Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4BoundingEnvelope 26 // Implementation of G4BoundingEnvelope 27 // 27 // 28 // 2016.05.25, E.Tcherniaev - initial version 28 // 2016.05.25, E.Tcherniaev - initial version 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include <cmath> 31 #include <cmath> 32 32 33 #include "globals.hh" 33 #include "globals.hh" 34 #include "G4BoundingEnvelope.hh" 34 #include "G4BoundingEnvelope.hh" 35 #include "G4GeometryTolerance.hh" 35 #include "G4GeometryTolerance.hh" 36 #include "G4Normal3D.hh" << 37 36 38 const G4double kCarTolerance = 37 const G4double kCarTolerance = 39 G4GeometryTolerance::GetInstance()->GetSurfa 38 G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 40 39 41 ////////////////////////////////////////////// 40 /////////////////////////////////////////////////////////////////////// 42 // 41 // 43 // Constructor from an axis aligned bounding b 42 // Constructor from an axis aligned bounding box 44 // 43 // 45 G4BoundingEnvelope::G4BoundingEnvelope(const G 44 G4BoundingEnvelope::G4BoundingEnvelope(const G4ThreeVector& pMin, 46 const G 45 const G4ThreeVector& pMax) 47 : fMin(pMin), fMax(pMax) 46 : fMin(pMin), fMax(pMax) 48 { 47 { 49 // Check correctness of bounding box 48 // Check correctness of bounding box 50 // 49 // 51 CheckBoundingBox(); 50 CheckBoundingBox(); 52 } 51 } 53 52 54 ////////////////////////////////////////////// 53 /////////////////////////////////////////////////////////////////////// 55 // 54 // 56 // Constructor from a sequence of polygons 55 // Constructor from a sequence of polygons 57 // 56 // 58 G4BoundingEnvelope:: 57 G4BoundingEnvelope:: 59 G4BoundingEnvelope(const std::vector<const G4T 58 G4BoundingEnvelope(const std::vector<const G4ThreeVectorList*>& polygons) 60 : fPolygons(&polygons) 59 : fPolygons(&polygons) 61 { 60 { 62 // Check correctness of polygons 61 // Check correctness of polygons 63 // 62 // 64 CheckBoundingPolygons(); 63 CheckBoundingPolygons(); 65 64 66 // Set bounding box 65 // Set bounding box 67 // 66 // 68 G4double xmin = kInfinity, ymin = kInfinit 67 G4double xmin = kInfinity, ymin = kInfinity, zmin = kInfinity; 69 G4double xmax = -kInfinity, ymax = -kInfinit 68 G4double xmax = -kInfinity, ymax = -kInfinity, zmax = -kInfinity; 70 for (const auto & polygon : *fPolygons) << 69 for (auto ibase = fPolygons->cbegin(); ibase != fPolygons->cend(); ++ibase) 71 { << 70 { 72 for (auto ipoint = polygon->cbegin(); ipoi << 71 for (auto ipoint = (*ibase)->cbegin(); ipoint != (*ibase)->cend(); ++ipoint) 73 { 72 { 74 G4double x = ipoint->x(); << 73 G4double x = ipoint->x(); 75 if (x < xmin) xmin = x; 74 if (x < xmin) xmin = x; 76 if (x > xmax) xmax = x; 75 if (x > xmax) xmax = x; 77 G4double y = ipoint->y(); << 76 G4double y = ipoint->y(); 78 if (y < ymin) ymin = y; 77 if (y < ymin) ymin = y; 79 if (y > ymax) ymax = y; 78 if (y > ymax) ymax = y; 80 G4double z = ipoint->z(); << 79 G4double z = ipoint->z(); 81 if (z < zmin) zmin = z; 80 if (z < zmin) zmin = z; 82 if (z > zmax) zmax = z; 81 if (z > zmax) zmax = z; 83 } 82 } 84 } 83 } 85 fMin.set(xmin,ymin,zmin); 84 fMin.set(xmin,ymin,zmin); 86 fMax.set(xmax,ymax,zmax); 85 fMax.set(xmax,ymax,zmax); 87 86 88 // Check correctness of bounding box 87 // Check correctness of bounding box 89 // 88 // 90 CheckBoundingBox(); 89 CheckBoundingBox(); 91 } 90 } 92 91 93 ////////////////////////////////////////////// 92 /////////////////////////////////////////////////////////////////////// 94 // 93 // 95 // Constructor from a bounding box and a seque 94 // Constructor from a bounding box and a sequence of polygons 96 // 95 // 97 G4BoundingEnvelope:: 96 G4BoundingEnvelope:: 98 G4BoundingEnvelope( const G4ThreeVector& pMin, 97 G4BoundingEnvelope( const G4ThreeVector& pMin, 99 const G4ThreeVector& pMax, 98 const G4ThreeVector& pMax, 100 const std::vector<const G4 99 const std::vector<const G4ThreeVectorList*>& polygons) 101 : fMin(pMin), fMax(pMax), fPolygons(&polygon 100 : fMin(pMin), fMax(pMax), fPolygons(&polygons) 102 { 101 { 103 // Check correctness of bounding box and pol 102 // Check correctness of bounding box and polygons 104 // << 103 // 105 CheckBoundingBox(); 104 CheckBoundingBox(); 106 CheckBoundingPolygons(); 105 CheckBoundingPolygons(); 107 } 106 } 108 107 109 ////////////////////////////////////////////// 108 /////////////////////////////////////////////////////////////////////// 110 // 109 // 111 // Check correctness of the axis aligned bound 110 // Check correctness of the axis aligned bounding box 112 // 111 // 113 void G4BoundingEnvelope::CheckBoundingBox() 112 void G4BoundingEnvelope::CheckBoundingBox() 114 { 113 { 115 if (fMin.x() >= fMax.x() || fMin.y() >= fMax 114 if (fMin.x() >= fMax.x() || fMin.y() >= fMax.y() || fMin.z() >= fMax.z()) 116 { 115 { 117 std::ostringstream message; 116 std::ostringstream message; 118 message << "Badly defined bounding box (mi 117 message << "Badly defined bounding box (min >= max)!" 119 << "\npMin = " << fMin << 118 << "\npMin = " << fMin 120 << "\npMax = " << fMax; 119 << "\npMax = " << fMax; 121 G4Exception("G4BoundingEnvelope::CheckBoun 120 G4Exception("G4BoundingEnvelope::CheckBoundingBox()", 122 "GeomMgt0001", JustWarning, me 121 "GeomMgt0001", JustWarning, message); 123 } 122 } 124 } 123 } 125 124 126 ////////////////////////////////////////////// 125 /////////////////////////////////////////////////////////////////////// 127 // 126 // 128 // Check correctness of the sequence of boundi 127 // Check correctness of the sequence of bounding polygons. 129 // Firsf and last polygons may consist of a si 128 // Firsf and last polygons may consist of a single vertex 130 // 129 // 131 void G4BoundingEnvelope::CheckBoundingPolygons 130 void G4BoundingEnvelope::CheckBoundingPolygons() 132 { 131 { 133 std::size_t nbases = fPolygons->size(); << 132 G4int nbases = fPolygons->size(); 134 if (nbases < 2) 133 if (nbases < 2) 135 { 134 { 136 std::ostringstream message; 135 std::ostringstream message; 137 message << "Wrong number of polygons in th 136 message << "Wrong number of polygons in the sequence: " << nbases 138 << "\nShould be at least two!"; 137 << "\nShould be at least two!"; 139 G4Exception("G4BoundingEnvelope::CheckBoun << 138 G4Exception("G4BoundingEnvelope::CheckBoundingPolygons()", 140 "GeomMgt0001", FatalException, 139 "GeomMgt0001", FatalException, message); 141 return; 140 return; 142 } 141 } 143 142 144 std::size_t nsize = std::max((*fPolygons)[0 << 143 G4int nsize = std::max((*fPolygons)[0]->size(),(*fPolygons)[1]->size()); 145 if (nsize < 3) 144 if (nsize < 3) 146 { 145 { 147 std::ostringstream message; 146 std::ostringstream message; 148 message << "Badly constructed polygons!" 147 message << "Badly constructed polygons!" 149 << "\nNumber of polygons: " << nba 148 << "\nNumber of polygons: " << nbases 150 << "\nPolygon #0 size: " << (*fPol 149 << "\nPolygon #0 size: " << (*fPolygons)[0]->size() 151 << "\nPolygon #1 size: " << (*fPol 150 << "\nPolygon #1 size: " << (*fPolygons)[1]->size() 152 << "\n..."; 151 << "\n..."; 153 G4Exception("G4BoundingEnvelope::CheckBoun << 152 G4Exception("G4BoundingEnvelope::CheckBoundingPolygons()", 154 "GeomMgt0001", FatalException, 153 "GeomMgt0001", FatalException, message); 155 return; 154 return; 156 } 155 } 157 156 158 for (std::size_t k=0; k<nbases; ++k) << 157 for (G4int k=0; k<nbases; ++k) 159 { 158 { 160 std::size_t np = (*fPolygons)[k]->size(); << 159 G4int np = (*fPolygons)[k]->size(); 161 if (np == nsize) continue; 160 if (np == nsize) continue; 162 if (np == 1 && k==0) continue; 161 if (np == 1 && k==0) continue; 163 if (np == 1 && k==nbases-1) continue; 162 if (np == 1 && k==nbases-1) continue; 164 std::ostringstream message; 163 std::ostringstream message; 165 message << "Badly constructed polygons!" 