               << "         Replicated volume with no parameterisation object !";
776       G4Exception("G4SmartVoxelHeader::BuildNo    800       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
777                   FatalException, message);       801                   FatalException, message);
778       return nullptr;                          << 802       return 0;
779     }                                             803     }
780                                                   804 
781     // Setup daughter's transformations           805     // Setup daughter's transformations
782     //                                            806     //
783     targetTransform = G4AffineTransform(pDaugh    807     targetTransform = G4AffineTransform(pDaughter->GetRotation(),
784                                         pDaugh    808                                         pDaughter->GetTranslation());
785     replicated = true;                            809     replicated = true;
786   }                                               810   }
787     else                                          811     else
788   {                                               812   {
789     replicated = false;                           813     replicated = false;
790   }                                               814   }
791                                                   815     
792   // Compute extents                              816   // Compute extents
793   //                                              817   //
794   for (nVol=0; nVol<nCandidates; ++nVol)       << 818   for (nVol=0; nVol<nCandidates; nVol++)
795   {                                               819   {
796     targetVolNo = (*pCandidates)[nVol];        << 820     targetVolNo=(*pCandidates)[nVol];
797     if (!replicated)                           << 821     if (replicated == false)
798     {                                             822     {
799       pDaughter = pVolume->GetDaughter(targetV << 823       pDaughter=pVolume->GetDaughter(targetVolNo);
800                                                   824 
801       // Setup daughter's transformations         825       // Setup daughter's transformations
802       //                                          826       //
803       targetTransform = G4AffineTransform(pDau    827       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
804                                           pDau    828                                           pDaughter->GetTranslation());
805       // Get underlying (and setup) solid         829       // Get underlying (and setup) solid
806       //                                          830       //
807       targetSolid = pDaughter->GetLogicalVolum    831       targetSolid = pDaughter->GetLogicalVolume()->GetSolid();
808     }                                             832     }
809     else                                          833     else
810     {                                             834     {
811       // Find  solid                              835       // Find  solid
812       //                                          836       //
813       targetSolid = pParam->ComputeSolid((G4in << 837       targetSolid = pParam->ComputeSolid(targetVolNo,pDaughter);
814                                                   838 
815       // Setup solid                              839       // Setup solid
816       //                                          840       //
817       targetSolid->ComputeDimensions(pParam,(G << 841       targetSolid->ComputeDimensions(pParam,targetVolNo,pDaughter);
818                                                   842 
819       // Setup transform                          843       // Setup transform
820       //                                          844       //
821       pParam->ComputeTransformation((G4int)tar << 845       pParam->ComputeTransformation(targetVolNo,pDaughter);
822       targetTransform = G4AffineTransform(pDau    846       targetTransform = G4AffineTransform(pDaughter->GetRotation(),
823                                           pDau    847                                           pDaughter->GetTranslation());
824     }                                             848     }
825     // Calculate extents                          849     // Calculate extents
826     //                                            850     //
827     if(!targetSolid->CalculateExtent(pAxis, pL    851     if(!targetSolid->CalculateExtent(pAxis, pLimits, targetTransform,
828                                      targetMin    852                                      targetMinExtent, targetMaxExtent))
829     {                                             853     {
830       targetSolid->CalculateExtent(pAxis, noLi    854       targetSolid->CalculateExtent(pAxis, noLimits, targetTransform,
831                                    targetMinEx    855                                    targetMinExtent,targetMaxExtent);
832     }                                             856     }
833     minExtents[nVol] = targetMinExtent;           857     minExtents[nVol] = targetMinExtent;
834     maxExtents[nVol] = targetMaxExtent;           858     maxExtents[nVol] = targetMaxExtent;
835                                                   859 
836 #ifdef G4GEOMETRY_VOXELDEBUG                      860 #ifdef G4GEOMETRY_VOXELDEBUG
837    G4cout << "--------------------------------    861    G4cout << "---------------------------------------------------" << G4endl
838           << "     Volume = " << pDaughter->Ge    862           << "     Volume = " << pDaughter->GetName() << G4endl
839           << " Min Extent = " << targetMinExte    863           << " Min Extent = " << targetMinExtent << G4endl
840           << " Max Extent = " << targetMaxExte    864           << " Max Extent = " << targetMaxExtent << G4endl
841           << "--------------------------------    865           << "---------------------------------------------------" << G4endl;
842 #endif                                            866 #endif
843                                                   867 
844     // Check not entirely outside mother when     868     // Check not entirely outside mother when processing toplevel nodes
845     //                                            869     //
846     if ( (!pLimits.IsLimited()) && ((targetMax    870     if ( (!pLimits.IsLimited()) && ((targetMaxExtent<=motherMinExtent)
847                                   ||(targetMin    871                                   ||(targetMinExtent>=motherMaxExtent)) )
848     {                                             872     {
849       std::ostringstream message;                 873       std::ostringstream message;
850       message << "PANIC! - Overlapping daughte    874       message << "PANIC! - Overlapping daughter with mother volume." << G4endl
851               << "         Daughter physical v    875               << "         Daughter physical volume "
852               << pDaughter->GetName() << G4end    876               << pDaughter->GetName() << G4endl
853               << "         is entirely outside    877               << "         is entirely outside mother logical volume "
854               << pVolume->GetName() << " !!";     878               << pVolume->GetName() << " !!";
855       G4Exception("G4SmartVoxelHeader::BuildNo    879       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0002",
856                   FatalException, message);       880                   FatalException, message);
857     }                                             881     }
858                                                   882 
859 #ifdef G4GEOMETRY_VOXELDEBUG                      883 #ifdef G4GEOMETRY_VOXELDEBUG
860     // Check for straddling volumes when debug    884     // Check for straddling volumes when debugging.
