Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4RKG3_Stepper implementation << 27 // 23 // 28 // Created: J.Apostolakis, V.Grichine - 30.01. << 24 // $Id: G4RKG3_Stepper.cc,v 1.7 2003/04/02 08:52:21 gcosmo Exp $ 29 // ------------------------------------------- << 25 // GEANT4 tag $Name: geant4-05-02-patch-01 $ 30 << 26 // 31 #include "G4RKG3_Stepper.hh" 27 #include "G4RKG3_Stepper.hh" >> 28 #include "G4ThreeVector.hh" 32 #include "G4LineSection.hh" 29 #include "G4LineSection.hh" 33 #include "G4Mag_EqRhs.hh" << 34 << 35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs* Eq << 36 : G4MagIntegratorStepper(EqRhs,6) << 37 { << 38 } << 39 30 40 G4RKG3_Stepper::~G4RKG3_Stepper() = default; << 31 void G4RKG3_Stepper::Stepper( const G4double yInput[7], 41 << 32 const G4double dydx[7], 42 void G4RKG3_Stepper::Stepper( const G4double y << 33 G4double Step, 43 const G4double d << 34 G4double yOut[7], 44 G4double S << 35 G4double yErr[]) 45 G4double y << 46 G4double y << 47 { 36 { 48 G4double B[3]; 37 G4double B[3]; >> 38 // G4double yderiv[6]; >> 39 // G4double alpha2, beta2; 49 G4int nvar = 6 ; 40 G4int nvar = 6 ; 50 G4double by15 = 1. / 15. ; // was 0.06666 << 41 // G4double beTemp2, beta2=0; 51 42 52 G4double yTemp[8], dydxTemp[6], yIn[8]; << 43 G4int i; >> 44 G4double by15 = 1. / 15. ; // was 0.066666666 ; >> 45 G4double yTemp[7], dydxTemp[6], yIn[7] ; >> 46 // Saving yInput because yInput and yOut can be aliases for same array >> 47 for(i=0;i<nvar;i++) yIn[i]=yInput[i]; 53 48 54 // Saving yInput because yInput and yOut ca << 55 // << 56 for(G4int i=0; i<nvar; ++i) << 57 { << 58 yIn[i]=yInput[i]; << 59 } << 60 yIn[6] = yInput[6]; << 61 yIn[7] = yInput[7]; << 62 G4double h = Step * 0.5; 49 G4double h = Step * 0.5; 63 hStep = Step; << 64 // Do two half steps << 65 50 66 StepNoErr(yIn, dydx,h, yTemp,B) ; << 51 // Do two half steps 67 << 68 // Store Bfld for DistChord Calculation << 69 // << 70 for(auto i=0; i<3; ++i) << 71 { << 72 BfldIn[i] = B[i]; << 73 } << 74 // RightHandSide(yTemp,dydxTemp) ; << 75 52 >> 53 >> 54 // To obtain B1 ... >> 55 // GetEquationOfMotion()->GetFieldValue(yIn,B); >> 56 // G4RKG3_Stepper::StepWithEst(yIn, dydx, Step, yOut,alpha2, beta2, B1, B2 ); >> 57 >> 58 StepNoErr(yIn, dydx,h, yTemp,B) ; >> 59 // RightHandSide(yTemp,dydxTemp) ; 76 GetEquationOfMotion()->EvaluateRhsGivenB(yT 60 GetEquationOfMotion()->EvaluateRhsGivenB(yTemp,B,dydxTemp) ; 77 StepNoErr(yTemp,dydxTemp,h,yOut,B); << 61 StepNoErr(yTemp,dydxTemp,h,yOut,B); // ,beTemp2) ; 78 << 62 // beta2 += beTemp2; >> 63 // beta2 *= 0.5; >> 64 79 // Store midpoint, chord calculation 65 // Store midpoint, chord calculation 80 66 81 fyMidPoint = G4ThreeVector(yTemp[0], yTemp << 67 fyMidPoint = G4ThreeVector( yTemp[0], yTemp[1], yTemp[2]); 82 68 83 // Do a full Step 69 // Do a full Step 84 // << 70 85 h *= 2 ; 71 h *= 2 ; 86 StepNoErr(yIn,dydx,h,yTemp,B); << 72 StepNoErr(yIn,dydx,h,yTemp,B); // ,beTemp2) ; 87 for(G4int i=0; i<nvar; ++i) << 73 for(i=0;i<nvar;i++) 88 { 74 { 89 yErr[i] = yOut[i] - yTemp[i] ; 75 yErr[i] = yOut[i] - yTemp[i] ; 90 yOut[i] += yErr[i]*by15 ; // Pr 76 yOut[i] += yErr[i]*by15 ; // Provides 5th order of accuracy 91 } 77 } 92 78 93 // Store values for DistChord method << 79 // for(i=0;i<ncomp;i++) 94 // << 80 // { 95 fyInitial = G4ThreeVector( yIn[0], yIn[1] << 81 // fyInitial[i] = yIn[i]; 96 fpInitial = G4ThreeVector( yIn[3], yIn[4] << 82 // fyFinal[i] = yOut[i]; >> 83 // } >> 84 >> 85 fyInitial = G4ThreeVector( yIn[0], yIn[1], yIn[2]); 97 fyFinal = G4ThreeVector( yOut[0], yOut[1 86 fyFinal = G4ThreeVector( yOut[0], yOut[1], yOut[2]); >> 87 // beta2 += beTemp2 ; >> 88 // beta2 *= 0.5 ; >> 89 // NormaliseTangentVector( yOut ); // Deleted >> 90 return ; 98 } 91 } 99 92 100 // ------------------------------------------- 93 // --------------------------------------------------------------------------- 101 94 102 // Integrator for RK from G3 with evaluation o 95 // Integrator for RK from G3 with evaluation of error in solution and delta 103 // geometry based on naive similarity with the 96 // geometry based on naive similarity with the case of uniform magnetic field. 104 // B1[3] is input and is the first magnetic f 97 // B1[3] is input and is the first magnetic field values 105 // B2[3] is output and is the final magnetic f 98 // B2[3] is output and is the final magnetic field values. 106 // << 99 107 void G4RKG3_Stepper::StepWithEst( const G4doub 100 void G4RKG3_Stepper::StepWithEst( const G4double*, 108 const G4doub 101 const G4double*, 109 G4doub 102 G4double, 110 G4doub 103 G4double*, 111 G4doub 104 G4double&, 112 G4doub 105 G4double&, 113 const G4doub 106 const G4double*, 114 G4doub 107 G4double* ) 115 108 116 { 109 { 117 G4Exception("G4RKG3_Stepper::StepWithEst()", << 110 G4Exception(" ERROR - G4RKG3_Stepper::StepWithEst(): method no longer used."); 118 FatalException, "Method no longe << 111 return ; 119 } 112 } 120 113 121 // ------------------------------------------- 114 // ----------------------------------------------------------------- 122 115 123 // Integrator RK Stepper from G3 with only two 116 // Integrator RK Stepper from G3 with only two field evaluation per Step. 124 // It is used in propagation initial Step by s 117 // It is used in propagation initial Step by small substeps after solution 125 // error and delta geometry considerations. B[ 118 // error and delta geometry considerations. B[3] is magnetic field which 126 // is passed from substep to substep. 119 // is passed from substep to substep. 127 // << 120 128 void G4RKG3_Stepper::StepNoErr(const G4double << 121 void G4RKG3_Stepper::StepNoErr(const G4double tIn[7], 129 const G4double << 122 const G4double dydx[7], 130 G4double 123 G4double Step, 131 G4double << 124 G4double tOut[7], 132 G4double << 125 G4double B[3] ) // const 133 126 134 { << 127 { 135 << 128 // Copy and edit the routine above, to delete alpha2, beta2, ... 136 // Copy and edit the routine above, to dele << 129 G4double K1[7],K2[7],K3[7],K4[7] ; 137 // << 130 G4double tTemp[7], yderiv[6] ; 138 G4double K1[7], K2[7], K3[7], K4[7]; << 131 G4int i ; 139 G4double tTemp[8]={0.0}, yderiv[6]={0.0}; << 132 140 << 133 #ifdef END_CODE_G3STEPPER 141 // Need Momentum value to give correct valu << 134 G4Exception(" G4RKG3_Stepper::StepNoErr(): method to be no longer used."); 142 // equation. Integration on unit velocity, << 135 #else 143 << 136 // GetEquationOfMotion()->EvaluateRhsReturnB(tIn,dydx,B1) ; 144 G4double mom, inverse_mom; << 137 145 const G4double c1=0.5, c2=0.125, c3=1./6.; << 138 for(i=0;i<3;i++) 146 << 147 // Correction for