164 message << "Badly constructed polygons!" 166 << "\nNumber of polygons: " << nba 165 << "\nNumber of polygons: " << nbases 167 << "\nPolygon #" << k << " size: " 166 << "\nPolygon #" << k << " size: " << np 168 << "\nexpected size: " << nsize; 167 << "\nexpected size: " << nsize; 169 G4Exception("G4BoundingEnvelope::SetBoundi << 168 G4Exception("G4BoundingEnvelope::SetBoundingPolygons()", 170 "GeomMgt0001", FatalException, 169 "GeomMgt0001", FatalException, message); 171 return; 170 return; 172 } << 171 } 173 } 172 } 174 173 175 ////////////////////////////////////////////// 174 /////////////////////////////////////////////////////////////////////// 176 // 175 // 177 // Quick comparison: bounding box vs voxel, it 176 // Quick comparison: bounding box vs voxel, it return true if further 178 // calculations are not needed 177 // calculations are not needed 179 // 178 // 180 G4bool 179 G4bool 181 G4BoundingEnvelope:: 180 G4BoundingEnvelope:: 182 BoundingBoxVsVoxelLimits(const EAxis pAxis, 181 BoundingBoxVsVoxelLimits(const EAxis pAxis, 183 const G4VoxelLimits& 182 const G4VoxelLimits& pVoxelLimits, 184 const G4Transform3D& 183 const G4Transform3D& pTransform3D, 185 G4double& pMin, G4dou 184 G4double& pMin, G4double& pMax) const 186 { 185 { 187 pMin = kInfinity; 186 pMin = kInfinity; 188 pMax = -kInfinity; 187 pMax = -kInfinity; 189 G4double xminlim = pVoxelLimits.GetMinXExten 188 G4double xminlim = pVoxelLimits.GetMinXExtent(); 190 G4double xmaxlim = pVoxelLimits.GetMaxXExten 189 G4double xmaxlim = pVoxelLimits.GetMaxXExtent(); 191 G4double yminlim = pVoxelLimits.GetMinYExten 190 G4double yminlim = pVoxelLimits.GetMinYExtent(); 192 G4double ymaxlim = pVoxelLimits.GetMaxYExten 191 G4double ymaxlim = pVoxelLimits.GetMaxYExtent(); 193 G4double zminlim = pVoxelLimits.GetMinZExten 192 G4double zminlim = pVoxelLimits.GetMinZExtent(); 194 G4double zmaxlim = pVoxelLimits.GetMaxZExten 193 G4double zmaxlim = pVoxelLimits.GetMaxZExtent(); 195 194 196 // Special case of pure translation 195 // Special case of pure translation 197 // 196 // 198 if (pTransform3D.xx()==1 && pTransform3D.yy( 197 if (pTransform3D.xx()==1 && pTransform3D.yy()==1 && pTransform3D.zz()==1) 199 { 198 { 200 G4double xmin = fMin.x() + pTransform3D.dx 199 G4double xmin = fMin.x() + pTransform3D.dx(); 201 G4double xmax = fMax.x() + pTransform3D.dx 200 G4double xmax = fMax.x() + pTransform3D.dx(); 202 G4double ymin = fMin.y() + pTransform3D.dy 201 G4double ymin = fMin.y() + pTransform3D.dy(); 203 G4double ymax = fMax.y() + pTransform3D.dy 202 G4double ymax = fMax.y() + pTransform3D.dy(); 204 G4double zmin = fMin.z() + pTransform3D.dz 203 G4double zmin = fMin.z() + pTransform3D.dz(); 205 G4double zmax = fMax.z() + pTransform3D.dz 204 G4double zmax = fMax.z() + pTransform3D.dz(); 206 205 207 if (xmin-kCarTolerance > xmaxlim) return t 206 if (xmin-kCarTolerance > xmaxlim) return true; 208 if (xmax+kCarTolerance < xminlim) return t 207 if (xmax+kCarTolerance < xminlim) return true; 209 if (ymin-kCarTolerance > ymaxlim) return t 208 if (ymin-kCarTolerance > ymaxlim) return true; 210 if (ymax+kCarTolerance < yminlim) return t 209 if (ymax+kCarTolerance < yminlim) return true; 211 if (zmin-kCarTolerance > zmaxlim) return t 210 if (zmin-kCarTolerance > zmaxlim) return true; 212 if (zmax+kCarTolerance < zminlim) return t 211 if (zmax+kCarTolerance < zminlim) return true; 213 212 214 if (xmin >= xminlim && xmax <= xmaxlim && 213 if (xmin >= xminlim && xmax <= xmaxlim && 215 ymin >= yminlim && ymax <= ymaxlim && 214 ymin >= yminlim && ymax <= ymaxlim && 216 zmin >= zminlim && zmax <= zmaxlim) 215 zmin >= zminlim && zmax <= zmaxlim) 217 { 216 { 218 if (pAxis == kXAxis) 217 if (pAxis == kXAxis) 219 { 218 { 220 pMin = (xmin-kCarTolerance < xminlim) 219 pMin = (xmin-kCarTolerance < xminlim) ? xminlim : xmin; 221 pMax = (xmax+kCarTolerance > xmaxlim) 220 pMax = (xmax+kCarTolerance > xmaxlim) ? xmaxlim : xmax; 222 } << 221 } 223 else if (pAxis == kYAxis) 222 else if (pAxis == kYAxis) 224 { 223 { 225 pMin = (ymin-kCarTolerance < yminlim) 224 pMin = (ymin-kCarTolerance < yminlim) ? yminlim : ymin; 226 pMax = (ymax+kCarTolerance > ymaxlim) 225 pMax = (ymax+kCarTolerance > ymaxlim) ? ymaxlim : ymax; 227 } 226 } 228 else if (pAxis == kZAxis) 227 else if (pAxis == kZAxis) 229 { 228 { 230 pMin = (zmin-kCarTolerance < zminlim) 229 pMin = (zmin-kCarTolerance < zminlim) ? zminlim : zmin; 231 pMax = (zmax+kCarTolerance > zmaxlim) 230 pMax = (zmax+kCarTolerance > zmaxlim) ? zmaxlim : zmax; 232 } 231 } 233 pMin -= kCarTolerance; 232 pMin -= kCarTolerance; 234 pMax += kCarTolerance; 233 pMax += kCarTolerance; 235 return true; 234 return true; 236 } 235 } 237 } 236 } 238 237 239 // Find max scale factor of the transformati << 238 // Find max scale factor of the transformation, set delta 240 // equal to kCarTolerance multiplied by the 239 // equal to kCarTolerance multiplied by the scale factor 241 // 240 // 242 G4double scale = FindScaleFactor(pTransform3 241 G4double scale = FindScaleFactor(pTransform3D); 243 G4double delta = kCarTolerance*scale; << 242 G4double delta = kCarTolerance*scale; 244 243 245 // Set the sphere surrounding the bounding b 244 // Set the sphere surrounding the bounding box 246 // 245 // 247 G4Point3D center = pTransform3D*G4Point3D(0. 246 G4Point3D center = pTransform3D*G4Point3D(0.5*(fMin+fMax)); 248 G4double radius = 0.5*scale*(fMax-fMin).mag 247 G4double radius = 0.5*scale*(fMax-fMin).mag() + delta; 249 248 250 // Check if the sphere surrounding the bound 249 // Check if the sphere surrounding the bounding box is outside 251 // the voxel limits 250 // the voxel limits 252 // 251 // 253 if (center.x()-radius > xmaxlim) return true 252 if (center.x()-radius > xmaxlim) return true; 254 if (center.y()-radius > ymaxlim) return true 253 if (center.y()-radius > ymaxlim) return true; 255 if (center.z()-radius > zmaxlim) return true 254 if (center.z()-radius > zmaxlim) return true; 256 if (center.x()+radius < xminlim) return true 255 if (center.x()+radius < xminlim) return true; 257 if (center.y()+radius < yminlim) return true 256 if (center.y()+radius < yminlim) return true; 258 if (center.z()+radius < zminlim) return true 257 if (center.z()+radius < zminlim) return true; 259 return false; 258 return false; 260 } 259 } 261 260 262 ////////////////////////////////////////////// 261 /////////////////////////////////////////////////////////////////////// 263 // 262 // 264 // Calculate extent of the specified bounding 263 // Calculate extent of the specified bounding envelope 265 // 264 // 266 G4bool 265 G4bool 267 G4BoundingEnvelope::CalculateExtent(const EAxi 266 G4BoundingEnvelope::CalculateExtent(const EAxis pAxis, 268 const G4Vo 267 const G4VoxelLimits& pVoxelLimits, 269 const G4Tr 268 const G4Transform3D& pTransform3D, 270 G4double& 269 G4double& pMin, G4double& pMax) const 271 { 270 { 272 pMin = kInfinity; 271 pMin = kInfinity; 273 pMax = -kInfinity; 272 pMax = -kInfinity; 274 G4double xminlim = pVoxelLimits.GetMinXExten 273 G4double xminlim = pVoxelLimits.GetMinXExtent(); 275 G4double xmaxlim = pVoxelLimits.GetMaxXExten 274 G4double xmaxlim = pVoxelLimits.GetMaxXExtent(); 276 G4double yminlim = pVoxelLimits.GetMinYExten 275 G4double yminlim = pVoxelLimits.GetMinYExtent(); 277 G4double ymaxlim = pVoxelLimits.GetMaxYExten 276 G4double ymaxlim = pVoxelLimits.GetMaxYExtent(); 278 G4double zminlim = pVoxelLimits.GetMinZExten 277 G4double zminlim = pVoxelLimits.GetMinZExtent(); 279 G4double zmaxlim = pVoxelLimits.GetMaxZExten 278 G4double