Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4RKG3_Stepper.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4RKG3_Stepper.cc (Version 11.3.0) and /geometry/magneticfield/src/G4RKG3_Stepper.cc (Version 11.1.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4RKG3_Stepper implementation                   26 // G4RKG3_Stepper implementation
 27 //                                                 27 //
 28 // Created: J.Apostolakis, V.Grichine - 30.01.     28 // Created: J.Apostolakis, V.Grichine - 30.01.1997
 29 // -------------------------------------------     29 // -------------------------------------------------------------------
 30                                                    30 
 31 #include "G4RKG3_Stepper.hh"                       31 #include "G4RKG3_Stepper.hh"
 32 #include "G4LineSection.hh"                        32 #include "G4LineSection.hh"
 33 #include "G4Mag_EqRhs.hh"                          33 #include "G4Mag_EqRhs.hh"
 34                                                    34 
 35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs* Eq     35 G4RKG3_Stepper::G4RKG3_Stepper(G4Mag_EqRhs* EqRhs)
 36   : G4MagIntegratorStepper(EqRhs,6)                36   : G4MagIntegratorStepper(EqRhs,6)
 37 {                                                  37 {
 38 }                                                  38 }
 39                                                    39 
 40 G4RKG3_Stepper::~G4RKG3_Stepper() = default;   <<  40 G4RKG3_Stepper::~G4RKG3_Stepper()
                                                   >>  41 {
                                                   >>  42 }
 41                                                    43 
 42 void G4RKG3_Stepper::Stepper( const G4double y     44 void G4RKG3_Stepper::Stepper( const G4double yInput[], // [8]
 43                               const G4double d     45                               const G4double dydx[],   // [6]
 44                                     G4double S     46                                     G4double Step,
 45                                     G4double y     47                                     G4double yOut[],   // [8]
 46                                     G4double y     48                                     G4double yErr[] )
 47 {                                                  49 {
 48    G4double  B[3];                                 50    G4double  B[3];
 49    G4int nvar = 6 ;                                51    G4int nvar = 6 ;
 50    G4double  by15 = 1. / 15. ; // was  0.06666     52    G4double  by15 = 1. / 15. ; // was  0.066666666 ;
 51                                                    53 
 52    G4double yTemp[8], dydxTemp[6], yIn[8];         54    G4double yTemp[8], dydxTemp[6], yIn[8];
 53                                                    55 
 54    // Saving yInput because yInput and yOut ca     56    // Saving yInput because yInput and yOut can be aliases for same array
 55    //                                              57    //
 56    for(G4int i=0; i<nvar; ++i)                     58    for(G4int i=0; i<nvar; ++i)
 57    {                                               59    {
 58      yIn[i]=yInput[i];                             60      yIn[i]=yInput[i];
 59    }                                               61    }
 60    yIn[6] = yInput[6];                             62    yIn[6] = yInput[6];
 61    yIn[7] = yInput[7];                             63    yIn[7] = yInput[7];
 62    G4double h = Step * 0.5;                        64    G4double h = Step * 0.5; 
 63    hStep = Step;                                   65    hStep = Step;
 64      // Do two half steps                          66      // Do two half steps
 65                                                    67 
 66    StepNoErr(yIn, dydx,h, yTemp,B) ;               68    StepNoErr(yIn, dydx,h, yTemp,B) ;
 67                                                    69    
 68    // Store Bfld for DistChord Calculation         70    // Store Bfld for DistChord Calculation
 69    //                                              71    //
 70    for(auto i=0; i<3; ++i)                         72    for(auto i=0; i<3; ++i)
 71    {                                               73    {
 72      BfldIn[i] = B[i];                             74      BfldIn[i] = B[i];
 73    }                                               75    }
 74    // RightHandSide(yTemp,dydxTemp) ;              76    // RightHandSide(yTemp,dydxTemp) ;
 75                                                    77 
 76    GetEquationOfMotion()->EvaluateRhsGivenB(yT     78    GetEquationOfMotion()->EvaluateRhsGivenB(yTemp,B,dydxTemp) ;  
 77    StepNoErr(yTemp,dydxTemp,h,yOut,B);             79    StepNoErr(yTemp,dydxTemp,h,yOut,B);      
 78                                                    80         
 79    // Store midpoint, chord calculation            81    // Store midpoint, chord calculation
 80                                                    82                                  
 81    fyMidPoint = G4ThreeVector(yTemp[0],  yTemp     83    fyMidPoint = G4ThreeVector(yTemp[0],  yTemp[1],  yTemp[2]); 
 82                                                    84 
