Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4RKG3_Stepper.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4RKG3_Stepper.cc (Version 11.3.0) and /geometry/magneticfield/src/G4RKG3_Stepper.cc (Version 9.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4RKG3_Stepper implementation               << 
 27 //                                                 26 //
 28 // Created: J.Apostolakis, V.Grichine - 30.01. <<  27 // $Id$
                                                   >>  28 //
 29 // -------------------------------------------     29 // -------------------------------------------------------------------
 30                                                    30 
 31 #include "G4RKG3_Stepper.hh"                       31 #include "G4RKG3_Stepper.hh"
 32 #include "G4LineSection.hh"                        32 #include "G4LineSection.hh"
 33 #include "G4Mag_EqRhs.hh"                          33 #include "G4Mag_EqRhs.hh"
 34                                                    34 
 35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs* Eq <<  35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs *EqRhs)
 36   : G4MagIntegratorStepper(EqRhs,6)            <<  36   : G4MagIntegratorStepper(EqRhs,6), hStep(0.), fPtrMagEqOfMot(EqRhs)
 37 {                                                  37 {
 38 }                                                  38 }
 39                                                    39 
 40 G4RKG3_Stepper::~G4RKG3_Stepper() = default;   <<  40 G4RKG3_Stepper::~G4RKG3_Stepper()
                                                   >>  41 {
                                                   >>  42 }
 41                                                    43 
 42 void G4RKG3_Stepper::Stepper( const G4double y <<  44 void G4RKG3_Stepper::Stepper(  const G4double yInput[8],
 43                               const G4double d <<  45                                const G4double dydx[6],
 44                                     G4double S <<  46                                      G4double Step,
 45                                     G4double y <<  47                                      G4double yOut[8],
 46                                     G4double y <<  48                                      G4double yErr[])
 47 {                                                  49 {
 48    G4double  B[3];                                 50    G4double  B[3];
 49    G4int nvar = 6 ;                                51    G4int nvar = 6 ;
                                                   >>  52    G4int i;
 50    G4double  by15 = 1. / 15. ; // was  0.06666     53    G4double  by15 = 1. / 15. ; // was  0.066666666 ;
 51                                                    54 
 52    G4double yTemp[8], dydxTemp[6], yIn[8];     <<  55    G4double yTemp[8], dydxTemp[6], yIn[8] ;
 53                                                <<  56    //  Saving yInput because yInput and yOut can be aliases for same array
 54    // Saving yInput because yInput and yOut ca <<  57    for(i=0;i<nvar;i++) yIn[i]=yInput[i];
 55    //                                          << 
 56    for(G4int i=0; i<nvar; ++i)                 << 
 57    {                                           << 
 58      yIn[i]=yInput[i];                         << 
 59    }                                           << 
 60    yIn[6] = yInput[6];                             58    yIn[6] = yInput[6];
 61    yIn[7] = yInput[7];                             59    yIn[7] = yInput[7];
 62    G4double h = Step * 0.5;                        60    G4double h = Step * 0.5; 
 63    hStep = Step;                               <<  61    hStep=Step;
 64      // Do two half steps                      <<  62    // Do two half steps
 65                                                    63 
 66    StepNoErr(yIn, dydx,h, yTemp,B) ;               64    StepNoErr(yIn, dydx,h, yTemp,B) ;
 67                                                    65    
 68    // Store Bfld for DistChord Calculation     <<  66    //Store Bfld for DistChord Calculation
 69    //                                          <<  67    for(i=0;i<3;i++)BfldIn[i]=B[i];
 70    for(auto i=0; i<3; ++i)                     <<  68 
 71    {                                           <<  69    //   RightHandSide(yTemp,dydxTemp) ;
 72      BfldIn[i] = B[i];                         << 
 73    }                                           << 
 74    // RightHandSide(yTemp,dydxTemp) ;          << 
 75                                                    70 
 76    GetEquationOfMotion()->EvaluateRhsGivenB(yT     71    GetEquationOfMotion()->EvaluateRhsGivenB(yTemp,B,dydxTemp) ;  
 77    StepNoErr(yTemp,dydxTemp,h,yOut,B);             72    StepNoErr(yTemp,dydxTemp,h,yOut,B);      
 78                                                    73         
 79    // Store midpoint, chord calculation            74    // Store midpoint, chord calculation
 80                                                    75                                  
 81    fyMidPoint = G4ThreeVector(yTemp[0],  yTemp <<  76    fyMidPoint = G4ThreeVector( yTemp[0],  yTemp[1],  yTemp[2]); 
 82                                                    77 
 83    // Do a full Step                               78    // Do a full Step
