Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** >> 22 // >> 23 // >> 24 // $Id: G4LogicalVolume.cc,v 1.22 2004/11/15 14:15:21 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-cand-01 $ >> 26 // 25 // 27 // 26 // class G4LogicalVolume implementation << 28 // class G4LogicalVolume Implementation 27 // 29 // 28 // 15.01.13 G.Cosmo, A.Dotti: Modified for thr << 30 // History: 29 // 01.03.05 G.Santin: Added flag for optional << 30 // 17.05.02 G.Cosmo: Added flag for optional o 31 // 17.05.02 G.Cosmo: Added flag for optional optimisation 31 // 12.02.99 S.Giani: Default initialization of 32 // 12.02.99 S.Giani: Default initialization of voxelization quality 32 // 04.08.97 P.M.DeFreitas: Added methods for p 33 // 04.08.97 P.M.DeFreitas: Added methods for parameterised simulation >> 34 // 19.08.96 P.Kent: Modified for G4VSensitive Detector 33 // 11.07.95 P.Kent: Initial version 35 // 11.07.95 P.Kent: Initial version 34 // ------------------------------------------- 36 // -------------------------------------------------------------------- 35 37 36 #include "G4LogicalVolume.hh" 38 #include "G4LogicalVolume.hh" 37 #include "G4LogicalVolumeStore.hh" 39 #include "G4LogicalVolumeStore.hh" 38 #include "G4VSolid.hh" 40 #include "G4VSolid.hh" 39 #include "G4Material.hh" 41 #include "G4Material.hh" 40 #include "G4VPVParameterisation.hh" 42 #include "G4VPVParameterisation.hh" 41 #include "G4VisAttributes.hh" << 42 43 43 #include "G4UnitsTable.hh" 44 #include "G4UnitsTable.hh" 44 45 45 G4LVData::G4LVData() {;} << 46 << 47 // This new field helps to use the class G4LVM << 48 // << 49 G4LVManager G4LogicalVolume::subInstanceManage << 50 << 51 // These macros change the references to field << 52 // in the class G4LVData. << 53 // << 54 #define G4MT_solid ((subInstanceManager.of << 55 #define G4MT_sdetector ((subInstanceManager.of << 56 #define G4MT_fmanager ((subInstanceManager.of << 57 #define G4MT_material ((subInstanceManager.of << 58 #define G4MT_mass ((subInstanceManager.of << 59 #define G4MT_ccouple ((subInstanceManager.of << 60 #define G4MT_instance (subInstanceManager.off << 61 << 62 // ******************************************* 46 // ******************************************************************** 63 // Constructor - sets member data and adds to 47 // Constructor - sets member data and adds to logical Store, 64 // voxel pointer for optimisatio 48 // voxel pointer for optimisation set to 0 by default. 65 // Initialises daughter vector t 49 // Initialises daughter vector to 0 length. 66 // ******************************************* 50 // ******************************************************************** 67 // 51 // 68 G4LogicalVolume::G4LogicalVolume( G4VSolid* pS 52 G4LogicalVolume::G4LogicalVolume( G4VSolid* pSolid, 69 G4Material* 53 G4Material* pMaterial, 70 const G4String& na 54 const G4String& name, 71 G4FieldManag 55 G4FieldManager* pFieldMgr, 72 G4VSensitive 56 G4VSensitiveDetector* pSDetector, 73 G4UserLimits 57 G4UserLimits* pULimits, 74 G4bool optim 58 G4bool optimise ) 75 : fDaughters(0,(G4VPhysicalVolume*)nullptr), << 59 : fDaughters(0,(G4VPhysicalVolume*)0), fFieldManager(pFieldMgr), 76 fOptimise(optimise) << 60 fVoxel(0), fOptimise(optimise), fRootRegion(false), fSmartless(2.), >> 61 fMass(0.), fVisAttributes(0), fFastSimulationManager(0), fRegion(0), >> 62 fCutsCouple(0), fIsEnvelope(false) 77 { 63 { 78 // Initialize 'Shadow'/master pointers - for << 79 // << 80 fSolid = pSolid; << 81 fSensitiveDetector = pSDetector; << 82 fFieldManager = pFieldMgr; << 83 << 84 instanceID = subInstanceManager.CreateSubIns << 85 AssignFieldManager(pFieldMgr); << 86 << 87 G4MT_mass = 0.; << 88 G4MT_ccouple = nullptr; << 89 << 90 SetSolid(pSolid); 64 SetSolid(pSolid); 91 SetMaterial(pMaterial); 65 SetMaterial(pMaterial); 92 SetName(name); 66 SetName(name); 