zmaxlim = pVoxelLimits.GetMaxZExtent(); 280 279 281 // Special case of pure translation 280 // Special case of pure translation 282 // 281 // 283 if (pTransform3D.xx()==1 && pTransform3D.yy( 282 if (pTransform3D.xx()==1 && pTransform3D.yy()==1 && pTransform3D.zz()==1) 284 { 283 { 285 G4double xmin = fMin.x() + pTransform3D.dx 284 G4double xmin = fMin.x() + pTransform3D.dx(); 286 G4double xmax = fMax.x() + pTransform3D.dx 285 G4double xmax = fMax.x() + pTransform3D.dx(); 287 G4double ymin = fMin.y() + pTransform3D.dy 286 G4double ymin = fMin.y() + pTransform3D.dy(); 288 G4double ymax = fMax.y() + pTransform3D.dy 287 G4double ymax = fMax.y() + pTransform3D.dy(); 289 G4double zmin = fMin.z() + pTransform3D.dz 288 G4double zmin = fMin.z() + pTransform3D.dz(); 290 G4double zmax = fMax.z() + pTransform3D.dz 289 G4double zmax = fMax.z() + pTransform3D.dz(); 291 290 292 if (xmin-kCarTolerance > xmaxlim) return f 291 if (xmin-kCarTolerance > xmaxlim) return false; 293 if (xmax+kCarTolerance < xminlim) return f 292 if (xmax+kCarTolerance < xminlim) return false; 294 if (ymin-kCarTolerance > ymaxlim) return f 293 if (ymin-kCarTolerance > ymaxlim) return false; 295 if (ymax+kCarTolerance < yminlim) return f 294 if (ymax+kCarTolerance < yminlim) return false; 296 if (zmin-kCarTolerance > zmaxlim) return f 295 if (zmin-kCarTolerance > zmaxlim) return false; 297 if (zmax+kCarTolerance < zminlim) return f 296 if (zmax+kCarTolerance < zminlim) return false; 298 297 299 if (fPolygons == nullptr) 298 if (fPolygons == nullptr) 300 { 299 { 301 if (pAxis == kXAxis) 300 if (pAxis == kXAxis) 302 { 301 { 303 pMin = (xmin-kCarTolerance < xminlim) 302 pMin = (xmin-kCarTolerance < xminlim) ? xminlim : xmin; 304 pMax = (xmax+kCarTolerance > xmaxlim) 303 pMax = (xmax+kCarTolerance > xmaxlim) ? xmaxlim : xmax; 305 } << 304 } 306 else if (pAxis == kYAxis) 305 else if (pAxis == kYAxis) 307 { 306 { 308 pMin = (ymin-kCarTolerance < yminlim) 307 pMin = (ymin-kCarTolerance < yminlim) ? yminlim : ymin; 309 pMax = (ymax+kCarTolerance > ymaxlim) 308 pMax = (ymax+kCarTolerance > ymaxlim) ? ymaxlim : ymax; 310 } 309 } 311 else if (pAxis == kZAxis) 310 else if (pAxis == kZAxis) 312 { 311 { 313 pMin = (zmin-kCarTolerance < zminlim) 312 pMin = (zmin-kCarTolerance < zminlim) ? zminlim : zmin; 314 pMax = (zmax+kCarTolerance > zmaxlim) 313 pMax = (zmax+kCarTolerance > zmaxlim) ? zmaxlim : zmax; 315 } 314 } 316 pMin -= kCarTolerance; 315 pMin -= kCarTolerance; 317 pMax += kCarTolerance; 316 pMax += kCarTolerance; 318 return true; 317 return true; 319 } 318 } 320 } 319 } 321 320 322 // Find max scale factor of the transformati << 321 // Find max scale factor of the transformation, set delta 323 // equal to kCarTolerance multiplied by the 322 // equal to kCarTolerance multiplied by the scale factor 324 // 323 // 325 G4double scale = FindScaleFactor(pTransform3 324 G4double scale = FindScaleFactor(pTransform3D); 326 G4double delta = kCarTolerance*scale; << 325 G4double delta = kCarTolerance*scale; 327 326 328 // Set the sphere surrounding the bounding b 327 // Set the sphere surrounding the bounding box 329 // 328 // 330 G4Point3D center = pTransform3D*G4Point3D(0. 329 G4Point3D center = pTransform3D*G4Point3D(0.5*(fMin+fMax)); 331 G4double radius = 0.5*scale*(fMax-fMin).mag 330 G4double radius = 0.5*scale*(fMax-fMin).mag() + delta; 332 331 333 // Check if the sphere surrounding the bound 332 // Check if the sphere surrounding the bounding box is within 334 // the voxel limits, if so then transform on 333 // the voxel limits, if so then transform only one coordinate 335 // 334 // 336 if (center.x()-radius >= xminlim && center.x 335 if (center.x()-radius >= xminlim && center.x()+radius <= xmaxlim && 337 center.y()-radius >= yminlim && center.y 336 center.y()-radius >= yminlim && center.y()+radius <= ymaxlim && 338 center.z()-radius >= zminlim && center.z 337 center.z()-radius >= zminlim && center.z()+radius <= zmaxlim ) 339 { 338 { 340 G4double cx, cy, cz, cd; 339 G4double cx, cy, cz, cd; 341 if (pAxis == kXAxis) 340 if (pAxis == kXAxis) 342 { << 341 { 343 cx = pTransform3D.xx(); << 342 cx = pTransform3D.xx(); 344 cy = pTransform3D.xy(); 343 cy = pTransform3D.xy(); 345 cz = pTransform3D.xz(); 344 cz = pTransform3D.xz(); 346 cd = pTransform3D.dx(); 345 cd = pTransform3D.dx(); 347 } 346 } 348 else if (pAxis == kYAxis) 347 else if (pAxis == kYAxis) 349 { << 348 { 350 cx = pTransform3D.yx(); << 349 cx = pTransform3D.yx(); 351 cy = pTransform3D.yy(); 350 cy = pTransform3D.yy(); 352 cz = pTransform3D.yz(); 351 cz = pTransform3D.yz(); 353 cd = pTransform3D.dy(); 352 cd = pTransform3D.dy(); 354 } 353 } 355 else if (pAxis == kZAxis) 354 else if (pAxis == kZAxis) 356 { << 355 { 357 cx = pTransform3D.zx(); << 356 cx = pTransform3D.zx(); 358 cy = pTransform3D.zy(); 357 cy = pTransform3D.zy(); 359 cz = pTransform3D.zz(); 358 cz = pTransform3D.zz(); 360 cd = pTransform3D.dz(); 359 cd = pTransform3D.dz(); 361 } 360 } 362 else 361 else 363 { << 362 { 364 cx = cy = cz = cd = kInfinity; 363 cx = cy = cz = cd = kInfinity; 365 } 364 } 366 G4double emin = kInfinity, emax = -kInfini 365 G4double emin = kInfinity, emax = -kInfinity; 367 if (fPolygons == nullptr) 366 if (fPolygons == nullptr) 368 { 367 { 369 G4double coor; 368 G4double coor; 370 coor = cx*fMin.x() + cy*fMin.y() + cz*fM 369 coor = cx*fMin.x() + cy*fMin.y() + cz*fMin.z() + cd; 371 if (coor < emin) emin = coor; 370 if (coor < emin) emin = coor; 372 if (coor > emax) emax = coor; 371 if (coor > emax) emax = coor; 373 coor = cx*fMax.x() + cy*fMin.y() + cz*fM 372 coor = cx*fMax.x() + cy*fMin.y() + cz*fMin.z() + cd; 374 if (coor < emin) emin = coor; 373 if (coor < emin) emin = coor; 375 if (coor > emax) emax = coor; 374 if (coor > emax) emax = coor; 376 coor = cx*fMax.x() + cy*fMax.y() + cz*fM 375 coor = cx*fMax.x() + cy*fMax.y() + cz*fMin.z() + cd; 377 if (coor < emin) emin = coor; 376 if (coor < emin) emin = coor; 378 if (coor > emax) emax = coor; 377 if (coor > emax) emax = coor; 379 coor = cx*fMin.x() + cy*fMax.y() + cz*fM 378 coor = cx*fMin.x() + cy*fMax.y() + cz*fMin.z() + cd; 380 if (coor < emin) emin = coor; 379 if (coor < emin) emin = coor; 381 if (coor > emax) emax = coor; 380 if (coor > emax) emax = coor; 382 coor = cx*fMin.x() + cy*fMin.y() + cz*fM 381 coor = cx*fMin.x() + cy*fMin.y() + cz*fMax.z() + cd; 383 if (coor < emin) emin = coor; 382 if (coor < emin) emin = coor; 384 if (coor > emax) emax = coor; 383 if (coor > emax) emax = coor; 385 coor = cx*fMax.x() + cy*fMin.y() + cz*fM 384 coor = cx*fMax.x() + cy*fMin.y() + cz*fMax.z() + cd; 386 if (coor < emin) emin = coor; 385 if (coor < emin) emin = coor; 387 if (coor > emax) emax = coor; 386 if (coor > emax) emax = coor; 388 coor = cx*fMax.x() + cy*fMax.y() + cz*fM 387 coor = cx*fMax.x() + cy*fMax.y() + cz*fMax.z() + cd; 389 if (coor < emin) emin = coor; 388 if (coor < emin) emin = coor; 390 if (coor > emax) emax = coor; 389 if (coor > emax) emax = coor; 391 coor = cx*fMin.x() + cy*fMax.y() + cz*fM 390 coor = cx*fMin.x() + cy*fMax.y() + cz*fMax.z() + cd; 392 if (coor < emin) emin = coor; 391 if (coor < emin) emin = coor; 393 if (coor > emax) emax = coor; 392 if (coor > emax) emax = coor; 394 } 393 } 395 else 394 else 396 { 395 { 397 for (const auto & polygon : *fPolygons) << 396 for (auto ibase=fPolygons->cbegin(); ibase!=fPolygons->cend(); ++ibase) 398 { << 397 { 399 for (auto ipoint=polygon->cbegin(); ip << 398 for (auto ipoint=(*ibase)->cbegin(); ipoint!