 84   //                                           <<  79 
 85    h *= 2 ;                                        80    h *= 2 ;
 86    StepNoErr(yIn,dydx,h,yTemp,B);                  81    StepNoErr(yIn,dydx,h,yTemp,B); 
 87    for(G4int i=0; i<nvar; ++i)                 <<  82    for(i=0;i<nvar;i++)
 88    {                                               83    {
 89       yErr[i] = yOut[i] - yTemp[i] ;               84       yErr[i] = yOut[i] - yTemp[i] ;
 90       yOut[i] += yErr[i]*by15 ;          // Pr     85       yOut[i] += yErr[i]*by15 ;          // Provides 5th order of accuracy
 91    }                                               86    }
 92                                                    87 
 93    // Store values for DistChord method        <<  88    //Store values for DistChord method
 94    //                                          <<  89 
 95    fyInitial = G4ThreeVector( yIn[0],   yIn[1]     90    fyInitial = G4ThreeVector( yIn[0],   yIn[1],   yIn[2]);
 96    fpInitial = G4ThreeVector( yIn[3],   yIn[4]     91    fpInitial = G4ThreeVector( yIn[3],   yIn[4],   yIn[5]);
 97    fyFinal   = G4ThreeVector( yOut[0],  yOut[1     92    fyFinal   = G4ThreeVector( yOut[0],  yOut[1],  yOut[2]); 
                                                   >>  93   
                                                   >>  94    // NormaliseTangentVector( yOut );  // Deleted
 98 }                                                  95 }
 99                                                    96 
100 // -------------------------------------------     97 // ---------------------------------------------------------------------------
101                                                    98 
102 // Integrator for RK from G3 with evaluation o     99 // Integrator for RK from G3 with evaluation of error in solution and delta
103 // geometry based on naive similarity with the    100 // geometry based on naive similarity with the case of uniform magnetic field.
104 // B1[3] is input  and is the first magnetic f    101 // B1[3] is input  and is the first magnetic field values
105 // B2[3] is output and is the final magnetic f    102 // B2[3] is output and is the final magnetic field values.
106 //                                             << 103 
107 void G4RKG3_Stepper::StepWithEst( const G4doub    104 void G4RKG3_Stepper::StepWithEst( const G4double*,
108                                   const G4doub    105                                   const G4double*,
109                                         G4doub    106                                         G4double,
110                                         G4doub    107                                         G4double*,
111                                         G4doub    108                                         G4double&,
112                                         G4doub    109                                         G4double&,
113                                   const G4doub    110                                   const G4double*,
114                                         G4doub    111                                         G4double* )
115                                                   112    
116 {                                                 113 {
117   G4Exception("G4RKG3_Stepper::StepWithEst()",    114   G4Exception("G4RKG3_Stepper::StepWithEst()", "GeomField0001",
118               FatalException, "Method no longe    115               FatalException, "Method no longer used.");
119 }                                                 116 }
120                                                   117 
121 // -------------------------------------------    118 // -----------------------------------------------------------------
122                                                   119 
                                                   >> 120 
123 // Integrator RK Stepper from G3 with only two    121 // Integrator RK Stepper from G3 with only two field evaluation per Step. 
124 // It is used in propagation initial Step by s    122 // It is used in propagation initial Step by small substeps after solution 
125 // error and delta geometry considerations. B[    123 // error and delta geometry considerations. B[3] is magnetic field which 
126 // is passed from substep to substep.             124 // is passed from substep to substep.
127 //                                             << 125 
128 void G4RKG3_Stepper::StepNoErr(const G4double     126 void G4RKG3_Stepper::StepNoErr(const G4double tIn[8],
129                                const G4double     127                                const G4double dydx[6],
130                                      G4double     128                                      G4double Step,
131                                      G4double     129                                      G4double tOut[8],
132                                      G4double  << 130                                      G4double B[3]      )     // const
133                                                   131    
134 {                                                 132 { 
135                                                   133   
136    // Copy and edit the routine above, to dele << 134   //  Copy and edit the routine above, to delete alpha2, beta2, ...