93 SetSensitiveDetector(pSDetector); 67 SetSensitiveDetector(pSDetector); 94 SetUserLimits(pULimits); 68 SetUserLimits(pULimits); 95 << 96 // Initialize 'Shadow' data structure - for << 97 // << 98 lvdata = new G4LVData(); << 99 lvdata->fSolid = pSolid; << 100 lvdata->fMaterial = pMaterial; << 101 << 102 // 69 // 103 // Add to store << 70 // Add to solid Store 104 // << 105 G4LogicalVolumeStore::Register(this); << 106 } << 107 << 108 // ******************************************* << 109 // Fake default constructor - sets only member << 110 // for usage restri << 111 // ******************************************* << 112 // << 113 G4LogicalVolume::G4LogicalVolume( __void__& ) << 114 : fDaughters(0,(G4VPhysicalVolume*)nullptr), << 115 { << 116 instanceID = subInstanceManager.CreateSubIns << 117 << 118 SetSensitiveDetector(nullptr); // G4MT_sd << 119 SetFieldManager(nullptr, false); // G4MT_fm << 120 << 121 G4MT_mass = 0.; << 122 G4MT_ccouple = nullptr; << 123 << 124 // Add to store << 125 // 71 // 126 G4LogicalVolumeStore::Register(this); 72 G4LogicalVolumeStore::Register(this); 127 } 73 } 128 74 129 // ******************************************* 75 // ******************************************************************** 130 // Destructor - Removes itself from solid Stor 76 // Destructor - Removes itself from solid Store 131 // NOTE: Not virtual 77 // NOTE: Not virtual 132 // ******************************************* 78 // ******************************************************************** 133 // 79 // 134 G4LogicalVolume::~G4LogicalVolume() 80 G4LogicalVolume::~G4LogicalVolume() 135 { 81 { 136 if (!fLock && fRootRegion) // De-register r << 82 if(fRootRegion) fRegion->RemoveRootLogicalVolume(this); 137 { // and flagged a << 138 fRegion->RemoveRootLogicalVolume(this, tru << 139 } << 140 delete lvdata; << 141 G4LogicalVolumeStore::DeRegister(this); 83 G4LogicalVolumeStore::DeRegister(this); 142 } 84 } 143 85 144 // ******************************************* 86 // ******************************************************************** 145 // SetName - Set volume name and notify store << 87 // SetFastSimulationManager 146 // ******************************************* << 147 // 88 // 148 void G4LogicalVolume::SetName(const G4String& << 89 // NOTE: recursive method, not inlined. 149 { << 150 fName = pName; << 151 G4LogicalVolumeStore::GetInstance()->SetMapV << 152 } << 153 << 154 // ******************************************* << 155 // InitialiseWorker << 156 // << 157 // This method is similar to the constructor. << 158 // thread to achieve the same effect as that o << 159 // to register the new created instance. This << 160 // It does not create a new G4LogicalVolume in << 161 // for the fields encapsulated by the class G4 << 162 // ******************************************* 90 // ******************************************************************** 163 // 91 // 164 void G4LogicalVolume:: << 92 void 165 InitialiseWorker( G4LogicalVolume* /*pMasterOb << 93 G4LogicalVolume:: 166 G4VSolid* pSolid, << 94 SetFastSimulationManager( G4FastSimulationManager* pNewFastSimul, 167 G4VSensitiveDetector* pSDete << 95 G4bool IsEnvelope ) 168 { 96 { 169 subInstanceManager.SlaveCopySubInstanceArray << 97 if( !fIsEnvelope || IsEnvelope ) 170 << 171 SetSolid(pSolid); << 172 SetSensitiveDetector(pSDetector); // How th << 173 AssignFieldManager(fFieldManager); << 174 // Should be set - but a per-thread copy is << 175 // Must not call SetFieldManager(), which p << 176 << 177 #ifdef CLONE_FIELD_MGR << 178 // Create a field FieldManager by cloning << 179 // << 180 G4FieldManager workerFldMgr = fFieldManager- << 181 if( created || (GetFieldManager() != workerF << 182 { << 183 SetFieldManager(fFieldManager, false); // << 184 } << 185 else << 186 { 98 { 187 // Field manager