 83    // Do a full Step                               85    // Do a full Step
 84   //                                               86   //
 85    h *= 2 ;                                        87    h *= 2 ;
 86    StepNoErr(yIn,dydx,h,yTemp,B);                  88    StepNoErr(yIn,dydx,h,yTemp,B); 
 87    for(G4int i=0; i<nvar; ++i)                     89    for(G4int i=0; i<nvar; ++i)
 88    {                                               90    {
 89       yErr[i] = yOut[i] - yTemp[i] ;               91       yErr[i] = yOut[i] - yTemp[i] ;
 90       yOut[i] += yErr[i]*by15 ;          // Pr     92       yOut[i] += yErr[i]*by15 ;          // Provides 5th order of accuracy
 91    }                                               93    }
 92                                                    94 
 93    // Store values for DistChord method            95    // Store values for DistChord method
 94    //                                              96    //
 95    fyInitial = G4ThreeVector( yIn[0],   yIn[1]     97    fyInitial = G4ThreeVector( yIn[0],   yIn[1],   yIn[2]);
 96    fpInitial = G4ThreeVector( yIn[3],   yIn[4]     98    fpInitial = G4ThreeVector( yIn[3],   yIn[4],   yIn[5]);
 97    fyFinal   = G4ThreeVector( yOut[0],  yOut[1     99    fyFinal   = G4ThreeVector( yOut[0],  yOut[1],  yOut[2]); 
 98 }                                                 100 }
 99                                                   101 
100 // -------------------------------------------    102 // ---------------------------------------------------------------------------
101                                                   103 
102 // Integrator for RK from G3 with evaluation o    104 // Integrator for RK from G3 with evaluation of error in solution and delta
103 // geometry based on naive similarity with the    105 // geometry based on naive similarity with the case of uniform magnetic field.
104 // B1[3] is input  and is the first magnetic f    106 // B1[3] is input  and is the first magnetic field values
105 // B2[3] is output and is the final magnetic f    107 // B2[3] is output and is the final magnetic field values.
106 //                                                108 //
107 void G4RKG3_Stepper::StepWithEst( const G4doub    109 void G4RKG3_Stepper::StepWithEst( const G4double*,
108                                   const G4doub    110                                   const G4double*,
109                                         G4doub    111                                         G4double,
110                                         G4doub    112                                         G4double*,
111                                         G4doub    113                                         G4double&,
112                                         G4doub    114                                         G4double&,
113                                   const G4doub    115                                   const G4double*,
114                                         G4doub    116                                         G4double* )
115                                                   117    
116 {                                                 118 {
117   G4Exception("G4RKG3_Stepper::StepWithEst()",    119   G4Exception("G4RKG3_Stepper::StepWithEst()", "GeomField0001",
118               FatalException, "Method no longe    120               FatalException, "Method no longer used.");
119 }                                                 121 }
120                                                   122 
121 // -------------------------------------------    123 // -----------------------------------------------------------------
122                                                   124 
123 // Integrator RK Stepper from G3 with only two    125 // Integrator RK Stepper from G3 with only two field evaluation per Step. 
124 // It is used in propagation initial Step by s    126 // It is used in propagation initial Step by small substeps after solution 
125 // error and delta geometry considerations. B[    127 // error and delta geometry considerations. B[3] is magnetic field which 
126 // is passed from substep to substep.             128 // is passed from substep to substep.
127 //                                                129 //
128 void G4RKG3_Stepper::StepNoErr(const G4double     130 void G4RKG3_Stepper::StepNoErr(const G4double tIn[8],
129                                const G4double     131                                const G4double dydx[6],
130                                      G4double     132                                      G4double Step,
131                                      G4double     133                                      G4double tOut[8],
132                                      G4double     134                                      G4double B[3] )
133                                                   135    
134 {                                                 136 { 
135                                                   137   
136    // Copy and edit the routine above, to dele    138    // Copy and edit the routine above, to delete alpha2, beta2, ...