861     // If a volume is >kStraddlePercent percen    885     // If a volume is >kStraddlePercent percent over the mother
862     // boundary, print a warning.                 886     // boundary, print a warning.
863     //                                            887     //
864     if (!pLimits.IsLimited())                     888     if (!pLimits.IsLimited())
865     {                                             889     {
866       G4double width;                             890       G4double width;
867       G4int kStraddlePercent = 5;              << 891       G4int kStraddlePercent=5;
868       width = maxExtents[nVol]-minExtents[nVol    892       width = maxExtents[nVol]-minExtents[nVol];
869       if ( (((motherMinExtent-minExtents[nVol]    893       if ( (((motherMinExtent-minExtents[nVol])*100/width) > kStraddlePercent)
870          ||(((maxExtents[nVol]-motherMaxExtent    894          ||(((maxExtents[nVol]-motherMaxExtent)*100/width) > kStraddlePercent) )
871       {                                           895       {
872         G4cout << "**** G4SmartVoxelHeader::Bu    896         G4cout << "**** G4SmartVoxelHeader::BuildNodes" << G4endl
873                << "     WARNING : Daughter # "    897                << "     WARNING : Daughter # " << nVol
874                << " name = " << pDaughter->Get    898                << " name = " << pDaughter->GetName() << G4endl
875                << "     Crosses mother boundar    899                << "     Crosses mother boundary of logical volume, name = " 
876                << pVolume->GetName() << G4endl    900                << pVolume->GetName() << G4endl
877                << "     by more than " << kStr    901                << "     by more than " << kStraddlePercent 
878                << "%" << G4endl;                  902                << "%" << G4endl;
879       }                                           903       }
880     }                                             904     }
881 #endif                                            905 #endif
882   }                                               906   }
883                                                   907 
884   // Extents of all daughters known               908   // Extents of all daughters known
885                                                   909 
886   // Calculate minimum slice width, only inclu    910   // Calculate minimum slice width, only including volumes inside the limits
887   //                                              911   //
888   G4double minWidth = kInfinity;                  912   G4double minWidth = kInfinity;
889   G4double currentWidth;                          913   G4double currentWidth;
890   for (nVol=0; nVol<nCandidates; ++nVol)       << 914   for (nVol=0; nVol<nCandidates; nVol++)
891   {                                               915   {
892     // currentWidth should -always- be a posit    916     // currentWidth should -always- be a positive value. Inaccurate computed extent
893     // from the solid or situations of malform    917     // from the solid or situations of malformed geometries (overlaps) may lead to
894     // negative values and therefore unpredict    918     // negative values and therefore unpredictable crashes !
895     //                                            919     //
896     currentWidth = std::abs(maxExtents[nVol]-m    920     currentWidth = std::abs(maxExtents[nVol]-minExtents[nVol]);
897     if ( (currentWidth<minWidth)                  921     if ( (currentWidth<minWidth)
898       && (maxExtents[nVol]>=pLimits.GetMinExte    922       && (maxExtents[nVol]>=pLimits.GetMinExtent(pAxis))
899       && (minExtents[nVol]<=pLimits.GetMaxExte    923       && (minExtents[nVol]<=pLimits.GetMaxExtent(pAxis)) )
900     {                                             924     {
901       minWidth = currentWidth;                    925       minWidth = currentWidth;
902     }                                             926     }
903   }                                               927   }
904                                                   928 
905   // No. of Nodes formula - nearest integer to    929   // No. of Nodes formula - nearest integer to
906   // mother width/half min daughter width +1      930   // mother width/half min daughter width +1
907   //                                              931   //
908   G4double noNodesExactD = ((motherMaxExtent-m    932   G4double noNodesExactD = ((motherMaxExtent-motherMinExtent)*2.0/minWidth)+1.0;
909                                                   933 
910   // Compare with "smartless quality", i.e. th    934   // Compare with "smartless quality", i.e. the average number of slices
911   // used per contained volume.                   935   // used per contained volume.