=(*ibase)->cend(); ++ipoint) 400 { 399 { 401 G4double coor = ipoint->x()*cx + ipo 400 G4double coor = ipoint->x()*cx + ipoint->y()*cy + ipoint->z()*cz + cd; 402 if (coor < emin) emin = coor; 401 if (coor < emin) emin = coor; 403 if (coor > emax) emax = coor; 402 if (coor > emax) emax = coor; 404 } 403 } 405 } 404 } 406 } 405 } 407 pMin = emin - delta; 406 pMin = emin - delta; 408 pMax = emax + delta; 407 pMax = emax + delta; 409 return true; 408 return true; 410 } << 409 } 411 410 412 // Check if the sphere surrounding the bound 411 // Check if the sphere surrounding the bounding box is outside 413 // the voxel limits 412 // the voxel limits 414 // 413 // 415 if (center.x()-radius > xmaxlim) return fals 414 if (center.x()-radius > xmaxlim) return false; 416 if (center.y()-radius > ymaxlim) return fals 415 if (center.y()-radius > ymaxlim) return false; 417 if (center.z()-radius > zmaxlim) return fals 416 if (center.z()-radius > zmaxlim) return false; 418 if (center.x()+radius < xminlim) return fals 417 if (center.x()+radius < xminlim) return false; 419 if (center.y()+radius < yminlim) return fals 418 if (center.y()+radius < yminlim) return false; 420 if (center.z()+radius < zminlim) return fals 419 if (center.z()+radius < zminlim) return false; 421 420 422 // Transform polygons << 421 // Allocate memory for transformed polygons 423 // 422 // 424 std::vector<G4Point3D> vertices; << 423 G4int nbases = (fPolygons == nullptr) ? 2 : fPolygons->size(); 425 std::vector<std::pair<G4int, G4int>> bases; << 424 std::vector<G4Polygon3D*> bases(nbases); 426 TransformVertices(pTransform3D, vertices, ba << 425 if (fPolygons == nullptr) 427 std::size_t nbases = bases.size(); << 426 { >> 427 bases[0] = new G4Polygon3D(4); >> 428 bases[1] = new G4Polygon3D(4); >> 429 } >> 430 else >> 431 { >> 432 for (G4int i=0; i<nbases; ++i) >> 433 { >> 434 bases[i] = new G4Polygon3D((*fPolygons)[i]->size()); >> 435 } >> 436 } >> 437 >> 438 // Transform vertices >> 439 // >> 440 TransformVertices(pTransform3D, bases); 428 441 429 // Create adjusted G4VoxelLimits box. New li << 442 // Create adjusted G4VoxelLimits box. New limits are extended by 430 // delta, kCarTolerance multiplied by max sc 443 // delta, kCarTolerance multiplied by max scale factor of 431 // the transformation 444 // the transformation 432 // 445 // 433 EAxis axes[] = { kXAxis, kYAxis, kZAxis }; << 446 EAxis axis[] = { kXAxis,kYAxis,kZAxis }; 434 G4VoxelLimits limits; // default is unlimite << 447 G4VoxelLimits limits; // default is unlimited 435 for (const auto & iAxis : axes) << 448 for (auto i=0; i<3; ++i) 436 { << 449 { 437 if (pVoxelLimits.IsLimited(iAxis)) << 450 if (pVoxelLimits.IsLimited(axis[i])) 438 { << 451 { 439 G4double emin = pVoxelLimits.GetMinExten << 452 G4double emin = pVoxelLimits.GetMinExtent(axis[i]) - delta; 440 G4double emax = pVoxelLimits.GetMaxExten << 453 G4double emax = pVoxelLimits.GetMaxExtent(axis[i]) + delta; 441 limits.AddLimit(iAxis, emin, emax); << 454 limits.AddLimit(axis[i], emin, emax); 442 } 455 } 443 } 456 } 444 457 445 // Main loop along the set of prisms 458 // Main loop along the set of prisms 446 // 459 // 447 G4Polygon3D baseA, baseB; << 448 G4Segment3D extent; 460 G4Segment3D extent; 449 extent.first = G4Point3D( kInfinity, kInfin 461 extent.first = G4Point3D( kInfinity, kInfinity, kInfinity); 450 extent.second = G4Point3D(-kInfinity,-kInfin 462 extent.second = G4Point3D(-kInfinity,-kInfinity,-kInfinity); 451 for (std::size_t k=0; k<nbases-1; ++k) << 463 for (G4int k=0; k<nbases-1; ++k) 452 { 464 { 453 baseA.resize(bases[k].second); << 454 for (G4int i = 0; i < bases[k].second; ++i << 455 baseA[i] = vertices[bases[k].first + i]; << 456 << 457 baseB.resize(bases[k+1].second); << 458 for (G4int i = 0; i < bases[k+1].second; + << 459 baseB[i] = vertices[bases[k+1].first + i << 460 << 461 // Find bounding box of current prism 465 // Find bounding box of current prism >> 466 G4Polygon3D* baseA = bases[k]; >> 467 G4Polygon3D* baseB = bases[k+1]; 462 G4Segment3D prismAABB; 468 G4Segment3D prismAABB; 463 GetPrismAABB(baseA, baseB, prismAABB); << 469 GetPrismAABB(*baseA, *baseB, prismAABB); 464 470 465 // Check if prismAABB is completely within 471 // Check if prismAABB is completely within the voxel limits 466 if (prismAABB.first.x() >= limits.GetMinXE 472 if (prismAABB.first.x() >= limits.GetMinXExtent() && 467 prismAABB.first.y() >= limits.GetMinYE 473 prismAABB.first.y() >= limits.GetMinYExtent() && 468 prismAABB.first.z() >= limits.GetMinZE 474 prismAABB.first.z() >= limits.GetMinZExtent() && 469 prismAABB.second.x()<= limits.GetMaxXE 475 prismAABB.second.x()<= limits.GetMaxXExtent() && 470 prismAABB.second.y()<= limits.GetMaxYE 476 prismAABB.second.y()<= limits.GetMaxYExtent() && 471 prismAABB.second.z()<= limits.GetMaxZE << 477 prismAABB.second.z()<= limits.GetMaxZExtent()) 472 { 478 { 473 if (extent.first.x() > prismAABB.first. 479 if (extent.first.x() > prismAABB.first.x()) 474 extent.first.setX( prismAABB.first.x() << 480 extent.first.setX( prismAABB.first.x() ); 475 if (extent.first.y() > prismAABB.first. 481 if (extent.first.y() > prismAABB.first.y()) 476 extent.first.setY( prismAABB.first.y() << 482 extent.first.setY( prismAABB.first.y() ); 477 if (extent.first.z() > prismAABB.first. 483 if (extent.first.z() > prismAABB.first.z()) 478 extent.first.setZ( prismAABB.first.z() << 484 extent.first.setZ( prismAABB.first.z() ); 479 if (extent.second.x() < prismAABB.second 485 if (extent.second.x() < prismAABB.second.x()) 480 extent.second.setX(prismAABB.second.x( << 486 extent.second.setX(prismAABB.second.x()); 481 if (extent.second.y() < prismAABB.second 487 if (extent.second.y() < prismAABB.second.y()) 482 extent.second.setY(prismAABB.second.y( << 488 extent.second.setY(prismAABB.second.y()); 483 if (extent.second.z() < prismAABB.second 489 if (extent.second.z() < prismAABB.second.z()) 484 extent.second.setZ(prismAABB.second.z( 490 extent.second.setZ(prismAABB.second.z()); 485 continue; << 491 continue; 486 } 492 } 487 493 488 // Check if prismAABB is outside the voxel 494 // Check if prismAABB is outside the voxel limits 489 if (prismAABB.first.x() > limits.GetMaxXE 495 if (prismAABB.first.x() > limits.GetMaxXExtent()) continue; 490 if (prismAABB.first.y() > limits.GetMaxYE 496 if (prismAABB.first.y() > limits.GetMaxYExtent()) continue; 491 if (prismAABB.first.z() > limits.GetMaxZE 497 if (prismAABB.first.z() > limits.GetMaxZExtent()) continue; 492 if (prismAABB.second.x() < limits.GetMinXE 498 if (prismAABB.second.x() < limits.GetMinXExtent()) continue; 493 if (prismAABB.second.y() < limits.GetMinYE 499 if (prismAABB.second.y() < limits.GetMinYExtent()) continue; 494 if (prismAABB.second.z() < limits.GetMinZE 500 if (prismAABB.second.z() < limits.GetMinZExtent()) continue; 495 501 496 // Clip edges of the prism by adjusted G4V 502 // Clip edges of the prism by adjusted G4VoxelLimits box 497 std::vector<G4Segment3D> vecEdges; << 503 std::vector<G4Segment3D> vecEdges; 498 CreateListOfEdges(baseA, baseB, vecEdges); << 504 CreateListOfEdges(*baseA, *baseB, vecEdges); 499 if (ClipEdgesByVoxel(vecEdges, limits, ext 505 if (ClipEdgesByVoxel(vecEdges, limits, extent)) continue; 500 506 501 // Some edges of the prism are completely 507 // Some edges of the prism are completely outside of the voxel 502 // limits, clip selected edges (see bits) 508 // limits, clip selected edges (see bits) of adjusted G4VoxelLimits 503 // by the prism << 509 // by the prism 504 G4int bits = 0x000; 510 G4int bits = 0x000; 505 if (limits.GetMinXExtent() < prismAABB.fir 511 if (limits.GetMinXExtent() < prismAABB.first.x()) 506 bits |= 0x988; // 1001 1000 1000 512 bits |= 0x988; // 1001 1000 1000 507 if (limits.GetMaxXExtent() > prismAABB.sec 513 if (limits.GetMaxXExtent() > prismAABB.second.x()) 508 bits |= 0x622; // 0110 0010 0010 514 bits |= 0x622; // 0110 0010 