existed and is equal to c << 99 fIsEnvelope = IsEnvelope; 188 // << 100 fFastSimulationManager = pNewFastSimul; 189 AssignFieldManager(workerFldMgr); << 190 } << 191 #endif << 192 } << 193 101 194 // ******************************************* << 102 G4int NoDaughters = GetNoDaughters(); 195 // Clean << 103 while ( (NoDaughters--)>0 ) 196 // ******************************************* << 104 { 197 // << 105 G4LogicalVolume* DaughterLogVol; 198 void G4LogicalVolume::Clean() << 106 DaughterLogVol = GetDaughter(NoDaughters)->GetLogicalVolume(); 199 { << 107 if( DaughterLogVol->GetFastSimulationManager() != pNewFastSimul ) 200 subInstanceManager.FreeSlave(); << 108 { 201 } << 109 DaughterLogVol->SetFastSimulationManager(pNewFastSimul,false); 202 << 110 } 203 // ******************************************* << 111 } 204 // TerminateWorker << 112 } 205 // << 206 // This method is similar to the destructor. I << 207 // thread to achieve the partial effect as tha << 208 // For G4LogicalVolume instances, nothing more << 209 // ******************************************* << 210 // << 211 void G4LogicalVolume:: << 212 TerminateWorker( G4LogicalVolume* /*pMasterObj << 213 { << 214 } 113 } 215 114 216 // ******************************************* 115 // ******************************************************************** 217 // GetSubInstanceManager << 116 // ClearEnvelopeForFastSimulation 218 // << 219 // Returns the private data instance manager. << 220 // ******************************************* 117 // ******************************************************************** 221 // 118 // 222 const G4LVManager& G4LogicalVolume::GetSubInst << 119 void >> 120 G4LogicalVolume::ClearEnvelopeForFastSimulation( G4LogicalVolume* motherLogVol ) 223 { 121 { 224 return subInstanceManager; << 122 if( fIsEnvelope ) 225 } << 123 { >> 124 G4FastSimulationManager* NewFastSimulationVal = 0; 226 125 227 // ******************************************* << 126 // This is no longer an envelope ! 228 // GetFieldManager << 127 // 229 // ******************************************* << 128 fIsEnvelope = false; 230 // << 231 G4FieldManager* G4LogicalVolume::GetFieldManag << 232 { << 233 return G4MT_fmanager; << 234 } << 235 129 236 // ******************************************* << 130 if( motherLogVol == 0 ) 237 // AssignFieldManager << 131 { 238 // ******************************************* << 132 motherLogVol = this->FindMotherLogicalVolumeForEnvelope(); 239 // << 133 } 240 void G4LogicalVolume::AssignFieldManager( G4Fi << 241 { << 242 G4MT_fmanager= fldMgr; << 243 if(G4Threading::IsMasterThread()) { fFieldM << 244 } << 245 134 246 // ******************************************* << 135 // Reset its ParameterisedSimulation values and those of all daughters 247 // IsExtended << 136 // (after ensuring the mother was given correctly or was found) 248 // ******************************************* << 137 // 249 // << 138 if( motherLogVol != 0 ) 250 G4bool G4LogicalVolume::IsExtended() const << 139 { 251 { << 140 NewFastSimulationVal = motherLogVol->GetFastSimulationManager(); 252 return false; << 141 SetFastSimulationManager(NewFastSimulationVal, false); >> 142 } >> 143 } >> 144 else >> 145 { >> 146 G4cerr << "ERROR - Called ClearEnvelope() for non-envelope logical volume!" >> 147 << G4endl; >> 148 G4Exception("G4LogicalVolume::ClearEnvelopeForFastSimulation()", >> 149 "NotApplicable", FatalException, >> 150 "Cannot be called for non-envelope logical volumes."); >> 151 } 253 } 152 } 254 153 255 // ******************************************* 154 // ******************************************************************** 256 // SetFieldManager 155 // SetFieldManager 257 // ******************************************* 156 // ******************************************************************** 258 // 