137    //                                          << 135    G4double K1[7],K2[7],K3[7],K4[7] ;
138    G4double K1[7], K2[7], K3[7], K4[7];        << 136    G4double tTemp[8], yderiv[6] ;
139    G4double tTemp[8]={0.0}, yderiv[6]={0.0};   << 137 
140                                                << 138   // Need Momentum value to give correct values to the coefficients in equation
141    // Need Momentum value to give correct valu << 139   // Integration on unit velocity, but  tIn[3,4,5] is momentum 
142    // equation. Integration on unit velocity,  << 140    G4double mom,inverse_mom;
143                                                << 141    G4int i ;
144    G4double mom, inverse_mom;                  << 142    const G4double c1=0.5,c2=0.125,c3=1./6.;
145    const G4double c1=0.5, c2=0.125, c3=1./6.;  << 
146                                                   143   
                                                   >> 144    // GetEquationOfMotion()->EvaluateRhsReturnB(tIn,dydx,B1) ;
147    // Correction for momentum not a velocity      145    // Correction for momentum not a velocity
148    // Need the protection !!! must be not zero << 146    // Need the protection !!! must be not zero 
149    //                                          << 147      mom=std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4]+tIn[5]*tIn[5]); 
150    mom = std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4] << 148      inverse_mom=1./mom;    
151    inverse_mom = 1./mom;                       << 149    for(i=0;i<3;i++)
152    for(auto i=0; i<3; ++i)                     << 
153    {                                              150    {
154       K1[i] = Step * dydx[i+3]*inverse_mom;       151       K1[i] = Step * dydx[i+3]*inverse_mom;
155       tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*in    152       tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*inverse_mom + c2*K1[i]) ;
156       tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ;      153       tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ;
                                                   >> 154      
157    }                                              155    }
158                                                   156     
159    GetEquationOfMotion()->EvaluateRhsReturnB(t    157    GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ;
                                                   >> 158     
160                                                   159       
161    for(auto i=0; i<3; ++i)                     << 160    for(i=0;i<3;i++)
162    {                                              161    {
163       K2[i] = Step * yderiv[i+3]*inverse_mom;     162       K2[i] = Step * yderiv[i+3]*inverse_mom;
164       tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ;      163       tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ;
165    }                                              164    }
166                                                   165    
167    // Given B, calculate yderiv !              << 166    //  Given B, calculate yderiv !
168    //                                          << 
169    GetEquationOfMotion()->EvaluateRhsGivenB(tT    167    GetEquationOfMotion()->EvaluateRhsGivenB(tTemp,B,yderiv) ;  
170                                                   168  
171    for(auto i=0; i<3; ++i)                     << 169    for(i=0;i<3;i++)
172    {                                              170    {
173       K3[i] = Step * yderiv[i+3]*inverse_mom;     171       K3[i] = Step * yderiv[i+3]*inverse_mom;
174       tTemp[i] = tIn[i] + Step*(tIn[i+3]*inver    172       tTemp[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom + c1*K3[i]) ;
175       tTemp[i+3] = tIn[i+3] + K3[i]*mom ;         173       tTemp[i+3] = tIn[i+3] + K3[i]*mom ;
176    }                                              174    }
                                                   >> 175    
177                                                   176 
178    // Calculates y-deriv(atives) & returns B t << 177    //  Calculates y-deriv(atives) & returns B too!
179    //                                          << 
180    GetEquationOfMotion()->EvaluateRhsReturnB(t    178    GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ;  
                                                   >> 179     
181                                                   180 
182    for(auto i=0; i<3; ++i)        // Output tr << 181    for(i=0;i<3;i++)        // Output trajectory vector
183    {                                              182    {
184       K4[i] = Step * yderiv[i+3]*inverse_mom;     183       K4[i] = Step * yderiv[i+3]*inverse_mom;
185       tOut[i] = tIn[i] + Step*(tIn[i+3]*invers << 184       tOut[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom+ (K1[i] + K2[i] + K3[i])*c3) ;
186       tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2    185       tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2[i] + 2*K3[i] +K4[i])*c3 ;
187    }                                              186    }
188    tOut[6] = tIn[6];                              187    tOut[6] = tIn[6];
189    tOut[7] = tIn[7];                              188    tOut[7] = tIn[7];
                                                   >> 189    // NormaliseTangentVector( tOut );
                                                   >> 190   
                                                   >> 191 
190 }                                                 192 }
191                                                   193 
                                                   >> 194 
192 // -------------------------------------------    195 // ---------------------------------------------------------------------------
193                                                   196  
194 G4double G4RKG3_Stepper::DistChord() const     << 197  G4double G4RKG3_Stepper::DistChord()   const 
195 {                                              << 198  {
196    // Soon: must check whether h/R > 2 pi  !!     199    // Soon: must check whether h/R > 2 pi  !!
197    // Method below is good only for < 2 pi     << 200    //  Method below is good only for < 2 pi
198                                                << 
199    G4double distChord,distLine;                   201    G4double distChord,distLine;
200                                                   202    
201    if (fyInitial != fyFinal)                   << 203    if (fyInitial != fyFinal) {
202    {                                           << 204       distLine= G4LineSection::Distline(fyMidPoint,fyInitial,fyFinal );
203       distLine = G4LineSection::Distline(fyMid << 205   
204       distChord = distLine;                    << 206         distChord = distLine;
205    }                                           << 207    }else{
206    else                                        << 
207    {                                           << 
208       distChord = (fyMidPoint-fyInitial).mag()    208       distChord = (fyMidPoint-fyInitial).mag();
209    }                                              209    }
210                                                << 210  
                                                   >> 211   
211    return distChord;                              212    return distChord;
212 }                                              << 213    
                                                   >> 214  }
                                                   >> 215 
213                                                   216