0010 509 515 510 if (limits.GetMinYExtent() < prismAABB.fir 516 if (limits.GetMinYExtent() < prismAABB.first.y()) 511 bits |= 0x311; // 0011 0001 0001 517 bits |= 0x311; // 0011 0001 0001 512 if (limits.GetMaxYExtent() > prismAABB.sec 518 if (limits.GetMaxYExtent() > prismAABB.second.y()) 513 bits |= 0xC44; // 1100 0100 0100 519 bits |= 0xC44; // 1100 0100 0100 514 520 515 if (limits.GetMinZExtent() < prismAABB.fir 521 if (limits.GetMinZExtent() < prismAABB.first.z()) 516 bits |= 0x00F; // 0000 0000 1111 522 bits |= 0x00F; // 0000 0000 1111 517 if (limits.GetMaxZExtent() > prismAABB.sec 523 if (limits.GetMaxZExtent() > prismAABB.second.z()) 518 bits |= 0x0F0; // 0000 1111 0000 524 bits |= 0x0F0; // 0000 1111 0000 519 if (bits == 0xFFF) continue; 525 if (bits == 0xFFF) continue; 520 526 521 std::vector<G4Plane3D> vecPlanes; << 527 std::vector<G4Plane3D> vecPlanes; 522 CreateListOfPlanes(baseA, baseB, vecPlanes << 528 CreateListOfPlanes(*baseA, *baseB, vecPlanes); 523 ClipVoxelByPlanes(bits, limits, vecPlanes, 529 ClipVoxelByPlanes(bits, limits, vecPlanes, prismAABB, extent); 524 } // End of the main loop 530 } // End of the main loop 525 531 526 // Final adjustment of the extent << 532 // Free memory 527 // 533 // >> 534 for (G4int i=0; i<nbases; ++i) { delete bases[i]; bases[i] = nullptr; } >> 535 >> 536 // Final adjustment of the extent >> 537 // 528 G4double emin = 0, emax = 0; 538 G4double emin = 0, emax = 0; 529 if (pAxis == kXAxis) { emin = extent.first.x 539 if (pAxis == kXAxis) { emin = extent.first.x(); emax = extent.second.x(); } 530 if (pAxis == kYAxis) { emin = extent.first.y 540 if (pAxis == kYAxis) { emin = extent.first.y(); emax = extent.second.y(); } 531 if (pAxis == kZAxis) { emin = extent.first.z 541 if (pAxis == kZAxis) { emin = extent.first.z(); emax = extent.second.z(); } 532 542 533 if (emin > emax) return false; 543 if (emin > emax) return false; 534 emin -= delta; 544 emin -= delta; 535 emax += delta; 545 emax += delta; 536 G4double minlim = pVoxelLimits.GetMinExtent( 546 G4double minlim = pVoxelLimits.GetMinExtent(pAxis); 537 G4double maxlim = pVoxelLimits.GetMaxExtent( 547 G4double maxlim = pVoxelLimits.GetMaxExtent(pAxis); 538 pMin = (emin < minlim) ? minlim-kCarToleranc 548 pMin = (emin < minlim) ? minlim-kCarTolerance : emin; 539 pMax = (emax > maxlim) ? maxlim+kCarToleranc 549 pMax = (emax > maxlim) ? maxlim+kCarTolerance : emax; 540 return true; 550 return true; 541 } 551 } 542 552 >> 553 543 ////////////////////////////////////////////// 554 /////////////////////////////////////////////////////////////////////// 544 // 555 // 545 // Find max scale factor of the transformation 556 // Find max scale factor of the transformation 546 // 557 // 547 G4double 558 G4double 548 G4BoundingEnvelope::FindScaleFactor(const G4Tr 559 G4BoundingEnvelope::FindScaleFactor(const G4Transform3D& pTransform3D) const 549 { 560 { 550 if (pTransform3D.xx() == 1. && 561 if (pTransform3D.xx() == 1. && 551 pTransform3D.yy() == 1. && 562 pTransform3D.yy() == 1. && 552 pTransform3D.zz() == 1.) return 1.; 563 pTransform3D.zz() == 1.) return 1.; 553 564 554 G4double xx = pTransform3D.xx(); 565 G4double xx = pTransform3D.xx(); 555 G4double yx = pTransform3D.yx(); 566 G4double yx = pTransform3D.yx(); 556 G4double zx = pTransform3D.zx(); 567 G4double zx = pTransform3D.zx(); 557 G4double sxsx = xx*xx + yx*yx + zx*zx; 568 G4double sxsx = xx*xx + yx*yx + zx*zx; 558 G4double xy = pTransform3D.xy(); 569 G4double xy = pTransform3D.xy(); 559 G4double yy = pTransform3D.yy(); 570 G4double yy = pTransform3D.yy(); 560 G4double zy = pTransform3D.zy(); 571 G4double zy = pTransform3D.zy(); 561 G4double sysy = xy*xy + yy*yy + zy*zy; 572 G4double sysy = xy*xy + yy*yy + zy*zy; 562 G4double xz = pTransform3D.xz(); 573 G4double xz = pTransform3D.xz(); 563 G4double yz = pTransform3D.yz(); 574 G4double yz = pTransform3D.yz(); 564 G4double zz = pTransform3D.zz(); 575 G4double zz = pTransform3D.zz(); 565 G4double szsz = xz*xz + yz*yz + zz*zz; 576 G4double szsz = xz*xz + yz*yz + zz*zz; 566 G4double ss = std::max(std::max(sxsx,sysy),s 577 G4double ss = std::max(std::max(sxsx,sysy),szsz); 567 return (ss <= 1.) ? 1. : std::sqrt(ss); 578 return (ss <= 1.) ? 1. : std::sqrt(ss); 568 } 579 } 569 580 570 ////////////////////////////////////////////// 581 /////////////////////////////////////////////////////////////////////// 571 // 582 // 572 // Transform polygonal bases 583 // Transform polygonal bases 573 // 584 // 574 void 585 void 575 G4BoundingEnvelope:: << 586 G4BoundingEnvelope::TransformVertices(const G4Transform3D& pTransform3D, 576 TransformVertices(const G4Transform3D& pTransf << 587 std::vector<G4Polygon3D*>& pBases) const 577 std::vector<G4Point3D>& pVer << 578 std::vector<std::pair<G4int, << 579 { 588 { 580 G4ThreeVectorList baseA(4), baseB(4); 589 G4ThreeVectorList baseA(4), baseB(4); 581 std::vector<const G4ThreeVectorList*> aabb(2 590 std::vector<const G4ThreeVectorList*> aabb(2); 582 aabb[0] = &baseA; << 591 aabb[0] = &baseA; aabb[1] = &baseB; 583 aabb[1] = &baseB; << 584 if (fPolygons == nullptr) 592 if (fPolygons == nullptr) 585 { 593 { 586 baseA[0].set(fMin.x(),fMin.y(),fMin.z()); 594 baseA[0].set(fMin.x(),fMin.y(),fMin.z()); 587 baseA[1].set(fMax.x(),fMin.y(),fMin.z()); 595 baseA[1].set(fMax.x(),fMin.y(),fMin.z()); 588 baseA[2].set(fMax.x(),fMax.y(),fMin.z()); 596 baseA[2].set(fMax.x(),fMax.y(),fMin.z()); 589 baseA[3].set(fMin.x(),fMax.y(),fMin.z()); 597 baseA[3].set(fMin.x(),fMax.y(),fMin.z()); 590 baseB[0].set(fMin.x(),fMin.y(),fMax.z()); 598 baseB[0].set(fMin.x(),fMin.y(),fMax.z()); 591 baseB[1].set(fMax.x(),fMin.y(),fMax.z()); 599 baseB[1].set(fMax.x(),fMin.y(),fMax.z()); 592 baseB[2].set(fMax.x(),fMax.y(),fMax.z()); 600 baseB[2].set(fMax.x(),fMax.y(),fMax.z()); 593 baseB[3].set(fMin.x(),fMax.y(),fMax.z()); 601 baseB[3].set(fMin.x(),fMax.y(),fMax.z()); 594 } 602 } 595 auto ia = (fPolygons == nullptr) ? aabb.c << 603 std::vector<const G4ThreeVectorList*>::const_iterator ia, iaend; 596 auto iaend = (fPolygons == nullptr) ? aabb.c << 604 auto ib = pBases.begin(); >> 605 ia = (fPolygons == nullptr) ? aabb.cbegin() : fPolygons->cbegin(); >> 606 iaend = (fPolygons == nullptr) ? aabb.cend() : fPolygons->cend(); 597 607 598 // Fill vector of bases << 608 if (pTransform3D.xx()==1 && pTransform3D.yy()==1 && pTransform3D.zz()==1) 599 // << 600 G4int index = 0; << 601 for (auto i = ia; i != iaend; ++i) << 602 { << 603 auto nv = (G4int)(*i)->size(); << 604 pBases.emplace_back(index, nv); << 605 index += nv; << 606 } << 607 << 608 // Fill vector of transformed vertices << 609 // << 610 if (pTransform3D.xx() == 1. && << 611 pTransform3D.yy() == 1. && << 612 pTransform3D.zz() == 1.) << 613 { 609 { 614 G4ThreeVector offset = pTransform3D.getTra 610 G4ThreeVector offset = pTransform3D.getTranslation(); 615 for (auto i = ia; i != iaend; ++i) << 611 for ( ; ia != iaend; ++ia, ++ib) 616 for (auto k = (*i)->cbegin(); k != (*i)- << 612 { 617 pVertices.emplace_back((*k) + offset); << 613 auto ka = (*ia)->cbegin(); >> 614 auto kb = (*ib)->begin(); >> 615 for ( ; ka != (*ia)->cend(); ++ka, ++kb) { (*kb) = (*ka) + offset; } >> 616 } 618 } 617 } 619 else 618 else 620 { 619 { 621 for (auto i = ia; i != iaend; ++i) << 620 for ( ; ia != iaend; ++ia, ++ib) 622 for (auto k = (*i)->cbegin(); k != (*i)- << 621 { 623 pVertices.push_back(pTransform3D*G4Poi << 622 auto ka = (*ia)->cbegin(); >> 623 auto kb = (*ib)->begin(); >> 624 for ( ; ka != (*ia)->cend(); ++ka, ++kb) >> 625 { >> 626 (*kb) = pTransform3D*G4Point3D(*ka); >> 627 } >> 628 } 624 } 629 } 625 } 630 } 626 631 627 ////////////////////////////////////////////// 632 /////////////////////////////////////////////////////////////////////// 628 // 633 // 629 // Find bounding box of a prism 634 // Find bounding box of a prism 630 // 635 // 631 void 636 void 632 G4BoundingEnvelope::GetPrismAABB(const G4Polyg 637 G4BoundingEnvelope::GetPrismAABB(const G4Polygon3D& pBaseA, 633 const G4Polyg 638 const G4Polygon3D& pBaseB, 634 G4Segme 639 G4Segment3D& pAABB) const 635 { 640 { 636 G4double xmin = kInfinity, ymin = kInfinit 641 G4double xmin = kInfinity, ymin = kInfinity, zmin = kInfinity; 637 G4double xmax = -kInfinity, ymax = -kInfinit 642 G4double xmax = -kInfinity, ymax = -kInfinity, zmax = -kInfinity; 638 643 639 // First base 644 // First base 640 // 645 // 641 for (const auto & it1 : pBaseA) << 646 for (auto it1 = pBaseA.cbegin(); it1 != pBaseA.cend(); ++it1) 642 { << 647 { 643 G4double x = it1.x(); << 648 G4double x = it1->x(); 644 if (x < xmin) xmin = x; 649 if (x < xmin) xmin = x; 645 if (x > xmax) xmax = x; 650 if (x > xmax) xmax = x; 646 G4double y = it1.y(); << 651 G4double y = it1->y(); 647 if (y < ymin) ymin = y; 652 if (y < ymin) ymin = y; 648 if (y > ymax) ymax = y; 653 if (y > ymax) ymax = y; 649 G4double z = it1.z(); << 654 G4double z = it1->z(); 650 if (z < zmin) zmin = z; 655 if (z < zmin) zmin = z; 651 if (z > zmax) zmax = z; 656 if (z > zmax) zmax = z; 652 } 657 } 653 658 654 // Second base 659 // Second base 655 // 660 // 656 for (const auto & it2 : pBaseB) << 661 for (auto it2 = pBaseB.cbegin(); it2 != pBaseB.cend(); ++it2) 657 { << 662 { 658 G4double x = it2.x(); << 663 G4double x = it2->x(); 659 if (x < xmin) xmin = x; 664 if (x < xmin) xmin = x; 660 if (x > xmax) xmax = x; 665 if (x > xmax) xmax = x; 661 G4double y = it2.y(); << 666 G4double y = it2->y(); 662 if (y < ymin) ymin = y; 667 if (y < ymin) ymin = y; 663 if (y > ymax) ymax = y; 668 if (y > ymax) ymax = y; 664 G4double z = it2.z(); << 669 G4double z = it2->z(); 665 if (z < zmin) zmin = z; 670 if (z < zmin) zmin = z; 666 if (z > zmax) zmax = z; 671 if (z > zmax) zmax = z; 667 } 672 } 668 673 669 // Set bounding box 674 // Set bounding box 670 // 675 // 671 pAABB.first = G4Point3D(xmin,ymin,zmin); 676 pAABB.first = G4Point3D(xmin,ymin,zmin); 672 pAABB.second = G4Point3D(xmax,ymax,zmax); 677 pAABB.second = G4Point3D(xmax,ymax,zmax); 673 } 678 } 674 679 675 ////////////////////////////////////////////// 680 /////////////////////////////////////////////////////////////////////// 676 // 681 // 677 // Create list of edges of a prism 682 // Create list of edges of a prism 678 // 683 // 679 void 684 void 680 G4BoundingEnvelope::CreateListOfEdges(const G4 685 G4BoundingEnvelope::CreateListOfEdges(const G4Polygon3D& baseA, 681 const G4 686 const G4Polygon3D& baseB, 682 std::vec 687 std::vector<G4Segment3D>& pEdges) const 683 { 688 { 684 std::size_t na = baseA.size(); << 689 G4int na = baseA.size(); 685 std::size_t nb = baseB.size(); << 690 G4int nb = baseB.size(); 686 pEdges.clear(); 691 pEdges.clear(); 687 if (na == nb) 692 if (na == nb) 688 { 693 { 689 pEdges.resize(3*na); 694 pEdges.resize(3*na); 690 std::size_t k = na - 1; << 695 G4int k = na - 1; 691 for (std::size_t i=0; i<na; ++i) << 696 for (G4int i=0; i<na; ++i) 692 { 697 { 693 pEdges.emplace_back(baseA[i],baseB[i]); << 698 pEdges.push_back(G4Segment3D(baseA[i],baseB[i])); 694 pEdges.emplace_back(baseA[i],baseA[k]); << 699 pEdges.push_back(G4Segment3D(baseA[i],baseA[k])); 695 pEdges.emplace_back(baseB[i],baseB[k]); << 700 pEdges.push_back(G4Segment3D(baseB[i],baseB[k])); 696 k = i; 701 k = i; 697 } 702 } 698 } 703 } 699 else if (nb == 1) 704 else if (nb == 1) 700 { 705 { 701 pEdges.resize(2*na); 706 pEdges.resize(2*na); 702 std::size_t k = na - 1; << 707 G4int k = na - 1; 703 for (std::size_t i=0; i<na; ++i) << 708 for (G4int i=0; i<na; ++i) 704 { 709 { 705 pEdges.emplace_back(baseA[i],baseA[k]); << 710 pEdges.push_back(G4Segment3D(baseA[i],baseA[k])); 706 pEdges.emplace_back(baseA[i],baseB[0]); << 711 pEdges.push_back(G4Segment3D(baseA[i],baseB[0])); 707 k = i; 712 k = i; 708 } 713 } 709 } 714 } 710 else if (na == 1) 715 else if (na == 1) 711 { 716 { 712 pEdges.resize(2*nb); 717 pEdges.resize(2*nb); 713 std::size_t k = nb - 1; << 718 G4int k = nb - 1; 714 for (std::size_t i=0; i<nb; ++i) << 719 for (G4int i=0; i<nb; ++i) 715 { 720 { 716 pEdges.emplace_back(baseB[i],baseB[k]); << 721 pEdges.push_back(G4Segment3D(baseB[i],baseB[k])); 717 pEdges.emplace_back(baseB[i],baseA[0]); << 722 pEdges.push_back(G4Segment3D(baseB[i],baseA[0])); 718 k = i; 723 k = i; 719 } 724 } 720 } 725 } 721 } 726 } 722 727 723 ////////////////////////////////////////////// 728 /////////////////////////////////////////////////////////////////////// 724 // 729 // 725 // Create list of planes bounding a prism 730 // Create list of planes bounding a prism 726 // 731 // 727 void 732 void 728 G4BoundingEnvelope::CreateListOfPlanes(const G 733 G4BoundingEnvelope::CreateListOfPlanes(const G4Polygon3D& baseA, 729 const G 734 const G4Polygon3D& baseB, 730 std::ve 735 std::vector<G4Plane3D>& pPlanes) const 731 { 736 { 732 // Find centers of the bases and internal po 737 // Find centers of the bases and internal point of the prism 733 // 738 // 734 std::size_t na = baseA.size(); << 739 G4int na = baseA.size(); 735 std::size_t nb = baseB.size(); << 740 G4int nb = baseB.size(); 736 G4Point3D pa(0.,0.,0.), pb(0.,0.,0.), p0; 741 G4Point3D pa(0.,0.,0.), pb(0.,0.,0.), p0; 737 G4Normal3D norm; 742 G4Normal3D norm; 738 for (std::size_t i=0; i<na; ++i) pa += baseA << 743 for (G4int i=0; i<na; ++i) pa += baseA[i]; 739 for (std::size_t i=0; i<nb; ++i) pb += baseB << 744 for (G4int i=0; i<nb; ++i) pb += baseB[i]; 740 pa /= na; pb /= nb; p0 = (pa+pb)/2.; 745 pa /= na; pb /= nb; p0 = (pa+pb)/2.; 741 746 742 // Create list of planes 747 // Create list of planes 743 // 748 // 744 pPlanes.clear(); 749 pPlanes.clear(); 745 if (na == nb) // bases with equal number of 750 if (na == nb) // bases with equal number of vertices 746 { 751 { 747 std::size_t k = na - 1; << 752 G4int k = na - 1; 748 for (std::size_t i=0; i<na; ++i) << 753 for (G4int i=0; i<na; ++i) 749 { 754 { 750 norm = (baseB[k]-baseA[i]).cross(baseA[k 755 norm = (baseB[k]-baseA[i]).cross(baseA[k]-baseB[i]); 751 if (norm.mag2() > kCarTolerance) 756 if (norm.mag2() > kCarTolerance) 752 { 757 { 753 pPlanes.emplace_back(norm,baseA[i]); << 758 pPlanes.push_back(G4Plane3D(norm,baseA[i])); 754 } 759 } 755 k = i; 760 k = i; 756 } 761 } 757 norm = (baseA[2]-baseA[0]).cross(baseA[1]- 762 norm = (baseA[2]-baseA[0]).cross(baseA[1]-pa); 758 if (norm.mag2() > kCarTolerance) 763 if (norm.mag2() > kCarTolerance) 759 { 764 { 760 pPlanes.emplace_back(norm,pa); << 765 pPlanes.push_back(G4Plane3D(norm,pa)); 761 } 766 } 762 norm = (baseB[2]-baseB[0]).cross(baseB[1]- 767 norm = (baseB[2]-baseB[0]).cross(baseB[1]-pb); 763 if (norm.mag2() > kCarTolerance) 768 if (norm.mag2() > kCarTolerance) 764 { 769 { 765 pPlanes.emplace_back(norm,pb); << 770 pPlanes.push_back(G4Plane3D(norm,pb)); 766 } 771 } 767 } 772 } 768 else if (nb == 1) // baseB has one vertex 773 else if (nb == 1) // baseB has one vertex 769 { 774 { 770 std::size_t k = na - 1; << 775 G4int k = na - 1; 771 for (std::size_t i=0; i<na; ++i) << 776 for (G4int i=0; i<na; ++i) 772 { 777 { 773 norm = (baseA[i]-baseB[0]).cross(baseA[k 778 norm = (baseA[i]-baseB[0]).cross(baseA[k]-baseB[0]); 774 if (norm.mag2() > kCarTolerance) 779 if (norm.mag2() > kCarTolerance) 775 { 780 { 776 pPlanes.emplace_back(norm,baseB[0]); << 781 pPlanes.push_back(G4Plane3D(norm,baseB[0])); 777 } 782 } 778 k = i; 783 k = i; 779 } 784 } 780 norm = (baseA[2]-baseA[0]).cross(baseA[1]- 785 norm = (baseA[2]-baseA[0]).cross(baseA[1]-pa); 781 if (norm.mag2() > kCarTolerance) 