912   //                                              936   //
913   G4double smartlessComputed = noNodesExactD /    937   G4double smartlessComputed = noNodesExactD / nCandidates;
914   G4double smartlessUser = pVolume->GetSmartle    938   G4double smartlessUser = pVolume->GetSmartless();
915   G4double smartless = (smartlessComputed <= s    939   G4double smartless = (smartlessComputed <= smartlessUser)
916                        ? smartlessComputed : s    940                        ? smartlessComputed : smartlessUser;
917   G4double noNodesSmart = smartless*nCandidate    941   G4double noNodesSmart = smartless*nCandidates;
918   auto     noNodesExactI = G4int(noNodesSmart) << 942   G4int    noNodesExactI = G4int(noNodesSmart);
919   G4long   noNodes = ((noNodesSmart-noNodesExa << 943   G4int    noNodes = ((noNodesSmart-noNodesExactI)>=0.5)
920                      ? noNodesExactI+1 : noNod    944                      ? noNodesExactI+1 : noNodesExactI;
921   if( noNodes == 0 ) { noNodes=1; }               945   if( noNodes == 0 ) { noNodes=1; }
922                                                   946 
923 #ifdef G4GEOMETRY_VOXELDEBUG                      947 #ifdef G4GEOMETRY_VOXELDEBUG
924   G4cout << "     Smartless computed = " << sm    948   G4cout << "     Smartless computed = " << smartlessComputed << G4endl
925          << "     Smartless volume = " << smar    949          << "     Smartless volume = " << smartlessUser
926          << " => # Smartless = " << smartless     950          << " => # Smartless = " << smartless << G4endl;
927   G4cout << "     Min width = " << minWidth       951   G4cout << "     Min width = " << minWidth
928          << " => # Nodes = " << noNodes << G4e    952          << " => # Nodes = " << noNodes << G4endl;
929 #endif                                            953 #endif
930                                                   954 
931   if (noNodes>kMaxVoxelNodes)                     955   if (noNodes>kMaxVoxelNodes)
932   {                                               956   {
933     noNodes=kMaxVoxelNodes;                       957     noNodes=kMaxVoxelNodes;
934 #ifdef G4GEOMETRY_VOXELDEBUG                      958 #ifdef G4GEOMETRY_VOXELDEBUG
935     G4cout << "     Nodes Clipped to = " << kM    959     G4cout << "     Nodes Clipped to = " << kMaxVoxelNodes << G4endl;
936 #endif                                            960 #endif   
937   }                                               961   }
938   G4double nodeWidth = (motherMaxExtent-mother    962   G4double nodeWidth = (motherMaxExtent-motherMinExtent)/noNodes;
939                                                   963 
940   // Create G4VoxelNodes. Will Add proxies bef    964   // Create G4VoxelNodes. Will Add proxies before setting fslices
941   //                                              965   //
942   auto* nodeList = new G4NodeVector();         << 966   G4NodeVector* nodeList = new G4NodeVector();
943   if (nodeList == nullptr)                     << 967   if (!nodeList)
944   {                                               968   {
945     G4Exception("G4SmartVoxelHeader::BuildNode    969     G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
946                 FatalException, "NodeList allo    970                 FatalException, "NodeList allocation error.");
947     return nullptr;                            << 971     return 0;
948   }                                               972   }
949   nodeList->reserve(noNodes);                     973   nodeList->reserve(noNodes);
950                                                   974 
951   for (nNode=0; G4long(nNode)<noNodes; ++nNode << 975   for (nNode=0; nNode<noNodes; nNode++)
952   {                                               976   {
953     G4SmartVoxelNode *pNode;                      977     G4SmartVoxelNode *pNode;
954     pNode = new G4SmartVoxelNode((G4int)nNode) << 978     pNode = new G4SmartVoxelNode(nNode);
955     if (pNode == nullptr)                      << 979     if (!pNode)
956     {                                             980     {
957       G4Exception("G4SmartVoxelHeader::BuildNo    981       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
958                   FatalException, "Node alloca    982                   FatalException, "Node allocation error.");
959       return nullptr;                          << 983       return 0;
960     }                                             984     }
961     nodeList->push_back(pNode);                   985     nodeList->push_back(pNode);
962   }                                               986   }
963                                                   987 
964   // All nodes created (empty)                    988   // All nodes created (empty)
965                                                   989 
966   // Fill nodes: Step through extent lists        990   // Fill nodes: Step through extent lists
967   //                                              991   //
968   for (nVol=0; nVol<nCandidates; ++nVol)       << 992   for (nVol=0; nVol<nCandidates; nVol++)
969   {                                               993   {
970     G4long nodeNo, minContainingNode, maxConta << 994     G4int nodeNo, minContainingNode, maxContainingNode;
971     minContainingNode = (minExtents[nVol]-moth << 995     minContainingNode = G4int((minExtents[nVol]-motherMinExtent)/nodeWidth);
972     maxContainingNode = (maxExtents[nVol]-moth << 996     maxContainingNode = G4int((maxExtents[nVol]-motherMinExtent)/nodeWidth);
973                                                   997 