momentum not a velocity << 148 // Need the protection !!! must be not zero << 149 // << 150 mom = std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4] << 151 inverse_mom = 1./mom; << 152 for(auto i=0; i<3; ++i) << 153 { 139 { 154 K1[i] = Step * dydx[i+3]*inverse_mom; << 140 K1[i] = Step * dydx[i+3]; 155 tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*in << 141 tTemp[i] = tIn[i] + Step*(0.5*tIn[i+3] + 0.125*K1[i]) ; 156 tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ; << 142 tTemp[i+3] = tIn[i+3] + 0.5*K1[i] ; 157 } 143 } 158 << 159 GetEquationOfMotion()->EvaluateRhsReturnB(t 144 GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ; 160 << 145 // Calculates yderiv & returns B too! 161 for(auto i=0; i<3; ++i) << 146 >> 147 for(i=0;i<3;i++) 162 { 148 { 163 K2[i] = Step * yderiv[i+3]*inverse_mom; << 149 K2[i] = Step * yderiv[i+3]; 164 tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ; << 150 tTemp[i+3] = tIn[i+3] + 0.5*K2[i] ; 165 } 151 } 166 << 152 167 // Given B, calculate yderiv ! << 153 // Given B, calculate yderiv ! 168 // << 169 GetEquationOfMotion()->EvaluateRhsGivenB(tT 154 GetEquationOfMotion()->EvaluateRhsGivenB(tTemp,B,yderiv) ; 170 << 155 171 for(auto i=0; i<3; ++i) << 156 for(i=0;i<3;i++) 172 { 157 { 173 K3[i] = Step * yderiv[i+3]*inverse_mom; << 158 K3[i] = Step * yderiv[i+3]; 174 tTemp[i] = tIn[i] + Step*(tIn[i+3]*inver << 159 tTemp[i] = tIn[i] + Step*(tIn[i+3] + 0.5*K3[i]) ; 175 tTemp[i+3] = tIn[i+3] + K3[i]*mom ; << 160 tTemp[i+3] = tIn[i+3] + K3[i] ; 176 } 161 } 177 162 178 // Calculates y-deriv(atives) & returns B t << 163 // Calculates y-deriv(atives) & returns B too! 179 // << 180 GetEquationOfMotion()->EvaluateRhsReturnB(t 164 GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ; 181 165 182 for(auto i=0; i<3; ++i) // Output tr << 166 for(i=0;i<3;i++) // Output trajectory vector 183 { 167 { 184 K4[i] = Step * yderiv[i+3]*inverse_mom; << 168 K4[i] = Step * yderiv[i+3]; 185 tOut[i] = tIn[i] + Step*(tIn[i+3]*invers << 169 tOut[i] = tIn[i] + Step*(tIn[i+3] + (K1[i] + K2[i] + K3[i])/6.0) ; 186 tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2 << 170 tOut[i+3] = tIn[i+3] + (K1[i] + 2*K2[i] + 2*K3[i] +K4[i])/6.0 ; 187 } 171 } 188 tOut[6] = tIn[6]; << 172 // NormaliseTangentVector( tOut ); 189 tOut[7] = tIn[7]; << 173 #endif >> 174 >> 175 return ; 190 } 176 } 191 177 192 // ------------------------------------------- 178 // --------------------------------------------------------------------------- 193 << 194 G4double G4RKG3_Stepper::DistChord() const << 195 { << 196 // Soon: must check whether h/R > 2 pi !! << 197 // Method below is good only for < 2 pi << 198 179 199 G4double distChord,distLine; << 180 G4double G4RKG3_Stepper::DistChord() const 200 << 181 { 201 if (fyInitial != fyFinal) << 182 // Soon: must check whether h/R > 2 pi !! 202 { << 183 // Method below is good only for < 2 pi 203 distLine = G4LineSection::Distline(fyMid << 204 distChord = distLine; << 205 } << 206 else << 207 { << 208 distChord = (fyMidPoint-fyInitial).mag() << 209 } << 210 184 211 return distChord; << 185 return G4LineSection::Distline( fyMidPoint, fyInitial, fyFinal ); >> 186 // This is a class method that gives distance of Mid >> 187 // from the Chord between the Initial and Final points. 212 } 188 } 213 189