157 // 259 void 158 void 260 G4LogicalVolume::SetFieldManager(G4FieldManage 159 G4LogicalVolume::SetFieldManager(G4FieldManager* pNewFieldMgr, 261 G4bool 160 G4bool forceAllDaughters) 262 { 161 { 263 AssignFieldManager(pNewFieldMgr); << 162 fFieldManager = pNewFieldMgr; 264 163 265 auto NoDaughters = GetNoDaughters(); << 164 G4int NoDaughters = GetNoDaughters(); 266 while ( (NoDaughters--)>0 ) 165 while ( (NoDaughters--)>0 ) 267 { 166 { 268 G4LogicalVolume* DaughterLogVol; 167 G4LogicalVolume* DaughterLogVol; 269 DaughterLogVol = GetDaughter(NoDaughters)- 168 DaughterLogVol = GetDaughter(NoDaughters)->GetLogicalVolume(); 270 if ( forceAllDaughters || (DaughterLogVol- << 169 if ( forceAllDaughters || (DaughterLogVol->GetFieldManager() == 0) ) 271 { 170 { 272 DaughterLogVol->SetFieldManager(pNewFiel 171 DaughterLogVol->SetFieldManager(pNewFieldMgr, forceAllDaughters); 273 } 172 } 274 } 173 } 275 } 174 } 276 175 277 // ******************************************* << 278 // AddDaughter << 279 // ******************************************* << 280 // << 281 void G4LogicalVolume::AddDaughter(G4VPhysicalV << 282 { << 283 EVolume daughterType = pNewDaughter->VolumeT << 284 << 285 // The type of the navigation needed is dete << 286 // << 287 if( fDaughters.empty() ) << 288 { << 289 fDaughtersVolumeType = daughterType; << 290 } << 291 else << 292 { << 293 // Check consistency of detector descripti << 294 << 295 // 1. A replica or parameterised volume ca << 296 // << 297 if( fDaughters[0]->IsReplicated() ) << 298 { << 299 std::ostringstream message; << 300 message << "ERROR - Attempt to place a v << 301 << G4endl << 302 << " already containing a repli << 303 << " A volume can either contai << 304 << " or a unique replica or par << 305 << " Mother logical volume: << 306 << " Placing volume: " << pN << 307 << G4endl; << 308 G4Exception("G4LogicalVolume::AddDaughte << 309 FatalException, message, << 310 "Replica or parameterised vo << 311 } << 312 else << 313 { << 314 // 2. Ensure that Placement and External << 315 // << 316 if( daughterType != fDaughtersVolumeTyp << 317 { << 318 std::ostringstream message; << 319 message << "ERROR - Attempt to place a << 320 << G4endl << 321 << " already containing a dif << 322 << " A volume can either cont << 323 << " - one or more placements << 324 << " - one or more 'external' << 325 << " Mother logical volume: << 326 << " Volume being placed: " << 327 << G4endl; << 328 G4Exception("G4LogicalVolume::AddDaugh << 329 FatalException, message, << 330 "Cannot mix placements and << 331 } << 332 } << 333 } << 334 << 335 // Invalidate previous calculation of mass - << 336 // << 337 G4MT_mass = 0.; << 338 fDaughters.push_back(pNewDaughter); << 339 << 340 G4LogicalVolume* pDaughterLogical = pNewDaug << 341 << 342 // Propagate the Field Manager, if the daugh << 343 // << 344 G4FieldManager* pDaughterFieldManager = pDau << 345 << 346 // Avoid propagating the fieldManager pointe << 347 // and daughter's one is null as well... << 348 // << 349 if( (G4MT_fmanager != nullptr ) && (pDaughte << 350 { << 351 pDaughterLogical->SetFieldManager(G4MT_fma << 352 } << 353 if (fRegion != nullptr) << 354 { << 355 PropagateRegion(); << 356 fRegion->RegionModified(true); << 357 } << 358 } << 359 176 360 // ******************************************* 177 // ******************************************************************** 361 // RemoveDaughter << 178 // IsAncestor >> 179 // >> 180 // Finds out if the current logical volume is an ancestor of a given >> 181 // physical volume 362 // ******************************************* 182 // ******************************************************************** 363 // 183 // 364 void G4LogicalVolume::RemoveDaughter(const G4V << 184 G4bool >> 185 G4LogicalVolume::IsAncestor(const G4VPhysicalVolume* aVolume) const 365 { 186 { 366 for (auto i=fDaughters.cbegin(); i!