974     // Only add nodes that are inside the limi    998     // Only add nodes that are inside the limits of the axis
975     //                                            999     //
976     if ( (maxContainingNode>=0) && (minContain    1000     if ( (maxContainingNode>=0) && (minContainingNode<noNodes) )
977     {                                             1001     {
978       // If max extent is on max boundary => m    1002       // If max extent is on max boundary => maxContainingNode=noNodes:
979       // should be one less as nodeList has no    1003       // should be one less as nodeList has noNodes entries
980       //                                          1004       //
981       if (maxContainingNode>=noNodes)             1005       if (maxContainingNode>=noNodes)
982       {                                           1006       {
983         maxContainingNode = noNodes-1;            1007         maxContainingNode = noNodes-1;
984       }                                           1008       }
985       //                                          1009       //
986       // Protection against protruding volumes    1010       // Protection against protruding volumes
987       //                                          1011       //
988       if (minContainingNode<0)                    1012       if (minContainingNode<0)
989       {                                           1013       {
990         minContainingNode = 0;                 << 1014         minContainingNode=0;
991       }                                           1015       }
992       for (nodeNo=minContainingNode; nodeNo<=m << 1016       for (nodeNo=minContainingNode; nodeNo<=maxContainingNode; nodeNo++)
993       {                                           1017       {
994         (*nodeList)[nodeNo]->Insert((*pCandida    1018         (*nodeList)[nodeNo]->Insert((*pCandidates)[nVol]);
995       }                                           1019       }
996     }                                             1020     }
997   }                                               1021   }
998                                                   1022 
999   // All nodes filled                             1023   // All nodes filled
1000                                                  1024 
1001   // Create proxy List : caller has deletion     1025   // Create proxy List : caller has deletion responsibility
1002   // (but we must delete nodeList *itself* -     1026   // (but we must delete nodeList *itself* - not the contents)
1003   //                                             1027   //
1004   auto* proxyList = new G4ProxyVector();      << 1028   G4ProxyVector* proxyList = new G4ProxyVector();
1005   if (proxyList == nullptr)                   << 1029   if (!proxyList)
1006   {                                              1030   {
1007     G4Exception("G4SmartVoxelHeader::BuildNod    1031     G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
1008                 FatalException, "Proxy list a    1032                 FatalException, "Proxy list allocation error.");
1009     return nullptr;                           << 1033     return 0;
1010   }                                              1034   }
1011   proxyList->reserve(noNodes);                   1035   proxyList->reserve(noNodes);
1012                                                  1036 
1013   //                                             1037   //
1014   // Fill proxy List                             1038   // Fill proxy List
1015   //                                             1039   //
1016   for (nNode=0; G4long(nNode)<noNodes; ++nNod << 1040   for (nNode=0; nNode<noNodes; nNode++)
1017   {                                              1041   {
1018     // Get rid of possible excess capacity in    1042     // Get rid of possible excess capacity in the internal node vector
1019     //                                           1043     //
1020     ((*nodeList)[nNode])->Shrink();              1044     ((*nodeList)[nNode])->Shrink();
1021     auto* pProxyNode = new G4SmartVoxelProxy( << 1045     G4SmartVoxelProxy* pProxyNode = new G4SmartVoxelProxy((*nodeList)[nNode]);
1022     if (pProxyNode == nullptr)                << 1046     if (!pProxyNode)
1023     {                                            1047     {
1024       G4Exception("G4SmartVoxelHeader::BuildN    1048       G4Exception("G4SmartVoxelHeader::BuildNodes()", "GeomMgt0003",
1025                   FatalException, "Proxy node    1049                   FatalException, "Proxy node allocation failed.");
1026       return nullptr;                         << 1050       return 0;
1027     }                                            1051     }
1028     proxyList->push_back(pProxyNode);            1052     proxyList->push_back(pProxyNode);
1029   }                                              1053   }
1030   delete nodeList;                               1054   delete nodeList;
1031   return proxyList;                              1055   return proxyList;
1032 }                                                1056 }
1033                                                  1057 
1034 // ******************************************    1058 // ***************************************************************************
1035 // Calculate a "quality value" for the specif    1059 // Calculate a "quality value" for the specified vector of voxels.
1036 // The value returned should be >0 and such t    1060 // The value returned should be >0 and such that the smaller the number
1037 // the higher the quality of the slice.          1061 // the higher the quality of the slice.