786 if (norm.mag2() > kCarTolerance) 782 { 787 { 783 pPlanes.emplace_back(norm,pa); << 788 pPlanes.push_back(G4Plane3D(norm,pa)); 784 } 789 } 785 } 790 } 786 else if (na == 1) // baseA has one vertex 791 else if (na == 1) // baseA has one vertex 787 { 792 { 788 std::size_t k = nb - 1; << 793 G4int k = nb - 1; 789 for (std::size_t i=0; i<nb; ++i) << 794 for (G4int i=0; i<nb; ++i) 790 { 795 { 791 norm = (baseB[i]-baseA[0]).cross(baseB[k 796 norm = (baseB[i]-baseA[0]).cross(baseB[k]-baseA[0]); 792 if (norm.mag2() > kCarTolerance) 797 if (norm.mag2() > kCarTolerance) 793 { 798 { 794 pPlanes.emplace_back(norm,baseA[0]); << 799 pPlanes.push_back(G4Plane3D(norm,baseA[0])); 795 } 800 } 796 k = i; 801 k = i; 797 } 802 } 798 norm = (baseB[2]-baseB[0]).cross(baseB[1]- 803 norm = (baseB[2]-baseB[0]).cross(baseB[1]-pb); 799 if (norm.mag2() > kCarTolerance) 804 if (norm.mag2() > kCarTolerance) 800 { 805 { 801 pPlanes.emplace_back(norm,pb); << 806 pPlanes.push_back(G4Plane3D(norm,pb)); 802 } 807 } 803 } 808 } 804 809 805 // Ensure that normals of the planes point t 810 // Ensure that normals of the planes point to outside 806 // 811 // 807 std::size_t nplanes = pPlanes.size(); << 812 G4int nplanes = pPlanes.size(); 808 for (std::size_t i=0; i<nplanes; ++i) << 813 for (G4int i=0; i<nplanes; ++i) 809 { 814 { 810 pPlanes[i].normalize(); 815 pPlanes[i].normalize(); 811 if (pPlanes[i].distance(p0) > 0) 816 if (pPlanes[i].distance(p0) > 0) 812 { 817 { 813 pPlanes[i] = G4Plane3D(-pPlanes[i].a(),- 818 pPlanes[i] = G4Plane3D(-pPlanes[i].a(),-pPlanes[i].b(), 814 -pPlanes[i].c(),- 819 -pPlanes[i].c(),-pPlanes[i].d()); 815 } << 820 } 816 } 821 } 817 } 822 } 818 823 819 ////////////////////////////////////////////// 824 /////////////////////////////////////////////////////////////////////// 820 // 825 // 821 // Clip edges of a prism by G4VoxelLimits box. 826 // Clip edges of a prism by G4VoxelLimits box. Return true if all edges 822 // are inside or intersect the voxel, in this 827 // are inside or intersect the voxel, in this case further calculations 823 // are not needed << 828 // are not needed 824 // 829 // 825 G4bool 830 G4bool 826 G4BoundingEnvelope::ClipEdgesByVoxel(const std 831 G4BoundingEnvelope::ClipEdgesByVoxel(const std::vector<G4Segment3D>& pEdges, 827 const G4V 832 const G4VoxelLimits& pBox, 828 G4S 833 G4Segment3D& pExtent) const 829 { 834 { 830 G4bool done = true; 835 G4bool done = true; 831 G4Point3D emin = pExtent.first; 836 G4Point3D emin = pExtent.first; 832 G4Point3D emax = pExtent.second; 837 G4Point3D emax = pExtent.second; 833 838 834 std::size_t nedges = pEdges.size(); << 839 G4int nedges = pEdges.size(); 835 for (std::size_t k=0; k<nedges; ++k) << 840 for (G4int k=0; k<nedges; ++k) 836 { 841 { 837 G4Point3D p1 = pEdges[k].first; 842 G4Point3D p1 = pEdges[k].first; 838 G4Point3D p2 = pEdges[k].second; 843 G4Point3D p2 = pEdges[k].second; 839 if (std::abs(p1.x()-p2.x())+ 844 if (std::abs(p1.x()-p2.x())+ 840 std::abs(p1.y()-p2.y())+ 845 std::abs(p1.y()-p2.y())+ 841 std::abs(p1.z()-p2.z()) < kCarToleranc 846 std::abs(p1.z()-p2.z()) < kCarTolerance) continue; 842 G4double d1, d2; 847 G4double d1, d2; 843 // Clip current edge by X min 848 // Clip current edge by X min 844 d1 = pBox.GetMinXExtent() - p1.x(); << 849 d1 = pBox.GetMinXExtent() - p1.x(); 845 d2 = pBox.GetMinXExtent() - p2.x(); << 850 d2 = pBox.GetMinXExtent() - p2.x(); 846 if (d1 > 0.0) 851 if (d1 > 0.0) 847 { 852 { 848 if (d2 > 0.0) { done = false; continue; 853 if (d2 > 0.0) { done = false; continue; } // go to next edge 849 p1 = (p2*d1-p1*d2)/(d1-d2); 854 p1 = (p2*d1-p1*d2)/(d1-d2); // move p1 850 } 855 } 851 else 856 else 852 { 857 { 853 if (d2 > 0.0) { p2 = (p1*d2-p2*d1)/(d2-d 858 if (d2 > 0.0) { p2 = (p1*d2-p2*d1)/(d2-d1); } // move p2 854 } 859 } 855 860 856 // Clip current edge by X max 861 // Clip current edge by X max 857 d1 = p1.x() - pBox.GetMaxXExtent(); << 862 d1 = p1.x() - pBox.GetMaxXExtent(); 858 d2 = p2.x() - pBox.GetMaxXExtent(); << 863 d2 = p2.x() - pBox.GetMaxXExtent(); 859 if (d1 > 0.) 864 if (d1 > 0.) 860 { 865 { 861 if (d2 > 0.) { done = false; continue; } 866 if (d2 > 0.) { done = false; continue; } // go to next edge 862 p1 = (p2*d1-p1*d2)/(d1-d2); 867 p1 = (p2*d1-p1*d2)/(d1-d2); 863 } 868 } 864 else 869 else 865 { 870 { 866 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1 871 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1); } 867 } 872 } 868 873 869 // Clip current edge by Y min 874 // Clip current edge by Y min 870 d1 = pBox.GetMinYExtent() - p1.y(); << 875 d1 = pBox.GetMinYExtent() - p1.y(); 871 d2 = pBox.GetMinYExtent() - p2.y(); << 876 d2 = pBox.GetMinYExtent() - p2.y(); 872 if (d1 > 0.) 877 if (d1 > 0.) 873 { 878 { 874 if (d2 > 0.) { done = false; continue; } 879 if (d2 > 0.) { done = false; continue; } // go to next edge 875 p1 = (p2*d1-p1*d2)/(d1-d2); 880 p1 = (p2*d1-p1*d2)/(d1-d2); 876 } 881 } 877 else 882 else 878 { 883 { 879 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1 884 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1); } 880 } 885 } 881 886 882 // Clip current edge by Y max 887 // Clip current edge by Y max 883 d1 = p1.y() - pBox.GetMaxYExtent(); << 888 d1 = p1.y() - pBox.GetMaxYExtent(); 884 d2 = p2.y() - pBox.GetMaxYExtent(); << 889 d2 = p2.y() - pBox.GetMaxYExtent(); 885 if (d1 > 0.) 890 if (d1 > 0.) 886 { 891 { 887 if (d2 > 0.) { done = false; continue; } 892 if (d2 > 0.) { done = false; continue; } // go to next edge 888 p1 = (p2*d1-p1*d2)/(d1-d2); 893 p1 = (p2*d1-p1*d2)/(d1-d2); 889 } 894 } 890 else 895 else 891 { 896 { 892 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1 897 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1); } 893 } 898 } 894 899 895 // Clip current edge by Z min 900 // Clip current edge by Z min 896 d1 = pBox.GetMinZExtent() - p1.z(); << 901 d1 = pBox.GetMinZExtent() - p1.z(); 897 d2 = pBox.GetMinZExtent() - p2.z(); << 902 d2 = pBox.GetMinZExtent() - p2.z(); 898 if (d1 > 0.) 903 if (d1 > 0.) 899 { 904 { 900 if (d2 > 0.) { done = false; continue; } 905 if (d2 > 0.) { done = false; continue; } // go to next edge 901 p1 = (p2*d1-p1*d2)/(d1-d2); 906 p1 = (p2*d1-p1*d2)/(d1-d2); 902 } 907 } 903 else 908 else 904 { 909 { 905 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1 910 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1); } 906 } 911 } 907 912 908 // Clip current edge by Z max 913 // Clip current edge by Z max 909 d1 = p1.z() - pBox.GetMaxZExtent(); << 914 d1 = p1.z() - pBox.GetMaxZExtent(); 910 d2 = p2.z() - pBox.GetMaxZExtent(); << 915 d2 = p2.z() - pBox.GetMaxZExtent(); 911 if (d1 > 0.) 916 if (d1 > 0.) 