=fDaughte << 187 G4bool isDaughter = IsDaughter(aVolume); >> 188 if (!isDaughter) 367 { 189 { 368 if (**i==*p) << 190 for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); >> 191 itDau != fDaughters.end(); itDau++) 369 { 192 { 370 fDaughters.erase(i); << 193 isDaughter = (*itDau)->GetLogicalVolume()->IsAncestor(aVolume); 371 break; << 194 if (isDaughter) break; 372 } 195 } 373 } 196 } 374 if (fRegion != nullptr) << 197 return isDaughter; 375 { << 376 fRegion->RegionModified(true); << 377 } << 378 G4MT_mass = 0.; << 379 } << 380 << 381 // ******************************************* << 382 // ClearDaughters << 383 // ******************************************* << 384 // << 385 void G4LogicalVolume::ClearDaughters() << 386 { << 387 fDaughters.erase(fDaughters.cbegin(), fDaugh << 388 if (fRegion != nullptr) << 389 { << 390 fRegion->RegionModified(true); << 391 } << 392 G4MT_mass = 0.; << 393 } << 394 << 395 // ******************************************* << 396 // ResetMass << 397 // ******************************************* << 398 // << 399 void G4LogicalVolume::ResetMass() << 400 { << 401 G4MT_mass= 0.0; << 402 } << 403 << 404 // ******************************************* << 405 // GetSolid << 406 // ******************************************* << 407 // << 408 G4VSolid* G4LogicalVolume::GetSolid(G4LVData & << 409 { << 410 return instLVdata.fSolid; << 411 } << 412 << 413 G4VSolid* G4LogicalVolume::GetSolid() const << 414 { << 415 return this->GetSolid( subInstanceManager.of << 416 } << 417 << 418 // ******************************************* << 419 // SetSolid << 420 // ******************************************* << 421 // << 422 void G4LogicalVolume::SetSolid(G4VSolid *pSoli << 423 { << 424 << 425 G4MT_solid = pSolid; << 426 this->ResetMass(); << 427 } << 428 << 429 void G4LogicalVolume::SetSolid(G4LVData& instL << 430 { << 431 instLVdata.fSolid = pSolid; << 432 instLVdata.fMass = 0.0; << 433 } << 434 << 435 // ******************************************* << 436 // GetMaterial << 437 // ******************************************* << 438 // << 439 G4Material* G4LogicalVolume::GetMaterial() con << 440 { << 441 return G4MT_material; << 442 } << 443 << 444 // ******************************************* << 445 // SetMaterial << 446 // ******************************************* << 447 // << 448 void G4LogicalVolume::SetMaterial(G4Material* << 449 { << 450 G4MT_material = pMaterial; << 451 G4MT_mass = 0.0; << 452 } << 453 << 454 // ******************************************* << 455 // UpdateMaterial << 456 // ******************************************* << 457 // << 458 void G4LogicalVolume::UpdateMaterial(G4Materia << 459 { << 460 G4MT_material=pMaterial; << 461 if (fRegion != nullptr) { G4MT_ccouple = fRe << 462 G4MT_mass = 0.0; << 463 } << 464 << 465 // ******************************************* << 466 // GetSensitiveDetector << 467 // ******************************************* << 468 // << 469 G4VSensitiveDetector* G4LogicalVolume::GetSens << 470 { << 471 return G4MT_sdetector; << 472 } 198 } 473 199 474 // ******************************************* << 475 // SetSensitiveDetector << 476 // ******************************************* << 477 // << 478 void G4LogicalVolume::SetSensitiveDetector(G4V << 479 { << 480 G4MT_sdetector = pSDetector; << 481 if (G4Threading::IsMasterThread()) { fSensi << 482 } << 483 200 484 // ******************************************* 201 // ******************************************************************** 485 // GetMaterialCutsCouple << 202 // FindMotherLogicalVolumeForEnvelope 486 // ******************************************* << 487 // 203 // 488 const G4MaterialCutsCouple* G4LogicalVolume::G << 204 // Returns a meaningful result IF and only IF the current logical 489 { << 205 // volume has exactly one physical volume that uses it. 490 return G4MT_ccouple; << 491 } << 492 << 493 // ******************************************* << 494 // SetMaterialCutsCouple << 495 // ******************************************* 206 // ******************************************************************** 496 // 207 // 497 void G4LogicalVolume::SetMaterialCutsCouple(G4 << 208 G4LogicalVolume* >> 209 G4LogicalVolume::FindMotherLogicalVolumeForEnvelope() 498 { 210 { 499 G4MT_ccouple = cuts; << 211 G4LogicalVolume* motherLogVol = 0; 500 } << 212 G4LogicalVolumeStore* Store = G4LogicalVolumeStore::GetInstance(); 501 213 502 // ******************************************* << 214 // Look for the current volume's mother volume. 503 // IsAncestor << 215 // 504 // << 216 for ( size_t LV=0; LV < Store->size(); LV++ ) 505 // Finds out if the current logical volume is << 506 // physical volume << 507 // ******************************************* << 508 // << 509 G4bool << 510 G4LogicalVolume::IsAncestor(const G4VPhysicalV << 511 { << 512 G4bool isDaughter = IsDaughter(aVolume); << 513 if (!isDaughter) << 514 { 217 { 515 for (auto itDau = fDaughters.cbegin(); itD << 218 G4LogicalVolume* aLogVol = (*Store)[LV]; // Don't look for it inside itself! >> 219 if( (aLogVol!=this) && (aLogVol->GetFastSimulationManager()!=0) ) 516 { 220 { 517 isDaughter = (*itDau)->GetLogicalVolume( << 221 for ( G4int daughter=0; daughter<aLogVol->GetNoDaughters(); daughter++ ) 518 if (isDaughter) break; << 222 { >> 223 if( aLogVol->GetDaughter(daughter)->GetLogicalVolume()==this ) >> 224 { >> 225 // aLogVol is the mother !!! >> 226 // >> 227 motherLogVol = aLogVol; >> 228 break; >> 229 } >> 230 } 519 } 231 } 520 } 232 } 521 return isDaughter; << 233 return motherLogVol; 522 } 234 } 523 235 524 // ******************************************* 236 // ******************************************************************** 525 // TotalVolumeEntities 237 // TotalVolumeEntities 526 // 238 // 527 // Returns the total number of physical volume 239 // Returns the total number of physical volumes (replicated or placed) 528 // in the tree represented by the current logi 240 // in the tree represented by the current logical volume. 529 // ******************************************* 241 // ******************************************************************** 530 // 242 // 531 G4int G4LogicalVolume::TotalVolumeEntities() c 243 G4int G4LogicalVolume::TotalVolumeEntities() const 532 { 244 { 533 G4int vols = 1; << 245 static G4int vols = 0; 534 for (auto itDau = fDaughters.cbegin(); itDau << 246 >> 247 vols++; >> 248 for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); >> 249 itDau != fDaughters.end(); itDau++) 535 { 250 { 536 G4VPhysicalVolume* physDaughter = (*itDau) 251 G4VPhysicalVolume* physDaughter = (*itDau); 537 vols += physDaughter->GetMultiplicity() << 252 for (G4int i=0; i<physDaughter->GetMultiplicity(); i++) 538 *physDaughter->GetLogicalVolume()-> << 253 { >> 254 physDaughter->GetLogicalVolume()->TotalVolumeEntities(); >> 255 } 539 } 256 } 540 return vols; 257 return vols; 541 } 258 } 542 259 543 // ******************************************* 260 // ******************************************************************** 544 // GetMass 261 // GetMass 545 // 262 // 546 // Returns the mass of the logical volume tree 263 // Returns the mass of the logical volume tree computed from the 547 // estimated geometrical volume of each solid 264 // estimated geometrical volume of each solid and material associated 548 // to the logical volume and its daughters. 265 // to the logical volume and its daughters. 