1038 //                                               1062 //
1039 // Preconditions: pSlice must consist of G4Sm    1063 // Preconditions: pSlice must consist of G4SmartVoxelNodeProxies only
1040 // Process:                                      1064 // Process:
1041 // o Examine each node in turn, summing:         1065 // o Examine each node in turn, summing:
1042 //      no. of non-empty nodes                   1066 //      no. of non-empty nodes
1043 //      no. of volumes in each node              1067 //      no. of volumes in each node
1044 // o Calculate Quality=sigma(volumes in nod)/    1068 // o Calculate Quality=sigma(volumes in nod)/(no. of non-empty nodes)
1045 //      if all nodes empty, return kInfinity     1069 //      if all nodes empty, return kInfinity
1046 // o Call G4Exception on finding a G4SmartVox    1070 // o Call G4Exception on finding a G4SmartVoxelHeaderProxy
1047 // ******************************************    1071 // ***************************************************************************
1048 //                                               1072 //
1049 G4double G4SmartVoxelHeader::CalculateQuality    1073 G4double G4SmartVoxelHeader::CalculateQuality(G4ProxyVector *pSlice)
1050 {                                                1074 {
1051   G4double quality;                              1075   G4double quality;
1052   std::size_t nNodes = pSlice->size();        << 1076   G4int nNodes = pSlice->size();
1053   std::size_t noContained, maxContained=0, su << 1077   G4int noContained, maxContained=0, sumContained=0, sumNonEmptyNodes=0;
1054   G4SmartVoxelNode *node;                        1078   G4SmartVoxelNode *node;
1055                                                  1079 
1056   for (std::size_t i=0; i<nNodes; ++i)        << 1080   for (G4int i=0; i<nNodes; i++)
1057   {                                              1081   {
1058     if ((*pSlice)[i]->IsNode())                  1082     if ((*pSlice)[i]->IsNode())
1059     {                                            1083     {
1060       // Definitely a node. Add info to runni    1084       // Definitely a node. Add info to running totals
1061       //                                         1085       //
1062       node = (*pSlice)[i]->GetNode();            1086       node = (*pSlice)[i]->GetNode();
1063       noContained = node->GetNoContained();      1087       noContained = node->GetNoContained();
1064       if (noContained != 0)                   << 1088       if (noContained)
1065       {                                          1089       {
1066         ++sumNonEmptyNodes;                   << 1090         sumNonEmptyNodes++;
1067         sumContained += noContained;             1091         sumContained += noContained;
1068         //                                       1092         //
1069         // Calc maxContained for statistics      1093         // Calc maxContained for statistics
1070         //                                       1094         //
1071         if (noContained>maxContained)            1095         if (noContained>maxContained)
1072         {                                        1096         {
1073           maxContained = noContained;            1097           maxContained = noContained;
1074         }                                        1098         }
1075       }                                          1099       }
1076     }                                            1100     }
1077     else                                         1101     else
1078     {                                            1102     {
1079       G4Exception("G4SmartVoxelHeader::Calcul    1103       G4Exception("G4SmartVoxelHeader::CalculateQuality()", "GeomMgt0001",
1080                   FatalException, "Not applic    1104                   FatalException, "Not applicable to replicated volumes.");
1081     }                                            1105     }
1082   }                                              1106   }
1083                                                  1107 
1084   // Calculate quality with protection agains    1108   // Calculate quality with protection against no non-empty nodes
1085   //                                             1109   //
1086   if (sumNonEmptyNodes != 0)                  << 1110   if (sumNonEmptyNodes)
1087   {                                              1111   {
1088     quality = sumContained/sumNonEmptyNodes;     1112     quality = sumContained/sumNonEmptyNodes;
1089   }                                              1113   }
1090   else                                           1114   else
1091   {                                              1115   {
1092     quality = kInfinity;                         1116     quality = kInfinity;
1093   }                                              1117   }
1094                                                  1118 
1095 #ifdef G4GEOMETRY_VOXELDEBUG                     1119 #ifdef G4GEOMETRY_VOXELDEBUG
1096   G4cout << "**** G4SmartVoxelHeader::Calcula    1120   G4cout << "**** G4SmartVoxelHeader::CalculateQuality" << G4endl
1097          << "     Quality = " << quality << G    1121          << "     Quality = " << quality << G4endl
1098          << "     Nodes = " << nNodes            1122          << "     Nodes = " << nNodes 
1099          << " of which " << sumNonEmptyNodes     1123          << " of which " << sumNonEmptyNodes << " non empty" << G4endl
1100          << "     Max Contained = " << maxCon    1124          << "     Max Contained = " << maxContained << G4endl;
1101 #endif                                           1125 #endif
1102                                                  1126 
1103   return quality;                                1127   return quality;
1104 }                                                1128 }
1105                                                  1129 
1106 // ******************************************    1130 // ***************************************************************************
1107 // Examined each contained node, refines (cre    1131 // Examined each contained node, refines (creates a replacement additional
1108 // dimension of voxels) when there is more th    1132 // dimension of voxels) when there is more than one voxel in the slice.
1109 // Does not refine further if already limited    1133 // Does not refine further if already limited in two dimensions (=> this
1110 // is the third level of limits)                 1134 // is the third level of limits)
1111 //                                               1135 //
1112 // Preconditions: slices (nodes) have been bu    1136 // Preconditions: slices (nodes) have been built.