912 { 917 { 913 if (d2 > 0.) { done = false; continue; } 918 if (d2 > 0.) { done = false; continue; } // go to next edge 914 p1 = (p2*d1-p1*d2)/(d1-d2); 919 p1 = (p2*d1-p1*d2)/(d1-d2); 915 } 920 } 916 else 921 else 917 { 922 { 918 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1 923 if (d2 > 0.) { p2 = (p1*d2-p2*d1)/(d2-d1); } 919 } 924 } 920 925 921 // Adjust current extent 926 // Adjust current extent 922 emin.setX(std::min(std::min(p1.x(),p2.x()) << 927 emin.setX(std::min(std::min(p1.x(),p2.x()),emin.x())); 923 emin.setY(std::min(std::min(p1.y(),p2.y()) << 928 emin.setY(std::min(std::min(p1.y(),p2.y()),emin.y())); 924 emin.setZ(std::min(std::min(p1.z(),p2.z()) << 929 emin.setZ(std::min(std::min(p1.z(),p2.z()),emin.z())); 925 << 930 926 emax.setX(std::max(std::max(p1.x(),p2.x()) << 931 emax.setX(std::max(std::max(p1.x(),p2.x()),emax.x())); 927 emax.setY(std::max(std::max(p1.y(),p2.y()) << 932 emax.setY(std::max(std::max(p1.y(),p2.y()),emax.y())); 928 emax.setZ(std::max(std::max(p1.z(),p2.z()) << 933 emax.setZ(std::max(std::max(p1.z(),p2.z()),emax.z())); 929 } 934 } 930 935 931 // Return true if all edges (at least partia 936 // Return true if all edges (at least partially) are inside 932 // the voxel limits, otherwise return false 937 // the voxel limits, otherwise return false 933 pExtent.first = emin; 938 pExtent.first = emin; 934 pExtent.second = emax; 939 pExtent.second = emax; 935 940 936 return done; 941 return done; 937 } 942 } 938 943 939 ////////////////////////////////////////////// 944 /////////////////////////////////////////////////////////////////////// 940 // 945 // 941 // Clip G4VoxelLimits by set of planes boundin 946 // Clip G4VoxelLimits by set of planes bounding a prism 942 // 947 // 943 void 948 void 944 G4BoundingEnvelope::ClipVoxelByPlanes(G4int pB 949 G4BoundingEnvelope::ClipVoxelByPlanes(G4int pBits, 945 const G4 950 const G4VoxelLimits& pBox, 946 const st 951 const std::vector<G4Plane3D>& pPlanes, 947 const G4 952 const G4Segment3D& pAABB, 948 G4 953 G4Segment3D& pExtent) const 949 { 954 { 950 G4Point3D emin = pExtent.first; 955 G4Point3D emin = pExtent.first; 951 G4Point3D emax = pExtent.second; 956 G4Point3D emax = pExtent.second; 952 957 953 // Create edges of the voxel limits box redu 958 // Create edges of the voxel limits box reducing them where 954 // appropriate to avoid calculations with bi 959 // appropriate to avoid calculations with big numbers (kInfinity) 955 // 960 // 956 G4double xmin = std::max(pBox.GetMinXExtent( 961 G4double xmin = std::max(pBox.GetMinXExtent(),pAABB.first.x() -1.); 957 G4double xmax = std::min(pBox.GetMaxXExtent( 962 G4double xmax = std::min(pBox.GetMaxXExtent(),pAABB.second.x()+1.); 958 963 959 G4double ymin = std::max(pBox.GetMinYExtent( 964 G4double ymin = std::max(pBox.GetMinYExtent(),pAABB.first.y() -1.); 960 G4double ymax = std::min(pBox.GetMaxYExtent( 965 G4double ymax = std::min(pBox.GetMaxYExtent(),pAABB.second.y()+1.); 961 966 962 G4double zmin = std::max(pBox.GetMinZExtent( 967 G4double zmin = std::max(pBox.GetMinZExtent(),pAABB.first.z() -1.); 963 G4double zmax = std::min(pBox.GetMaxZExtent( 968 G4double zmax = std::min(pBox.GetMaxZExtent(),pAABB.second.z()+1.); 964 969 965 std::vector<G4Segment3D> edges(12); 970 std::vector<G4Segment3D> edges(12); 966 G4int i = 0, bits = pBits; 971 G4int i = 0, bits = pBits; 967 if ((bits & 0x001) == 0) << 972 if (!(bits & 0x001)) 968 { << 973 { 969 edges[i ].first.set( xmin,ymin,zmin); << 974 edges[i ].first.set( xmin,ymin,zmin); 970 edges[i++].second.set(xmax,ymin,zmin); 975 edges[i++].second.set(xmax,ymin,zmin); 971 } 976 } 972 if ((bits & 0x002) == 0) << 977 if (!(bits & 0x002)) 973 { 978 { 974 edges[i ].first.set( xmax,ymin,zmin); 979 edges[i ].first.set( xmax,ymin,zmin); 975 edges[i++].second.set(xmax,ymax,zmin); 980 edges[i++].second.set(xmax,ymax,zmin); 976 } 981 } 977 if ((bits & 0x004) == 0) << 982 if (!(bits & 0x004)) 978 { 983 { 979 edges[i ].first.set( xmax,ymax,zmin); 984 edges[i ].first.set( xmax,ymax,zmin); 980 edges[i++].second.set(xmin,ymax,zmin); 985 edges[i++].second.set(xmin,ymax,zmin); 981 } 986 } 982 if ((bits & 0x008) == 0) << 987 if (!(bits & 0x008)) 983 { 988 { 984 edges[i ].first.set( xmin,ymax,zmin); 989 edges[i ].first.set( xmin,ymax,zmin); 985 edges[i++].second.set(xmin,ymin,zmin); << 990 edges[i++].second.set(xmin,ymin,zmin); 986 } 991 } 987 992 988 if ((bits & 0x010) == 0) << 993 if (!(bits & 0x010)) 989 { << 994 { 990 edges[i ].first.set( xmin,ymin,zmax); << 995 edges[i ].first.set( xmin,ymin,zmax); 991 edges[i++].second.set(xmax,ymin,zmax); 996 edges[i++].second.set(xmax,ymin,zmax); 992 } 997 } 993 if ((bits & 0x020) == 0) << 998 if (!(bits & 0x020)) 994 { 999 { 995 edges[i ].first.set( xmax,ymin,zmax); 1000 edges[i ].first.set( xmax,ymin,zmax); 996 edges[i++].second.set(xmax,ymax,zmax); 1001 edges[i++].second.set(xmax,ymax,zmax); 997 } 1002 } 998 if ((bits & 0x040) == 0) << 1003 if (!(bits & 0x040)) 999 { 1004 { 1000 edges[i ].first.set( xmax,ymax,zmax); 1005 edges[i ].first.set( xmax,ymax,zmax); 1001 edges[i++].second.set(xmin,ymax,zmax); 1006 edges[i++].second.set(xmin,ymax,zmax); 1002 } 1007 } 1003 if ((bits & 0x080) == 0) << 1008 if (!(bits & 0x080)) 1004 { 1009 { 1005 edges[i ].first.set( xmin,ymax,zmax); 1010 edges[i ].first.set( xmin,ymax,zmax); 1006 edges[i++].second.set(xmin,ymin,zmax); << 1011 edges[i++].second.set(xmin,ymin,zmax); 1007 } 1012 } 1008 1013 1009 if ((bits & 0x100) == 0) << 1014 if (!(bits & 0x100)) 1010 { << 1015 { 1011 edges[i ].first.set( xmin,ymin,zmin); << 1016 edges[i ].first.set( xmin,ymin,zmin); 1012 edges[i++].second.set(xmin,ymin,zmax); << 1017 edges[i++].second.set(xmin,ymin,zmax); 1013 } 1018 } 1014 if ((bits & 0x200) == 0) << 1019 if (!(bits & 0x200)) 1015 { 1020 { 1016 edges[i ].first.set( xmax,ymin,zmin); 1021 edges[i ].first.set( xmax,ymin,zmin); 1017 edges[i++].second.set(xmax,ymin,zmax); 1022 edges[i++].second.set(xmax,ymin,zmax); 1018 } 1023 } 1019 if ((bits & 0x400) == 0) << 1024 if (!(bits & 0x400)) 1020 { 1025 { 1021 edges[i ].first.set( xmax,ymax,zmin); 1026 edges[i ].first.set( xmax,ymax,zmin); 1022 edges[i++].second.set(xmax,ymax,zmax); 1027 edges[i++].second.set(xmax,ymax,zmax); 1023 } 1028 } 1024 if ((bits & 0x800) == 0) << 1029 if (!(bits & 0x800)) 1025 { 1030 { 1026 edges[i ].first.set( xmin,ymax,zmin); 1031 edges[i ].first.set( xmin,ymax,zmin); 1027 edges[i++].second.set(xmin,ymax,zmax); 1032 edges[i++].second.set(xmin,ymax,zmax); 1028 } 1033 } 1029 edges.resize(i); 1034 edges.resize(i); 1030 1035 1031 // Clip the edges by the planes 1036 // Clip the edges by the planes 1032 // 1037 // 1033 for (const auto & edge : edges) << 1038 for (auto iedge = edges.cbegin(); iedge != edges.cend(); ++iedge) 1034 { 1039 { 1035 G4bool exist = true; 1040 G4bool exist = true; 1036 G4Point3D p1 = edge.first; << 1041 G4Point3D p1 = iedge->first; 1037 G4Point3D p2 = edge.second; << 1042 G4Point3D p2 = iedge->second; 1038 for (const auto & plane : pPlanes) << 1043 for (auto iplane = pPlanes.cbegin(); iplane != pPlanes.cend(); ++iplane) 1039 { 1044 { 1040 // Clip current edge 1045 // Clip current edge 1041 G4double d1 = plane.distance(p1); << 1046 G4double d1 = iplane->distance(p1); 1042 G4double d2 = plane.distance(p2); << 1047 G4double d2 = iplane->distance(p2); 1043 if (d1 > 0.0) 1048 if (d1 > 0.0) 1044 { 1049 { 1045 if (d2 > 0.0) { exist = false; break; 1050 if (d2 > 0.0) { exist = false; break; } // go to next edge 1046 p1 = (p2*d1-p1*d2)/(d1-d2); 1051 p1 = (p2*d1-p1*d2)/(d1-d2); // move p1 1047 } 1052 } 1048 else 1053 else 1049 { 1054 { 1050 if (d2 > 0.0) { p2 = (p1*d2-p2*d1)/(d 1055 if (d2 > 0.0) { p2 = (p1*d2-p2*d1)/(d2-d1); } // move p2 1051 } 1056 } 1052 } 1057 } 1053 // Adjust the extent 1058 // Adjust the extent 1054 if (exist) 1059 if (exist) 1055 { 1060 { 1056 emin.setX(std::min(std::min(p1.x(),p2.x << 1061 emin.setX(std::min(std::min(p1.x(),p2.x()),emin.x())); 1057 emin.setY(std::min(std::min(p1.y(),p2.y << 1062 emin.setY(std::min(std::min(p1.y(),p2.y()),emin.y())); 1058 emin.setZ(std::min(std::min(p1.z(),p2.z << 1063 emin.setZ(std::min(std::min(p1.z(),p2.z()),emin.z())); 1059 << 1064 1060 emax.setX(std::max(std::max(p1.x(),p2.x << 1065 emax.setX(std::max(std::max(p1.x(),p2.x()),emax.x())); 1061 emax.setY(std::max(std::max(p1.y(),p2.y << 1066 emax.setY(std::max(std::max(p1.y(),p2.y()),emax.y())); 1062 emax.setZ(std::max(std::max(p1.z(),p2.z << 1067 emax.setZ(std::max(std::max(p1.z(),p2.z()),emax.z())); 1063 } 1068 } 1064 } 1069 } 1065 1070 1066 // Copy the extent back 1071 // Copy the extent back 1067 // 1072 // 1068 pExtent.first = emin; 1073 pExtent.first = emin; 1069 pExtent.second = emax; 1074 pExtent.second = emax; 1070 } 1075 } 1071 1076