549 // NOTE: the computation may require considera 266 // NOTE: the computation may require considerable amount of time, 550 // depending from the complexity of the 267 // depending from the complexity of the geometry tree. 551 // The returned value is cached and can 268 // The returned value is cached and can be used for successive 552 // calls (default), unless recomputation 269 // calls (default), unless recomputation is forced by providing 553 // 'true' for the boolean argument in in 270 // 'true' for the boolean argument in input. Computation should 554 // be forced if the geometry setup has c 271 // be forced if the geometry setup has changed after the previous 555 // call. By setting the 'propagate' bool << 272 // call. The extra argument 'parMaterial' is internally used to 556 // method returns the mass of the presen << 557 // (subtracted for the volume occupied b << 558 // The extra argument 'parMaterial' is i << 559 // consider cases of geometrical paramet 273 // consider cases of geometrical parameterisations by material. 560 // ******************************************* 274 // ******************************************************************** 561 // 275 // 562 G4double G4LogicalVolume::GetMass(G4bool force << 276 G4double G4LogicalVolume::GetMass(G4bool forced, G4Material* parMaterial) 563 G4bool propa << 564 G4Material* << 565 { 277 { 566 // Return the cached non-zero value, if not 278 // Return the cached non-zero value, if not forced 567 // 279 // 568 if ( ((G4MT_mass) != 0.0) && (!forced) ) { << 280 if ( (fMass) && (!forced) ) return fMass; 569 281 570 // Global density and computed mass associat 282 // Global density and computed mass associated to the logical 571 // volume without considering its daughters 283 // volume without considering its daughters 572 // 284 // 573 G4Material* logMaterial = parMaterial != nul << 285 G4Material* logMaterial = parMaterial ? parMaterial : fMaterial; 574 if (logMaterial == nullptr) << 286 if (!logMaterial) 575 { 287 { 576 std::ostringstream message; << 288 G4cerr << "ERROR - G4LogicalVolume::GetMass()" << G4endl 577 message << "No material associated to the << 289 << " No material is associated to the logical volume: " 578 << fName << " !" << G4endl << 290 << fName << " ! Sorry, cannot compute the mass ..." << G4endl; 579 << "Sorry, cannot compute the mass << 291 G4Exception("G4LogicalVolume::GetMass()", "InvalidSetup", FatalException, 580 G4Exception("G4LogicalVolume::GetMass()", << 292 "No material associated to the logical volume !"); 581 FatalException, message); << 293 } 582 return 0.0; << 294 if (!fSolid) 583 } << 295 { 584 if ( GetSolid() == nullptr ) << 296 G4cerr << "ERROR - G4LogicalVolume::GetMass()" << G4endl 585 { << 297 << " No solid is associated to the logical volume: " 586 std::ostringstream message; << 298 << fName << " ! Sorry, cannot compute the mass ..." << G4endl; 587 message << "No solid is associated to the << 299 G4Exception("G4LogicalVolume::GetMass()", "InvalidSetup", FatalException, 588 << fName << " !" << G4endl << 300 "No solid associated to the logical volume !"); 589 << "Sorry, cannot compute the mass << 590 G4Exception("G4LogicalVolume::GetMass()", << 591 FatalException, message); << 592 return 0.0; << 593 } 301 } 594 G4double globalDensity = logMaterial->GetDen 302 G4double globalDensity = logMaterial->GetDensity(); 595 G4double motherMass = GetSolid()->GetCubicVo << 303 fMass = fSolid->GetCubicVolume() * globalDensity; 596 G4double massSum = motherMass; << 304 597 << 598 // For each daughter in the tree, subtract t 305 // For each daughter in the tree, subtract the mass occupied 599 // and if required by the propagate flag, ad << 306 // and add the real daughter's one computed recursively 600 // one computed recursively << 601 307 602 for (auto itDau = fDaughters.cbegin(); itDau << 308 for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); >> 309 itDau != fDaughters.end(); itDau++) 603 { 310 { 604 G4VPhysicalVolume* physDaughter = (*itDau) 