1113 // ******************************************    1137 // ***************************************************************************
1114 //                                               1138 //
1115 void G4SmartVoxelHeader::RefineNodes(G4Logica    1139 void G4SmartVoxelHeader::RefineNodes(G4LogicalVolume* pVolume,
1116                                      G4VoxelL    1140                                      G4VoxelLimits pLimits)
1117 {                                                1141 {
1118   std::size_t refinedDepth=0, minVolumes;     << 1142   G4int refinedDepth=0, minVolumes;
1119   std::size_t maxNode = fslices.size();       << 1143   G4int maxNode = fslices.size();
1120                                                  1144 
1121   if (pLimits.IsXLimited())                      1145   if (pLimits.IsXLimited()) 
1122   {                                              1146   {
1123     ++refinedDepth;                           << 1147     refinedDepth++;
1124   }                                              1148   }
1125   if (pLimits.IsYLimited())                      1149   if (pLimits.IsYLimited()) 
1126   {                                              1150   {
1127     ++refinedDepth;                           << 1151     refinedDepth++;
1128   }                                              1152   }
1129   if (pLimits.IsZLimited())                      1153   if (pLimits.IsZLimited()) 
1130   {                                              1154   {
1131     ++refinedDepth;                           << 1155     refinedDepth++;
1132   }                                              1156   }
1133                                                  1157 
1134   // Calculate minimum number of volumes nece    1158   // Calculate minimum number of volumes necessary to refine
1135   //                                             1159   //
1136   switch (refinedDepth)                          1160   switch (refinedDepth)
1137   {                                              1161   {
1138     case 0:                                      1162     case 0:
1139       minVolumes=kMinVoxelVolumesLevel2;         1163       minVolumes=kMinVoxelVolumesLevel2;
1140       break;                                     1164       break;
1141     case 1:                                      1165     case 1:
1142       minVolumes=kMinVoxelVolumesLevel3;         1166       minVolumes=kMinVoxelVolumesLevel3;
1143       break;                                     1167       break;
1144     default:                                     1168     default:
1145       minVolumes=10000;   // catch refinedDep    1169       minVolumes=10000;   // catch refinedDepth=3 and errors
1146       break;                                     1170       break;
1147   }                                              1171   }
1148                                                  1172 
1149   if (refinedDepth<2)                            1173   if (refinedDepth<2)
1150   {                                              1174   {
1151     std::size_t targetNo, noContainedDaughter << 1175     G4int targetNo, noContainedDaughters, minNo, maxNo, replaceNo, i;
1152     G4double sliceWidth = (fmaxExtent-fminExt    1176     G4double sliceWidth = (fmaxExtent-fminExtent)/maxNode;
1153     G4VoxelLimits newLimits;                     1177     G4VoxelLimits newLimits;
1154     G4SmartVoxelNode* targetNode;                1178     G4SmartVoxelNode* targetNode;
1155     G4SmartVoxelProxy* targetNodeProxy;          1179     G4SmartVoxelProxy* targetNodeProxy;
1156     G4SmartVoxelHeader* replaceHeader;           1180     G4SmartVoxelHeader* replaceHeader;
1157     G4SmartVoxelProxy* replaceHeaderProxy;       1181     G4SmartVoxelProxy* replaceHeaderProxy;
1158     G4VolumeNosVector* targetList;               1182     G4VolumeNosVector* targetList;
1159     G4SmartVoxelProxy* lastProxy;                1183     G4SmartVoxelProxy* lastProxy;
1160                                                  1184       
1161     for (targetNo=0; targetNo<maxNode; ++targ << 1185     for (targetNo=0; targetNo<maxNode; targetNo++)
1162     {                                            1186     {
1163       // Assume all slices are nodes (see pre    1187       // Assume all slices are nodes (see preconditions)
1164       //                                         1188       //
1165       targetNodeProxy = fslices[targetNo];       1189       targetNodeProxy = fslices[targetNo];
1166       targetNode = targetNodeProxy->GetNode()    1190       targetNode = targetNodeProxy->GetNode();
1167                                                  1191 
1168       if (targetNode->GetNoContained() >= min    1192       if (targetNode->GetNoContained() >= minVolumes)
1169       {                                          1193       {
1170         noContainedDaughters = targetNode->Ge    1194         noContainedDaughters = targetNode->GetNoContained();
1171         targetList = new G4VolumeNosVector();    1195         targetList = new G4VolumeNosVector();
1172         if (targetList == nullptr)            << 1196         if (!targetList)
1173         {                                        1197         {
1174           G4Exception("G4SmartVoxelHeader::Re    1198           G4Exception("G4SmartVoxelHeader::RefineNodes()",
1175                       "GeomMgt0003", FatalExc    1199                       "GeomMgt0003", FatalException,
1176                       "Target volume node lis    1200                       "Target volume node list allocation error.");
1177           return;                                1201           return;
1178         }                                        1202         }
1179         targetList->reserve(noContainedDaught    1203         targetList->reserve(noContainedDaughters);
1180         for (i=0; i<noContainedDaughters; ++i << 1204         for (i=0; i<noContainedDaughters; i++)
1181         {                                        1205         {
1182           targetList->push_back(targetNode->G << 1206           targetList->push_back(targetNode->GetVolume(i));
1183         }                                        1207         }
1184         minNo = targetNode->GetMinEquivalentS    1208         minNo = targetNode->GetMinEquivalentSliceNo();
1185         maxNo = targetNode->GetMaxEquivalentS    1209         maxNo = targetNode->GetMaxEquivalentSliceNo();
1186                                                  1210 
1187 #ifdef G4GEOMETRY_VOXELDEBUG                     1211 #ifdef G4GEOMETRY_VOXELDEBUG
1188         G4cout << "**** G4SmartVoxelHeader::R    1212         G4cout << "**** G4SmartVoxelHeader::RefineNodes" << G4endl
1189                << "     Refining nodes " << m    1213                << "     Refining nodes " << minNo 
1190                << " - " << maxNo << " inclusi    1214                << " - " << maxNo << " inclusive" << G4endl;
1191 #endif                                           1215 #endif
1192         if (minNo > maxNo)    // Delete node     1216         if (minNo > maxNo)    // Delete node and list to be replaced
1193         {                     // and avoid fu    1217         {                     // and avoid further action ...