137    //                                             139    //
138    G4double K1[7], K2[7], K3[7], K4[7];           140    G4double K1[7], K2[7], K3[7], K4[7];
139    G4double tTemp[8]={0.0}, yderiv[6]={0.0};      141    G4double tTemp[8]={0.0}, yderiv[6]={0.0};
140                                                   142 
141    // Need Momentum value to give correct valu    143    // Need Momentum value to give correct values to the coefficients in
142    // equation. Integration on unit velocity,     144    // equation. Integration on unit velocity, but tIn[3,4,5] is momentum
143                                                   145 
144    G4double mom, inverse_mom;                     146    G4double mom, inverse_mom;
145    const G4double c1=0.5, c2=0.125, c3=1./6.;     147    const G4double c1=0.5, c2=0.125, c3=1./6.;
146                                                   148   
147    // Correction for momentum not a velocity      149    // Correction for momentum not a velocity
148    // Need the protection !!! must be not zero    150    // Need the protection !!! must be not zero
149    //                                             151    //
150    mom = std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4]    152    mom = std::sqrt(tIn[3]*tIn[3]+tIn[4]*tIn[4]+tIn[5]*tIn[5]); 
151    inverse_mom = 1./mom;                          153    inverse_mom = 1./mom;    
152    for(auto i=0; i<3; ++i)                        154    for(auto i=0; i<3; ++i)
153    {                                              155    {
154       K1[i] = Step * dydx[i+3]*inverse_mom;       156       K1[i] = Step * dydx[i+3]*inverse_mom;
155       tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*in    157       tTemp[i] = tIn[i] + Step*(c1*tIn[i+3]*inverse_mom + c2*K1[i]) ;
156       tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ;      158       tTemp[i+3] = tIn[i+3] + c1*K1[i]*mom ;
157    }                                              159    }
158                                                   160     
159    GetEquationOfMotion()->EvaluateRhsReturnB(t    161    GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ;
160                                                   162       
161    for(auto i=0; i<3; ++i)                        163    for(auto i=0; i<3; ++i)
162    {                                              164    {
163       K2[i] = Step * yderiv[i+3]*inverse_mom;     165       K2[i] = Step * yderiv[i+3]*inverse_mom;
164       tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ;      166       tTemp[i+3] = tIn[i+3] + c1*K2[i]*mom ;
165    }                                              167    }
166                                                   168    
167    // Given B, calculate yderiv !                 169    // Given B, calculate yderiv !
168    //                                             170    //
169    GetEquationOfMotion()->EvaluateRhsGivenB(tT    171    GetEquationOfMotion()->EvaluateRhsGivenB(tTemp,B,yderiv) ;  
170                                                   172  
171    for(auto i=0; i<3; ++i)                        173    for(auto i=0; i<3; ++i)
172    {                                              174    {
173       K3[i] = Step * yderiv[i+3]*inverse_mom;     175       K3[i] = Step * yderiv[i+3]*inverse_mom;
174       tTemp[i] = tIn[i] + Step*(tIn[i+3]*inver    176       tTemp[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom + c1*K3[i]) ;
175       tTemp[i+3] = tIn[i+3] + K3[i]*mom ;         177       tTemp[i+3] = tIn[i+3] + K3[i]*mom ;
176    }                                              178    }
177                                                   179 
178    // Calculates y-deriv(atives) & returns B t    180    // Calculates y-deriv(atives) & returns B too!
179    //                                             181    //
180    GetEquationOfMotion()->EvaluateRhsReturnB(t    182    GetEquationOfMotion()->EvaluateRhsReturnB(tTemp,yderiv,B) ;  
181                                                   183 
182    for(auto i=0; i<3; ++i)        // Output tr    184    for(auto i=0; i<3; ++i)        // Output trajectory vector
183    {                                              185    {
184       K4[i] = Step * yderiv[i+3]*inverse_mom;     186       K4[i] = Step * yderiv[i+3]*inverse_mom;
185       tOut[i] = tIn[i] + Step*(tIn[i+3]*invers    187       tOut[i] = tIn[i] + Step*(tIn[i+3]*inverse_mom+ (K1[i]+K2[i]+K3[i])*c3) ;
186       tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2    188       tOut[i+3] = tIn[i+3] + mom*(K1[i] + 2*K2[i] + 2*K3[i] +K4[i])*c3 ;
187    }                                              189    }
188    tOut[6] = tIn[6];                              190    tOut[6] = tIn[6];
189    tOut[7] = tIn[7];                              191    tOut[7] = tIn[7];
190 }                                                 192 }
191                                                   193 
192 // -------------------------------------------    194 // ---------------------------------------------------------------------------
193                                                   195  
194 G4double G4RKG3_Stepper::DistChord() const        196 G4double G4RKG3_Stepper::DistChord() const 
195 {                                                 197 {
196    // Soon: must check whether h/R > 2 pi  !!     198    // Soon: must check whether h/R > 2 pi  !!
197    // Method below is good only for < 2 pi        199    // Method below is good only for < 2 pi
198                                                   200 
199    G4double distChord,distLine;                   201    G4double distChord,distLine;
200                                                   202    
201    if (fyInitial != fyFinal)                      203    if (fyInitial != fyFinal)
202    {                                              204    {
203       distLine = G4LineSection::Distline(fyMid    205       distLine = G4LineSection::Distline(fyMidPoint,fyInitial,fyFinal);
204       distChord = distLine;                       206       distChord = distLine;
205    }                                              207    }
206    else                                           208    else
207    {                                              209    {
208       distChord = (fyMidPoint-fyInitial).mag()    210       distChord = (fyMidPoint-fyInitial).mag();
209    }                                              211    }
210                                                   212 
211    return distChord;                              213    return distChord;
212 }                                                 214 }
213                                                   215