311 G4VPhysicalVolume* physDaughter = (*itDau); 605 G4LogicalVolume* logDaughter = physDaughte 312 G4LogicalVolume* logDaughter = physDaughter->GetLogicalVolume(); 606 G4double subMass = 0.0; << 313 G4double subMass=0.; 607 G4VSolid* daughterSolid = nullptr; << 314 G4VSolid* daughterSolid = 0; 608 G4Material* daughterMaterial = nullptr; << 315 G4Material* daughterMaterial = 0; 609 316 610 // Compute the mass to subtract and to add 317 // Compute the mass to subtract and to add for each daughter 611 // considering its multiplicity (i.e. repl 318 // considering its multiplicity (i.e. replicated or not) and 612 // eventually its parameterisation (by sol 319 // eventually its parameterisation (by solid and/or by material) 613 // 320 // 614 for (auto i=0; i<physDaughter->GetMultipli << 321 for (G4int i=0; i<physDaughter->GetMultiplicity(); i++) 615 { 322 { 616 G4VPVParameterisation* physParam = physD << 323 G4VPVParameterisation* 617 if (physParam != nullptr) << 324 physParam = physDaughter->GetParameterisation(); >> 325 if (physParam) 618 { 326 { 619 daughterSolid = physParam->ComputeSoli 327 daughterSolid = physParam->ComputeSolid(i, physDaughter); 620 daughterSolid->ComputeDimensions(physP 328 daughterSolid->ComputeDimensions(physParam, i, physDaughter); 621 daughterMaterial = physParam->ComputeM 329 daughterMaterial = physParam->ComputeMaterial(i, physDaughter); 622 } 330 } 623 else 331 else 624 { 332 { 625 daughterSolid = logDaughter->GetSolid( 333 daughterSolid = logDaughter->GetSolid(); 626 daughterMaterial = logDaughter->GetMat 334 daughterMaterial = logDaughter->GetMaterial(); 627 } 335 } 628 subMass = daughterSolid->GetCubicVolume( 336 subMass = daughterSolid->GetCubicVolume() * globalDensity; 629 337 630 // Subtract the daughter's portion for t << 338 // Subtract the daughter's portion for the mass and add the real 631 // add the real daughter's mass computed << 339 // daughter's mass computed recursively 632 // 340 // 633 massSum -= subMass; << 341 fMass = fMass - subMass + logDaughter->GetMass(true, daughterMaterial); 634 if (propagate) << 635 { << 636 massSum += logDaughter->GetMass(true, << 637 } << 638 } << 639 } << 640 G4MT_mass = massSum; << 641 return massSum; << 642 } << 643 << 644 // ******************************************* << 645 // Change the daughters volume type -- checkin << 646 // << 647 // Undertakes primitive checking, to ensure t << 648 // are made: << 649 // - any type to 'external' ( user respons << 650 // - the type proposed is checked against t << 651 // (for potential switch back to 'intern << 652 // Returns success (true) or failure (false) << 653 // << 654 G4bool G4LogicalVolume::ChangeDaughtersType(EV << 655 { << 656 G4bool works = false; << 657 if( aType == kExternal ) << 658 { << 659 // It is the responsibility of External Na << 660 // << 661 fDaughtersVolumeType = aType; << 662 works = true; << 663 } << 664 else << 665 { << 666 EVolume expectedVType = DeduceDaughtersTyp << 667 works = (expectedVType == aType); << 668 if ( works ) << 669 { << 670 fDaughtersVolumeType = aType; << 671 } 342 } 672 } 343 } 673 return works; << 674 } << 675 344 676 // ******************************************* << 345 return fMass; 677 // SetVisAttributes - copy version << 678 // ******************************************* << 679 // << 680 void G4LogicalVolume::SetVisAttributes (const << 681 { << 682 if (G4Threading::IsWorkerThread()) return; << 683 fVisAttributes = std::make_shared<const G4Vi << 684 } << 685 << 686 // ******************************************* << 687 // SetVisAttributes << 688 // ******************************************* << 689 // << 690 void G4LogicalVolume::SetVisAttributes (const << 691 { << 692 if (G4Threading::IsWorkerThread()) return; << 693 fVisAttributes = std::shared_ptr<const G4Vis << 694 } 346 } 695 347