1194           delete targetNode;                     1218           delete targetNode;
1195           delete targetList;                     1219           delete targetList;
1196           return;                                1220           return;
1197         }                                        1221         }
1198                                                  1222 
1199         // Delete node proxies at start of co    1223         // Delete node proxies at start of collected sets of nodes/headers
1200         //                                       1224         //
1201         lastProxy=nullptr;                    << 1225         lastProxy=0;
1202         for (replaceNo=minNo; replaceNo<=maxN << 1226         for (replaceNo=minNo; replaceNo<=maxNo; replaceNo++)
1203         {                                        1227         {
1204           if (lastProxy != fslices[replaceNo]    1228           if (lastProxy != fslices[replaceNo])
1205           {                                      1229           {
1206             lastProxy=fslices[replaceNo];        1230             lastProxy=fslices[replaceNo];
1207             delete lastProxy;                    1231             delete lastProxy;
1208           }                                      1232           }
1209         }                                        1233         }
1210         // Delete node to be replaced            1234         // Delete node to be replaced
1211         //                                       1235         //
1212         delete targetNode;                       1236         delete targetNode;
1213                                                  1237 
1214         // Create new headers + proxies and r    1238         // Create new headers + proxies and replace in fslices
1215         //                                       1239         //
1216         newLimits = pLimits;                     1240         newLimits = pLimits;
1217         newLimits.AddLimit(faxis,fminExtent+s    1241         newLimits.AddLimit(faxis,fminExtent+sliceWidth*minNo,
1218                            fminExtent+sliceWi    1242                            fminExtent+sliceWidth*(maxNo+1));
1219         replaceHeader = new G4SmartVoxelHeade    1243         replaceHeader = new G4SmartVoxelHeader(pVolume,newLimits,
1220                                               << 1244                                                targetList,replaceNo);
1221         if (replaceHeader == nullptr)         << 1245         if (!replaceHeader)
1222         {                                        1246         {
1223           G4Exception("G4SmartVoxelHeader::Re    1247           G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003",
1224                       FatalException, "Refine    1248                       FatalException, "Refined VoxelHeader allocation error.");
1225           return;                                1249           return;
1226         }                                        1250         }
1227         replaceHeader->SetMinEquivalentSliceN << 1251         replaceHeader->SetMinEquivalentSliceNo(minNo);
1228         replaceHeader->SetMaxEquivalentSliceN << 1252         replaceHeader->SetMaxEquivalentSliceNo(maxNo);
1229         replaceHeaderProxy = new G4SmartVoxel    1253         replaceHeaderProxy = new G4SmartVoxelProxy(replaceHeader);
1230         if (replaceHeaderProxy == nullptr)    << 1254         if (!replaceHeaderProxy)
1231         {                                        1255         {
1232           G4Exception("G4SmartVoxelHeader::Re    1256           G4Exception("G4SmartVoxelHeader::RefineNodes()", "GeomMgt0003",
1233                       FatalException, "Refine    1257                       FatalException, "Refined VoxelProxy allocation error.");
1234           return;                                1258           return;
1235         }                                        1259         }
1236         for (replaceNo=minNo; replaceNo<=maxN << 1260         for (replaceNo=minNo; replaceNo<=maxNo; replaceNo++)
1237         {                                        1261         {
1238           fslices[replaceNo] = replaceHeaderP    1262           fslices[replaceNo] = replaceHeaderProxy;
1239         }                                        1263         }
1240         // Finished replacing current `equiva    1264         // Finished replacing current `equivalent' group
1241         //                                       1265         //
1242         delete targetList;                       1266         delete targetList;
1243         targetNo=maxNo;                          1267         targetNo=maxNo;
1244       }                                          1268       }
1245     }                                            1269     }
1246   }                                              1270   }
1247 }                                                1271 }
1248                                                  1272 
1249 // ******************************************    1273 // ***************************************************************************
1250 // Returns true if all slices have equal cont    1274 // Returns true if all slices have equal contents.
1251 // Preconditions: all equal slices have been     1275 // Preconditions: all equal slices have been collected.
1252 // Procedure:                                    1276 // Procedure:
1253 // o checks all slice proxy pointers are equa    1277 // o checks all slice proxy pointers are equal
1254 // o returns true if only one slice or all sl    1278 // o returns true if only one slice or all slice proxies pointers equal.
1255 // ******************************************    1279 // ***************************************************************************
1256 //                                               1280 //
1257 G4bool G4SmartVoxelHeader::AllSlicesEqual() c    1281 G4bool G4SmartVoxelHeader::AllSlicesEqual() const
1258 {                                                1282 {
1259   std::size_t noSlices = fslices.size();      << 1283   G4int noSlices = fslices.size();
1260   G4SmartVoxelProxy* refProxy;                   1284   G4SmartVoxelProxy* refProxy;
1261                                                  1285 
1262   if (noSlices>1)                                1286   if (noSlices>1)
1263   {                                              1287   {
1264     refProxy=fslices[0];                         1288     refProxy=fslices[0];
1265     for (std::size_t i=1; i<noSlices; ++i)    << 1289     for (G4int i=1; i<noSlices; i++)
1266     {                                            1290     {
1267       if (refProxy!=fslices[i])                  1291       if (refProxy!=fslices[i])
1268       {                                          1292       {
1269         return false;                            1293         return false;
1270       }                                          1294       }
1271     }                                            1295     }
1272   }                                              1296   }
1273   return true;                                   1297   return true;
1274 }                                                1298 }
1275                                                  1299 
1276 // ******************************************    1300 // ***************************************************************************
1277 // Streaming operator for debugging.             1301 // Streaming operator for debugging.
1278 // ******************************************    1302 // ***************************************************************************
1279 //                                               1303 //
1280 std::ostream& operator << (std::ostream& os,     1304 std::ostream& operator << (std::ostream& os, const G4SmartVoxelHeader& h)
1281 {                                                1305 {
1282   os << "Axis = " << G4int(h.faxis) << G4endl    1306   os << "Axis = " << G4int(h.faxis) << G4endl;
1283   G4SmartVoxelProxy *collectNode=nullptr, *co << 1307   G4SmartVoxelProxy *collectNode=0, *collectHead=0;
1284   std::size_t collectNodeNo = 0;              << 1308   G4int collectNodeNo=0;
1285   std::size_t collectHeadNo = 0;              << 1309   G4int collectHeadNo=0;
1286   std::size_t i, j;                           << 1310   size_t i, j;
1287   G4bool haveHeaders = false;                 << 1311   G4bool haveHeaders=false;
1288                                                  1312 
1289   for (i=0; i<h.fslices.size(); ++i)          << 1313   for (i=0; i<h.fslices.size(); i++)
1290   {                                              1314   {
1291     os << "Slice #" << i << " = ";               1315     os << "Slice #" << i << " = ";
1292     if (h.fslices[i]->IsNode())                  1316     if (h.fslices[i]->IsNode())
1293     {                                            1317     {
1294       if (h.fslices[i]!=collectNode)             1318       if (h.fslices[i]!=collectNode)
1295       {                                          1319       {
1296         os << "{";                               1320         os << "{";
1297         for (std::size_t k=0; k<h.fslices[i]- << 1321         for (G4int k=0; k<h.fslices[i]->GetNode()->GetNoContained(); k++)
1298         {                                        1322         {
1299           os << " " << h.fslices[i]->GetNode( << 1323           os << " " << h.fslices[i]->GetNode()->GetVolume(k);
1300         }                                        1324         }
1301         os << " }" << G4endl;                    1325         os << " }" << G4endl;
1302         collectNode = h.fslices[i];              1326         collectNode = h.fslices[i];
1303         collectNodeNo = i;                       1327         collectNodeNo = i;
1304       }                                          1328       }
1305       else                                       1329       else
1306       {                                          1330       {
1307         os << "As slice #" << collectNodeNo <    1331         os << "As slice #" << collectNodeNo << G4endl;
1308       }                                          1332       }
1309     }                                            1333     }
1310     else                                         1334     else
1311     {                                            1335     {
1312       haveHeaders=true;                          1336       haveHeaders=true;
1313       if (h.fslices[i] != collectHead)           1337       if (h.fslices[i] != collectHead)
1314       {                                          1338       {
1315         os << "Header" << G4endl;                1339         os << "Header" << G4endl;
1316         collectHead = h.fslices[i];              1340         collectHead = h.fslices[i];
1317         collectHeadNo = i;                       1341         collectHeadNo = i;
1318       }                                          1342       }
1319       else                                       1343       else
1320       {                                          1344       {
1321         os << "As slice #" << collectHeadNo <    1345         os << "As slice #" << collectHeadNo << G4endl;
1322       }                                          1346       }
1323     }                                            1347     }
1324   }                                              1348   }
1325                                                  1349 
1326   if (haveHeaders)                               1350   if (haveHeaders)
1327   {                                              1351   {
1328     collectHead=nullptr;                      << 1352     collectHead=0;
1329     for (j=0; j<h.fslices.size(); ++j)        << 1353     for (j=0; j<h.fslices.size(); j++)
1330     {                                            1354     {
1331       if (h.fslices[j]->IsHeader())              1355       if (h.fslices[j]->IsHeader())
1332       {                                          1356       {
1333         os << "Header at Slice #" << j << " =    1357         os << "Header at Slice #" << j << " = ";
1334         if (h.fslices[j] != collectHead)         1358         if (h.fslices[j] != collectHead)
1335         {                                        1359         {
1336           os << G4endl                           1360           os << G4endl 
1337              << (*(h.fslices[j]->GetHeader())    1361              << (*(h.fslices[j]->GetHeader()));
1338           collectHead = h.fslices[j];            1362           collectHead = h.fslices[j];
1339           collectHeadNo = j;                     1363           collectHeadNo = j;
1340         }                                        1364         }
1341         else                                     1365         else
1342         {                                        1366         {
1343           os << "As slice #" << collectHeadNo    1367           os << "As slice #" << collectHeadNo << G4endl;
1344         }                                        1368         }
1345       }                                          1369       }
1346     }                                            1370     }
1347   }                                              1371   }
1348   return os;                                     1372   return os;
1349 }                                                1373 }
1350                                                  1374